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We show hydrodynamic boundary conditions to be the inherent consequence of the
Onsager principle of minimum energy dissipation, provided the relevant effects of
the wall potential appear within a thin fluid layer next to the solid wall, denoted
the surface layer. The condition that the effect of the surface layer on the bulk
hydrodynamics must be independent of its thickness h is shown to imply a set of
consistent ‘scaling relationships’ between h and the surface-layer variables/parameters.
The use of the scaling relations, in conjunction with the surface-layer equations
of motion derived from the Onsager principle, directly leads to the hydrodynamic
boundary conditions. We demonstrate the surface-layer scaling process both physically
and mathematically, and relate the parameters of the boundary conditions to those
in the surface-layer equations of motion. In spatial regions outside the surface layer,
equivalence between the use of surface-layer dynamics and boundary conditions
is numerically demonstrated for Couette flows. As an application of the present
approach, we derive the liquid-crystal hydrodynamic boundary conditions in which
the rotational and translational dynamics are coupled.

1. Introduction
Boundary conditions complement the equations of motion and constitutive

equations as a key element of continuum hydrodynamics. In spite of their importance,
however, not all boundary conditions have been derived from basic principles. A
prominent example is the no-slip boundary condition (NSBC) (Batchelor 1967),
which has been widely employed but recognized some time ago to be incompatible
with immiscible flows that involve a moving contact line, defined to be the intersection
of the fluid–fluid interface with the solid wall (Moffatt 1964; Huh & Scriven 1971;
Dussan V. & Davis 1974; Dussan V. 1976, 1979; de Gennes 1985; Koplik, Banavar &
Willemsen 1988; Thompson & Robbins 1989). Recently, it was discovered that the use
of Onsager principle of minimum energy dissipation (Onsager 1931a, b) can yield the
required boundary conditions, denoted the generalized Navier boundary conditions
(GNBCs), for resolving the moving contact line problem (Qian, Wang & Sheng 2003,
2004, 2006). This success suggests an approach, based on the Onsager principle, for
the derivation of hydrodynamic boundary conditions.

In this work we present a systematic scheme for deriving the hydrodynamic
boundary conditions that is based on two elements. The first is the physical concept
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of a surface layer, arising from the consideration that the (solid) wall potential is the
source of the boundary conditions, but the wall potential and its influence have a
small but finite extent h. That is, within the surface layer, the effect of the wall on the
fluid grows from zero, at the zero position usually associated with the (centre of mass)
location of the solid wall molecules, to saturation at some finite distance h into the
fluid. The introduction of the surface layer immediately implies the second element of
the scheme: the application of the Onsager principle to all the dissipations that occur
beyond zero but within the surface layer, leading to a set of equations of motion that
may be derived in the same manner as in the bulk. The boundary conditions to be
applied at zero are natural and straightforward: zero viscous stress and zero Young
stress as there is no fluid beyond zero.

We show that the continuum hydrodynamic boundary conditions emerge, through
a set of scaling relations, as the leading-order terms of the equations of motion in
the surface layer, that are independent of the surface-layer thickness h as h → 0+ –
i.e. the continuum boundary conditions preserve the leading-order hydrodynamics in
the limit of h → 0+, and hence the hydrodynamic solution in the bulk. This is the
desired result because the boundary conditions describe the integrated effects of the
surface layer and hence thickness independence is expected in the limit of h → 0+.
Besides putting the linkage between the hydrodynamic boundary conditions and
the Onsager principle on a better physical and mathematical basis than previously
attained, another benefit of the scaling approach is the demonstration that the
Allen–Cahn relaxational boundary condition in the GNBC (Qian et al. 2003, 2006)
is a direct consequence of diffusive dynamics in the surface layer, and there is a
direct relationship between the surface-layer mobility coefficient M and the Allen–
Cahn relaxational rate parameter Γ . In addition, the scaling approach also allows
easy generalization to the derivation of hydrodynamic boundary conditions in more
complex systems, e.g. liquid crystals. In what follows, the formulation of the approach
is presented in § 2, followed by the description of scaling relations for obtaining
the continuum boundary conditions in § 3. The near-equivalence of surface layer
and boundary conditions, in terms of the hydrodynamic solutions, is numerically
demonstrated in § 4. In § 5 we illustrate the present approach by deriving the
boundary conditions for liquid-crystal hydrodynamics, where the presence of both
rotational and translational motions implies non-trivial coupling between the two.
In § 6 we conclude by comparing with the kinetic theory approach and noting some
implications.

2. Formulation
2.1. Onsager principle of minimum energy dissipation

Since the early work of Helmholtz, there has been a steady development of variational
principles involving dissipation (Rayleigh 1873). Here we attribute to Onsager the
version that foreshadowed many later developments in statistical mechanics of
dissipative systems. The Onsager principle concerns the rules governing the irreversible
dissipative processes in the regime of linear response. According to this principle, the
variational minimization of a functional would yield the equations of motion that
govern the most probable course of a dissipative process (Onsager 1931a, b). In the
statistical sense, the most probable course is the only course of action observed
macroscopically. For completeness, we present below an outline of the Onsager
principle.
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For the general case of multiple dynamic variables q1, . . . , qn, the variational
functional can be written as

A =
1

2

∑
i,j

ηij q̇i q̇j +

n∑
i=1

∂F (q1, . . . , qn)

∂qi

q̇i, (2.1)

where in the case of the qi being field variables, the summation should be replaced
by integrals, and partial derivatives by functional derivatives. Here ηij are the
damping coefficients, q̇i are the rates corresponding to qi ,

1
2

∑
i,j ηij q̇i q̇j is the so-called

dissipation function which is half of the rate of energy dissipation, and F (q1, . . . , qn) is
the free energy function. Note that the damping coefficients ηij must be symmetric with
respect to the interchange of the two indices, as required by microscopic reversibility.
Minimizing A with respect to the rates {q̇i}, for prescribed {qi}, yields for i = 1, . . . , n

the equations
n∑

j=1

ηij q̇j = −∂F (q1, . . . , qn)

∂qi

, (2.2)

which describe the balance of the conservative forces due to the free energy gradients
and the dissipative forces that are linear in rates.

2.2. Surface layer and the natural boundary conditions

A surface layer of fluid exists under the influence of the solid wall potential, which
is physically the source of the boundary conditions which describe the effects of
the solid surface on the bulk fluid. Consider the fluid to be in the half-space z � 0.
Since the molecular interactions are always characterized by a finite range in which
there can be a repulsive component that delineates the ‘size’ of the molecules, it is
inevitable that there be a finite range within which the wall effect on the fluid is fully
realized. It follows that there is a plane from which the fluid–solid interaction energy
accumulates starting from zero, so that the tangential stress is zero and fluid–solid
interfacial tension effect is also absent at this plane, denoted z = 0. Both effects take a
small but finite distance to be fully realized (shown below through molecular dynamics
simulations), and this defines what we mean by the ‘surface layer’. Natural boundary
conditions are simply the dynamic and force balance consequences at z = 0 that follow
from zero tangential stress and zero fluid–solid interfacial tension. Physically the z =0
plane may coincide with the centres of mass of the solid molecules, as is made clear
in the following considerations.

The interaction energy density between the fluid molecules and the solid wall may
be characterized by Vw(z)n(z), where Vw(z) denotes the wall potential that has a finite
range h, and n(z) is the fluid molecular density. In the immediate vicinity of the
wall molecules, the repulsive nature of the wall potential (where Vw(z) is positive)
grows very fast as z approaches zero (the centres of mass of the solid molecules),
but the product Vw(z)n(z) → 0 since n(z) ∼ exp[−Vw(z)/kBT ] decreases even faster.
Moreover, since Vw(z) has a finite range, Vw(z)n(z) → 0 as z increases beyond h. From
these considerations it is clear that Vw(z)n(z) is a peaked function of z with a finite
width ∼h. This is the surface layer, as illustrated in figure 1.

The wall potential is characterized by (a) a plane where the fluid–solid interaction
energy density is zero, and (b) a geometric structure factor in the (x, y)-plane, plus
a saturation distance perpendicular to the (x, y)-plane that is on the order of the
molecular interaction distance, i.e. on the order of a few Angstroms at most. For
(a), the immediate consequence is the so-called natural boundary condition of zero
tangential stress at z = 0. This point will be made precise in the following section.
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Figure 1. A schematic illustration of the surface layer that extends from z = 0 to h. The solid
curve denotes the interaction energy density Vw(z)n(z) between the fluid molecules and the
solid wall as a peaked function of z.

For (b), it should be emphasized that for the concept of a hydrodynamic boundary
condition to be valid, the surface-layer thickness must be the smallest length scale
in the problem. Physically, the surface-layer thickness is comparable to the range of
short-range repulsive forces that usually operate on an atomic scale. In particular,
surface layer as defined above is much thinner than the precursor film thickness, whose
existence is due to the longer-range component of the wall potential, i.e. the van der
Waal interaction (de Gennes 1985). Thus it is valid to use hydrodynamic boundary
condition(s) in the treatment of precursor films, with long-range van der Waals forces
explicitly taken into account in the momentum equation. Work is currently under way
in this direction. However, it cannot be excluded that there exist some instances (for
example, due to the nature of the wall molecules, e.g. polymers), where the surface
layer thickness may become comparable to other scale(s) in the problem. For these
cases, the conventional concept of boundary conditions may have to be revised. In
the present scaling approach, the hydrodynamic boundary conditions are obtained by
keeping the leading-order terms of the equations of motion in the surface layer, that
are independent of the surface layer thickness h. An expansion in h to the next-order
terms would yield information regarding the accuracy of the hydrodynamic boundary
conditions in replacing the surface layer dynamics.

To identify the surface layer, we note that fluid–solid interaction can give rise to
two distinct physical quantities: the tangential frictional force exerted by the wall on
the fluid and the fluid–solid interfacial tension. In terms of the Onsager principle,
the former is related to the dissipation function while the latter is part of the free
energy. In particular, in the GNBCs that resolve the moving contact line problem
(Qian et al. 2006), these are the two quantities solely contributed by the surface layer.

In the regime of linear friction, the tangential wall force per unit area exerted
on the fluid is proportional to the slip velocity, i.e. Gw

x = −βvx , where Gw
x is the

tangential wall force per unit area and vx the tangential slip velocity, with the solid
surface assumed to be still and in the (x, y)-plane and the fluid in the half-space z � 0.
The slip coefficient β , which is the friction coefficient of the fluid–solid interface,
arises from the lateral inhomogeneity (corrugation) of the structured solid wall.
(We consider a fluid bounded by an atomically smooth solid surface. By atomically
smooth, we mean for example a dense plane of a perfect crystalline lattice.) Away
from the fluid–solid boundary (z = 0), each fluid molecule can interact with many
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Figure 2. Molecular dynamics evidence for the existence of a surface layer. For technical
details of our simulations, see Appendix A. (a) The tangential wall force density gw

x plotted as
a function of distance z away from the solid surface, with z = 0 corresponding to the centre
of the first layer of solid atoms in the bottom wall. Here the tangential wall force density
was measured in a standard non-equilibrium MD simulation of the Couette flow confined
between two planar solid surfaces, by subdividing the surface layer into many thin sections.
It is seen that the force density gw

x is distributed in a very narrow range. The tangential wall
force per unit area, Gw

x =
∫

dzgw
x (z), is obtained by integrating gw

x across the surface layer.
The slip velocity vx is defined as the average tangential velocity of the fluid in the range of
tangential wall force, measured relative to the bottom wall. We found Gw

x = −0.136εσ −3 and
vx = 0.102(ε/m)1/2 for δ =0.7, and Gw

x = −0.144εσ −3 and vx = 0.0755(ε/m)1/2 for δ = 0.8, from
which we obtained β = 1.33(εm)1/2σ −3 for δ =0.7 and β = 1.91(εm)1/2σ −3 for δ = 0.8 using
Gw

x = −βvx . The observed increase of β with increasing fluid–solid attractive interaction agrees
with the theoretical prediction of Barrat & Bocquet (1999). (b) Time-averaged profile of the
stress anisotropy measured in an equilibrium MD simulation. Here σxx =(σxx + σyy)/2 is the
parallel component of the stress associated with the fluid–solid interface, and σB represents
the uniform normal component of the stress σzz which is equal to σxx in the bulk where the
stress is isotropic. The interfacial tension γFS can be obtained by integrating σxx − σB across
the fluid–solid interface, γFS =

∫
dz [σxx(z) − σB ] (for more details, see Appendix B). We found

γFS = 2.04εσ −2 for δ = 0.7 and γFS = 0.91εσ −2 for δ = 0.8. It is seen that γFS decreases with
increasing fluid–solid attraction.

solid atoms on a nearly equal basis. Thus, as experienced by the fluid molecules,
the periodic corrugation amplitude of the wall potential would quickly decrease with
increasing distance from the solid surface. Hence the tangential wall force tends
to saturate at a relatively short range. This can be seen from molecular dynamics
(MD) simulation results shown in figure 2(a), which clearly indicate the tangential
wall force density gw

x (with Gw
x =

∫
dzgw

x (z)) to be in the form of a sharply peaked
function approximately one molecular distance away from the centre of the first layer
of solid atoms. In contrast, the normal component of the wall force arises from the
fluid–solid interaction directly, independent of whether the wall potential is periodic
or not. Consequently, the normal wall force saturates slower than the tangential
component. Physically, the fluid–solid interfacial tension γFS is contributed by the
normal wall force (with the atomic-scale lateral inhomogeneities of the solid surface
smoothed out, see Appendix B). We have carried out MD simulations showing the
finite range over which γFS is defined, in accordance with the Kirkwood–Buff formula
for interfacial tension (Kirkwood & Buff 1949). The results are shown in figure 2(b).
Again, the interfacial tension saturates within a finite but small distance away from
the centre of the first layer of solid atoms. But this distance is larger than that seen in
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figure 2(a) for the tangential component of fluid–solid interaction. The surface layer
thickness h is taken to be the larger of the two. In the phenomenological continuum
hydrodynamics presented in § 2.3, the tangential wall force per unit area Gx

w and the
fluid–solid interfacial free energy per unit area γFS will be realized by introducing
their corresponding density quantities into the surface layer.

In a recent review article by Bocquet & Barrat (2007) on flow boundary conditions,
it has been pointed out that a slip boundary condition is physically a constitutive
relation involving the fluid–solid interface, comparable to that of the bulk equations
in every respect. This is completely in line with the physics considerations behind
the introduction of a surface layer. More specifically, the concept of a surface layer
is clearly manifest in the Kubo-like formula derived for the slip coefficient (Barrat
& Bocquet 1999), similar to the Green–Kubo relation for the shear viscosity. The
corresponding autocorrelation function is contributed by the first layer of fluid. It can
be shown that β is proportional to the integrated quantity

∫ ∞
0

dzρ(z)VFS(z)
2, where

ρ(z) is the density profile of the fluid perpendicular to the solid surface and VFS(z) is
the amplitude of potential corrugation. Since ρ(z) vanishes quickly toward zero due
to the short-range repulsive interaction, while VFS(z) decreases quickly with increasing
distance from the solid surface, the product ρ(z)VFS(z)

2 must be sharply peaked in
the surface layer, in agreement with the non-equilibrium MD observation for the
tangential wall force depicted in figure 2(a) (Qian et al. 2003).

In the following, we wish to treat the surface layer in the continuum sense. This is
possible provided the variables in the continuum formulation are the time- and fluid-
molecules-averaged values. This is the usual manner in which the underlying discrete
nature of fluid and solid is made to correspond with the continuum formulations.
Thus we may regard the fluid molecules in the surface layer as constituting a
two-dimensional fluid, where the lateral inhomogeneities are homogeneized over the
hydrodynamic length scale. It is over this continuum hydrodynamic length scale that
the plane of zero fluid–solid interaction energy density is introduced, with atomic-
scale inhomogeneities smoothed out (the effect of these inhomogeneities is taken into
account in the evaluation of the slip coefficient β , as described above). This approach
follows the conventional continuum description deduced from molecular dynamics.

In essence, our approach is to introduce the continuum description within a surface
layer of finite thickness. And the hydrodynamic equations of motion within this
surface layer are derived from the Onsager principle, taking into account the fluid–
solid interactions. A scaling approach is then introduced to preserve the integrated
effect of the surface layer on the bulk hydrodynamics as its thickness h is continuously
reduced towards 0+. Hydrodynamic boundary conditions emerge as a consequence.

However, it should be noted that by using the continuum description and the
Onsager principle, we obtain only the form(s) of hydrodynamic boundary conditions.
The relevant fluid–solid interfacial physics is contained in the phenomenological
parameters that appear in the hydrodynamic boundary conditions. The evaluation of
these parameters requires the application of statistical mechanics and kinetic theory
to a detailed interfacial model that includes both geometric information as well as
molecular interactions. These are beyond the scope of the present work, the purpose of
which is only to provide a general framework for deriving the form of hydrodynamic
boundary conditions. In this context it is accurate to regard the hydrodynamic
boundary conditions as just another manifestation of linear response phenomena in
dissipative systems, e.g. electrical current is linearly proportional to voltage difference,
flow rate through a porous medium is linearly proportional to pressure difference, heat
flow is linearly proportional to temperature gradient, etc., all of which may be traced
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Figure 3. A schematic illustration for the moving contact line in immiscible two-phase flows.
The two fluids are represented by the phase fields φ = −1 and φ = +1, respectively. The
fluid–fluid interface intersects the solid wall at the contact line which joins three interfaces – one
fluid–fluid interface and two fluid–solid interfaces. Each interface is characterized by an
interfacial tension, with γ for the fluid–fluid interface and γ1(2) for the fluid–solid interfaces.
Owing to the contact-line motion relative to the solid wall, the dynamic contact angle θd deviates
from the static contact angle θs , which is determined by the Young equation γ cos θs + γ2 = γ1.
Each interface is shaded with a finite width to indicate the diffuse nature of the fluid–fluid
interface and the surface layer.

back to the Onsager principle. In all these cases the evaluation of the coefficients of
proportionality, i.e. electrical conductivity, permeability, heat conductivity, etc., has to
be carried out separately for each material system, and may depend on microstructure
and other detailed information. The purpose of the present work is to provide the
missing link – the scaling approach – which connects the Onsager principle to the
hydrodynamic boundary conditions by recognizing the physical existence of a surface
layer. The evaluation of the relevant phenomenological coefficients is left as a future
task.

2.3. Variational derivation of the equations of motion and natural boundary conditions

The governing equations for fluid motion, from the surface layer to the bulk, can
be derived from the Onsager variational principle with the consideration that wall
potential is of a small but finite extent, i.e. the relevant wall potential can be treated
as negligible outside the surface layer. In this section, we treat the case of two-phase
immiscible flows that involve a moving contact line, defined as the intersection of
the fluid–fluid interface with the solid wall (see figure 3). To distinguish between
the two immiscible fluids, a phase field φ(r) is introduced to measure the local
relative concentration (Cahn & Hilliard 1958; Seppecher 1996; Jacqmin 2000; Chen,
Jasnow & Vinals 2000; Pismen & Pomeau 2000; Briant & Yeomans 2004). φ(r) varies
continuously from the value of −1 on the fluid 1 side to the value of +1 on the fluid 2
side, with a sharp variation across the fluid–fluid interfacial region. Since φ is a locally
conserved quantity, it satisfies the continuity equation φ̇ = ∂φ/∂t + v · ∇φ = −∇ · J ,
where J denotes the diffusive current density, and v the local fluid velocity. The
velocity v, which appears in the momentum equation, is defined to be the barycentric,
or mass-averaged, velocity v =

∑
i ρivi/ρ, where ρi is the position-dependent mass

density of species i, vi is the position-dependent velocity of species i, and ρ =
∑

i ρi

is the total mass density. The diffusive current density (flux) of particles of type i,
J i = ρi(vi − v), is defined relative to the barycentric velocity (de Groot & Mazur
1984). Note that for binary fluids, J1 + J2 =

∑
i ρivi − ρv = 0, and therefore only one

diffusive current density is used.
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2.3.1. Dissipation function

We start from the dissipation function Φ(α̇, α̇) that is quadratic in the rates:

Φ = Φv + Φs + Φd, (2.3)

in which Φv , Φs , and Φd are due to shear viscosity, wall friction, and diffusion,
respectively, given by

Φv =
1

2

∫
dr

[
η

2
(∂ivj + ∂jvi)

2

]
, (2.4)

Φs =
1

2

∫
dr

[
β̄v2

τ

]
, (2.5)

Φd =
1

2

∫
dr

[
J2

M

]
, (2.6)

where η is the shear viscosity, vi the components of v, and β̄ is the slip coefficient
(whose value vanishes beyond the surface layer) that owes its origin to the tangential
component of the dynamic stress exerted by the wall on fluid molecules (Barrat &
Bocquet 1999; Qian et al. 2003), vτ is the projection of v on the solid surface, and
M is the mobility coefficient. Owing to the influence of the wall, values of η and
M near the solid surface may deviate from their bulk values. Below we assume that
the planar solid surface is in the (x, y)-plane, the fluids are in the half-space z � 0,
and for generality η, β̄ , and M are all regarded as functions of z, with η and M

approaching their bulk values and β̄ → 0 for z >h. The parameters η, β̄ , and M

all locally depend on φ, i.e. η = η(z; φ), β̄ = β̄(z; φ), and M = M(z; φ). Physically, Φs

represents the dissipation due to the viscous coupling between the fluid and wall. The
corresponding dissipative force is −β̄vτ ≡ −β̄v · (1 − ẑ ẑ), the tangential wall force
density (whose x component is gw

x introduced in § 2.2).

2.3.2. Free energy components

The free energy function F [φ(r)] consists of the Cahn–Hilliard (CH) free energy
FCH[φ(r)] which stabilizes the fluid–fluid interface between the two immiscible fluids
(Cahn & Hilliard 1958) and the surface free energy FFS[φ(r)] which arises from the
fluid–solid interaction (Thompson & Robbins 1989):

F [φ(r)] = FCH[φ(r)] + FFS[φ(r)], (2.7)

in which FCH[φ(r)] and FFS[φ(r)] are given by

FCH[φ(r)] =
3γ

2
√

2

∫
dr

[
ξ

2
(∇φ)2 +

1

4ξ
(φ2 − 1)2

]
, (2.8)

FFS[φ(r)] =

∫
dr [γ̄FS(z; φ)] . (2.9)

Here γ and ξ are the interfacial tension and thickness of the fluid–fluid interface, and
γ̄FS(z; φ) represents the energy density for the fluid–solid interaction that extends to
a distance h and locally depends on φ. Physically, this energy density arises from the
wall potential Vw introduced in § 2.2. The relation between γ̄FS and Vw is presented in
Appendix B. The rate of change of F [φ(r)] can be expressed by

Ḟ [φ(r)] =

∫
dr

[
μCH

∂φ

∂t

]
+

∫
dS

[
LCH

∂φ

∂t

]
+

∫
dr

[
∂γ̄FS

∂φ

∂φ

∂t

]
, (2.10)



Hydrodynamic boundary conditions 341

in which

μCH =
3γ

2
√

2

[
−ξ∇2φ +

1

ξ
φ(φ2 − 1)

]
(2.11)

is the chemical potential and

LCH = − 3γ ξ

2
√

2
∂zφ, (2.12)

with
∫

dS denoting the surface integral in the plane of z =0. Substituting the
material derivative φ̇ = ∂φ/∂t +v · ∇φ and the continuity equation φ̇ = −∇ · J into the
expression for Ḟ [φ(r)] yields

Ḟ [φ(r)] =

∫
dr [∇μCH · J − μCH(v · ∇φ)]

+

∫
dS[LCH(φ̇ − v · ∇φ)]

+

∫
dr

[
∇

(
∂γ̄FS

∂φ

)
· J − ∂γ̄FS

∂φ
(v · ∇φ)

]
, (2.13)

in which the impermeability boundary condition Jz = 0 has been used at the solid
surface such that

∫
dr[f φ̇] =

∫
dr [∇f · J] with f = μCH or ∂γ̄FS/∂φ.

2.3.3. Variational functional and Euler–Lagrange equations

According to the Onsager principle, the sum of Φ and Ḟ gives the action
functional A:

A[v(r), J(r), φ̇(r)] =

∫
dr

[
η

4
(∂ivj + ∂jvi)

2

]
+

∫
dr

[
β̄

2
v2

τ

]
+

∫
dr

[
J2

2M

]

+

∫
dr [∇μCH · J − μCH(v · ∇φ)] +

∫
dS[LCH(φ̇ − v · ∇φ)]

+

∫
dr

[
∇

(
∂γ̄FS

∂φ

)
· J − ∂γ̄FS

∂φ
(v · ∇φ)

]
, (2.14)

which is to be minimized with respect to the rates
{
v, J, φ̇

}
, supplemented with the

incompressibility condition ∇ · v = 0. Considering that φ is conserved in the bulk but
not at the solid surface, we choose J as the rate variable in the bulk and φ̇ the rate
variable at the surface z = 0. Minimization with respect to v in the bulk yields the
variational form∫

dr[−η∂j (∂jvi + ∂ivj )δvi] +

∫
dr[β̄vτ · δvτ ]

+

∫
dr

[
−

(
μCH +

∂γ̄FS

∂φ

)
∂iφδvi

]
+

∫
dr [−∂iλδvi] = 0 (2.15)

with λ a Lagrange multiplier for ∇ · v = 0. From equation (2.15) we obtain the Stokes
equation

−∇p + ∇ · σ v +

(
μCH +

∂γ̄FS

∂φ

)
∇φ − β̄v · (1 − ẑ ẑ) = 0, (2.16)

where p = −λ is identified as the pressure and σ v = η[∇v + (∇v)T ] the Newtonian
viscous stress tensor. The last term on the left-hand side of equation (2.16) is the
tangential wall force density arising from the viscous coupling between the fluid and
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wall, localized to the surface layer as illustrated in figure 2(a). This treatment of the
friction between the fluid and wall as being spatially distributed in a thin layer is
in fact the distinguishing feature of the present phenomenological approach. It is
interesting to note that equation (2.16) is similar to the Darcy–Brinkman equation
(Brinkman 1947) for flow in a dilute porous medium, with an anisotropic permeability
that is spatially inhomogeneous. In particular, the slip coefficient β̄ plays the role of an
inverse permeability that is localized to the surface layer and controls the tangential
momentum transport between the fluid and wall. Similar minimization with respect
to J yields the constitutive relation

J = −M∇
(

μCH +
∂γFS

∂φ

)
, (2.17)

which combines with the continuity equation for the φ to yield the convection–
diffusion equation

φ̇ =
∂φ

∂t
+ v · ∇φ = ∇ ·

[
M∇

(
μCH +

∂γFS

∂φ

)]
. (2.18)

To derive the relevant boundary conditions, it is observed that minimization of the
action functional, equation (2.14), with respect to v at the surface z = 0 yields the
variational form∫

dS[mjη(∂jvi + ∂ivj )δvi] +

∫
dS[−LCH∂iφδvi] = 0 (2.19)

with vi restricted to the (x, y)-plane and m = − ẑ the outward pointing unit vector
normal to the solid surface. From equation (2.19) we obtain the boundary condition

ẑ · σ · (1 − ẑ ẑ) = 0,

where σ = σ v + σ Y , σ v being the viscous stress and σ Y = −3γ ξ/(2
√

2) ∇φ ⊗ ∇φ the
Young stress. In addition, minimization with respect to φ̇ at the surface yields

LCH = 0 (2.20)

(and thus ∂zφ =0, see equation (2.12)), necessary for the ‘chemical’ equilibrium at the
solid surface. Therefore

ẑ · σ v · (1 − ẑ ẑ) = 0, (2.21)

and

ẑ · σ Y · (1 − ẑ ẑ) = 0, (2.22)

separately. Equations (2.21) and (2.22) simply reflect the fact that there is no fluid
beyond z =0 and are denoted ‘natural’ boundary conditions, as illustrated in figure 4.
In particular, the natural boundary conditions imply the contact angle at z =0 to be
90◦, since the absence of wall potential means that there is no fluid–solid interfacial
tension at the z =0 plane. It is worth emphasizing that the natural boundary condition
of zero tangential stress at z = 0 results from the fact that the tangential momentum
transport between the fluid and wall occurs in the surface layer, where the tangential
wall force −β̄v · (1 − ẑ ẑ) is narrowly distributed. The natural boundary conditions are
supplemented by the impenetrability conditions vz = 0 and Jz = 0.

Given the equations of motion (2.16) and (2.18), supplemented by the natural
boundary conditions and the impenetrability conditions, the hydrodynamic solution
in the z > 0 domain is well-defined. However, such a solution necessarily requires the



Hydrodynamic boundary conditions 343

h

z

0

h

θ = 90°σzx
v = 0

φ = –1 φ = +1

Figure 4. A schematic illustration for the natural boundary conditions ẑ · σ v · (1 − ẑ ẑ) = 0
and ẑ · σ Y · (1 − ẑ ẑ) = 0. The former is illustrated by a flow field with σv

zx = η∂zvx = 0 and the
latter by a fluid–fluid interface with a 90◦ contact angle at z = 0. Note that this contact angle
is different from the contact angle θd(s) illustrated in figure 3, which is defined at z = h.

resolution of the surface layer, which would be numerically impractical in most cases.
The purpose of the following section is to demonstrate that to leading order of the
surface-layer thickness h, treated as a small quantity in units where the z-dimension
of the system is taken to be 1, the effects of the surface layer can be captured by the
hydrodynamic boundary conditions.

3. Scaling and the hydrodynamic boundary conditions
Boundary conditions may be regarded as the hydrodynamic consequences of the

surface layer on the bulk fluid, without the necessity of resolving the surface layer.
Derivation of the boundary conditions may be accomplished in two ways, both
presented below. The first is to integrate the surface layer action functional (under
the influence of the wall potential) so as to represent its effects on the bulk at the
surface layer – bulk interface. The second is to have a mathematical limiting process
in which the effects of the surface layer hydrodynamics are kept constant while
letting h approach 0+. We show in the following that in order for both approaches
to be viable in a consistent manner, the parameters and variables that affect or
appear in the boundary conditions should be independent of h, a constraint which
must be consistently satisfied. We denote the relations of the various surface layer
parameters/variables with respect to h the ‘scaling relations’. They have the physical
meaning of relating the surface layer parameters/variables to those appearing in the
boundary conditions. When the scaling relations are satisfied, mathematically the
surface layer hydrodynamics exhibits h-independence to the leading order of h, thus
making possible the definition of boundary conditions.

For simplicity, below we consider the case of two-dimensional flows with
φ = φ(x, z, t) and v = vx(x, z, t)x̂ + vz(x, z, t) ẑ such that v · (1 − ẑ ẑ) = vx x̂, ẑ · σ v · (1 −
ẑ ẑ) = σ v

zx x̂, and ẑ · σ Y · (1 − ẑ ẑ) = σY
zx x̂. Generalization to the three-dimensional case is

straightforward.

3.1. Scaling relations

We obtain the scaling relations by first requiring the z-integrated material properties
that owe their origin to the wall potential be independent of h, and then demanding
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consistency with other parameters/variables through the equations of motion and
related expressions.

3.1.1. Scaling and surface-layer thickness variation

In what follows we deduce the scaling relations, i.e. variation of the various surface
layer parameters and variables with respect to h. Here the h variation should be
interpreted as follows. Consider a series of replicas of the physical system in which
the surface layer thickness h is monotonically decreased, and the first copy of the
replica series represents the physical system. We require the bulk hydrodynamics to
stay the same, to the leading order of h, for every replica in the series. Provided
this requirement can be met, then the boundary conditions are precisely those which
appear at z = h, at the end of the replica series as h → 0+. Since the dynamics of the
surface layer is transmitted to the bulk via its interface with the bulk, the requirement
that the bulk hydrodynamics stays the same in every replica may be satisfied by
making what appears at z = h to be h-independent. In the following we show that by
first requiring the constancy of β and γFS, which represent integrated wall effects on
the fluid, and then demanding consistency of h variation in the surface layer equations
of motion, a series of scaling relations may be obtained. Using such scaling relations,
the Onsager functional can be written in a form that takes into account only the
integrated effects of the surface layer and therefore is independent of h. Variation
of the Onsager functional then yields the conditions at z =h. Since these conditions
are h-independent, they are precisely the boundary conditions. In this way we deduce
what should be defined mathematically as the boundary conditions to correspond
exactly with what appears at z = h for the first copy of the replica series, which is the
physical system.

3.1.2. Scaling of β̄ , γ̄FS and the chemical potential

We start by proposing that the material properties β̄ = β̄(z; φ) and γ̄FS = γ̄FS(z; φ)
are distributed along the z-direction according to

β̄ =
1

h
Dβ (z/h; φ) β(φ) (3.1)

and

γ̄FS =
1

h
Dγ (z/h; φ) γFS(φ), (3.2)

where Dβ and Dγ satisfy the normalization conditions

∫ h

0

dz

[
1

h
Dβ (z/h; φ)

]
=1

and

∫ h

0

dz

[
1

h
Dγ (z/h; φ)

]
= 1

(with φ regarded as a constant in integration). These two scaling relations
are required by the physical condition that the surface-layer-integrated properties

β(φ) =
∫ h

0
dz[β̄(z; φ)] and γFS(φ) =

∫ h

0
dz [γ̄FS (z; φ)] should be independent of h. We

note that β̄vx is the frictional body force density due to the wall and βvx is the
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frictional force per unit area of the solid surface if vx is nearly constant across the
surface layer (shown below). Similarly, we note that γFS(φ) is the fluid–solid interfacial
free energy per unit area if φ is nearly constant across the surface layer (shown below)
and this integrated property is kept independent of h.

In an equlibrium state, the total chemical potential μ = μCH + ∂γ̄FS/∂φ is spatially
invariant and the diffusive current density J in equation (2.17) vanishes. The various
contributions to μ, however, do vary spatially (across the surface layer) even if the
system is in equilibrium. This is obvious since γ̄FS is localized to the surface layer.
In order to be consistent with the scaling of γ̄FS ∼ 1/h in equation (3.2), the CH
chemical potential μCH, ∂γ̄FS/∂φ, and the total chemical potential μ = μCH + ∂γ̄FS/∂φ

should all scale as 1/h, regardless of whether the system is in equilibrium or not.

As a consequence, the surface-layer-integrated total chemical potential,
∫ h

0
dzμ, is

independent of h, i.e.

∫ h

0

dzμ ∼ constant. (3.3)

It will be shown later that the scaling μCH ∼1/h determines the scaling of φ and the

h-independent
∫ h

0
dzμ enters into the hydrodynamic boundary conditions.

Above the surface layer, the chemical potential in the bulk fluid is independent of h

(since we require the bulk hydrodynamics to stay the same to the leading order of h)
and only varies slowly in space when the system is out of equilibrium. Furthermore,
as far as the surface layer is concerned, the boundary value (at z = h) of the bulk
chemical potential is small when compared to the 1/h magnitude of the chemical
potential within the surface layer. Thus to the leading order the boundary condition
for the surface layer chemical potential at z =h is effectively μ = 0. It follows that at
equilibrium, the spatially invariant chemical potential is given by μ = 0 everywhere,
from the surface layer to the bulk, although both μCH and ∂γ̄FS/∂φ vary across the
surface layer with a characteristic magnitude ∼1/h (compared to which μ = 0 to the
leading order).

When the system is out of equilibrium, the chemical potential μ varies across the

surface layer with a charactersitic magnitude ∼1/h (with
∫ h

0
dzμ being independent

of h), subject to the boundary condition μ|z =h = 0 to the leading order. Physically,
the spatial variations in μ (and consequently the non-zero diffusive transport
measured by J = −M∇μ) can be regarded as a manifestation of the Onsager
principle of minimum energy dissipation when the system is driven away from
equilibrium by, say, the shear flow imposed by the solid boundary: Given the presence
of Φd = 1

2

∫
dr[J2/M] in the action functional A in equation (2.14), minimization of A

requires the participation of diffusive transport, localized to the fluid–fluid interfacial
region. The overall dissipation will be reduced by introducing the two-phase diffusion
into the viscous flow. This effect is particularly evident when the mobility coefficient
M is large enough (Qian et al. 2006). It follows that in the dynamic non-equilibrium
two-phase flow, the chemical potential in the surface layer is distinct from the rest
of the system, with a fast spatial variation along the z-direction (to be shown in
figure 5 below). And since the diffusive transport is significant only in the region of
diffuse fluid–fluid interface, there is also a spatial variation of the chemical potential
along the x-direction (noted in the caption to figure 5). In summary, we conclude that
the spatially varying chemical potential is localized to a region in the vicinity of the
moving contact line.
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Another way of stating the above scaling relations is that
∫ h

0
dzβ̄ ,

∫ h

0
dzγ̄FS, and∫ h

0
dzμ are all h-independent constants which would appear in or affect the boundary

conditions.

3.1.3. Scaling of φ and v

To have μCH = 3γ /(2
√

2)[−ξ∇2φ + (1/ξ )φ(φ2 − 1)] ∼ 1/h, φ has to scale as

φ(z) = φ(0) + hφ(1) (z/h) + O(h2). (3.4)

From the natural boundary condition ∂zφ|z = 0 = 0 and ∂2
z φ ∼ 1/h, it follows that

the accumulated change of φ across the surface layer is on the order of h2∂2
z φ ∼ h,

a negligible quantity. It follows that φ is nearly constant in the surface layer. In
addition, it is noted that the scaling ∂zφ|z =h ∼ h∂2

z φ ∼ const. on top of the surface
layer is consistent with the requirement that the overall effect of the surface layer on
the bulk be h-independent.

We further propose that the fluid velocity v scales as

v(z) = v(0) + hv(1) (z/h) + O(h2). (3.5)

This ensures vx to be nearly constant across the surface layer so that the area density
of the frictional force due to the wall, βvx , is h-independent. It also leads to the
scaling ∂zvx |z =h ∼ const. on top of the surface layer, a condition necessitated by the
requirement that the shear rate in the bulk immediately above the surface layer be
h-independent.

From the above, we conclude that φ, ∂zφ, v and ∂zvx in the surface layer are directly
related to those appearing in the boundary conditions.

3.1.4. Scaling of η and M

The scaling for the viscosity η = η(z; φ) may be deduced from the tangential (x)
component of the Stokes equation in which the body force densities μ∂xφ and
−β̄vx both scale as 1/h so that the corresponding forces per unit area are h-
independent. Naturally, the tangential viscous force density ∇ · σ v · x̂ in the same
equation, dominated by ∂z (η∂zvx), has to scale as 1/h so that the shear viscous stress

at z = h, η∂zvx |z =h = η∂zvx |z = 0 +
∫ h

0
dz [∂z (η∂zvx)], is h-independent (with the natural

boundary η∂zvx |z =0 = 0). Combining this requirement with the scaling of vx , we find
the viscosity to scale as η = η (z/h; φ).

To deduce the scaling for the M = M(z; φ), we note that in the surface layer, the
diffusion equation has the form φ̇ = ∇ · [M∇μ]. Since the leading-order contribution
to φ̇ ∼ ∂φ(0)/∂t + v(0)

x ∂xφ
(0) is independent of h, it follows that the right-hand side of

the equation must also scale in the same manner. Given the surface layer thickness
as the smallest length scale, the tangential variation of the chemical potential along
the surface can be neglected. Consequently, the diffusive current is dominated by its
normal component Jz = −M∂zμ, and the diffusion equation becomes φ̇ = ∂z [M∂zμ] in
which each ∂z contributes a factor 1/h and μ scales as 1/h. Together they require the
mobility coefficient to scale as M = h3m (z/h; φ), where m denotes an h-independent
function.

Thus η and M/h3 should be proportional to the parameters that would appear in
the boundary conditions.

3.1.5. A summary

From the above it follows that the normal diffusive current Jz = −M∂zμ should
scale as h. This is consistent with the solution of the continuity equation φ̇ = −∂zJz,
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μ
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Figure 5. A schematic illustration for the variation of the chemical potential μ as a
function of z in the surface layer (0 < z < h), with the boundary conditions ∂zμ|z =0 = 0 and
μ|z = h =0. For constant M = h3m independent of z, integrating μ=

∫ z

h
dz′[φ̇z′/M(z′)] yields

μ(0) = μh = (φ̇/2m)[(z/h)2 − 1] as the scaled chemical potential which scales as h0. The bulk
chemical potential is nearly a constant. Hence multiplication with h makes it very small, as
indicated by the flat portion of the solid line. We note that the magnitude of μ(0) is proportional
to φ̇. Since φ̇ is non-zero only in the fluid–fluid interfacial region, it follows that μ(0) exhibits
the depicted behaviour only in the vicinity of the moving contact line.

Jz = −φ̇z, with the natural boundary condition Jz|z = 0 = 0. From −M∂zμ = −φ̇z, we

can express the total chemical potential in the form μ =
∫ z

h
dz′[φ̇z′/M], with the

boundary condition μ|z =h =0. The salient behaviour of the chemical potential is
illustrated in figure 5.

In summary, through physical considerations we have the following scaling relations
for the parameters/variables in the surface layer:

β̄ =
1

h
Dβ (ζ ; φ) β(φ), (3.6)

γ̄FS =
1

h
Dγ (ζ ; φ) γFS(φ), (3.7)

η = η (ζ ; φ) , (3.8)

M = h3m (ζ ; φ) , (3.9)

φ(z) = φ(0) + hφ(1) (ζ ) + O(h2), (3.10)

v(z) = v(0) + hv(1) (ζ ) + O(h2), (3.11)

Jz = h(−φ̇ζ ), (3.12)

μ(z) = μ(0) (ζ ) /h, (3.13)

with μ(0) (1) = 0. Here ζ = z/h is the scaled coordinate and the functions Dβ (ζ ; φ),
Dγ (ζ ; φ), η (ζ ; φ), and m (ζ ; φ) are functions independent of h, with h-independent
∂zφ|z =h and ∂zvx |z = h.

3.2. Emergence of boundary conditions in variational form

With the physically motivated scaling relations, the Onsager functional A= Φ + Ḟ

can be reduced to a form that takes into account only the integrated effects of the
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surface layer. And from this reduced variational functional the boundary conditions
emerge as the result of functional minimization.

In equation (2.14), there are three terms in Φ = Φv + Φs + Φd and two terms in Ḟ

associated with FCH and FFS. The idea here is to divide all the volume integrals into
two regions, one extending from z = 0 to h, the surface layer, and another from z =h

and beyond, denoted the bulk, as illustrated in figure 1. Below we first present the
surface layer part.

Using the scaling relations in equations (3.6) to (3.13), we can obtain the reduced
action functional ASL:

ASL[v(r), φ̇(r)] =

∫
dS

[
β

2
v2

x

]
+

∫
dS

[
φ̇

2

2Γ

]
+

∫
dS[L(φ̇ − vx∂xφ)], (3.14)

for the surface layer to the leading order of h0, with

1

Γ
=

∫ h

0

dz

[
z2

M

]
=

∫ 1

0

dζ

[
ζ 2

m

]
(3.15)

and

L = − 3γ ξ

2
√

2
∂zφ +

∂γFS

∂φ
. (3.16)

The details involved in deriving equations (3.14), (3.15), and (3.16) are presented in
Appendix C. Here we have used ∂φ/∂t = φ̇ − vx∂xφ for the surface layer. The surface
integral is understood to be at z =h, distinct from that in equation (2.14). This point
should be obvious, since by integrating z from 0 to h, the effect of the surface layer
on the bulk is now completely transmitted at their interface.

For the bulk part (z >h), it is simply given by

ABulk[v(r), J(r)] =

∫
dr

[η

4
(∂ivj + ∂jvi)

2
]

+

∫
dr

[
J2

2M

]

+

∫
dr [∇μCH · J − μCH(v · ∇φ)] , (3.17)

as can be deduced from equation (2.14) after the surface layer part is subtracted. The
boundary conditions may be deduced by minimizing ASL + ABulk with respect to vx

and φ̇ (since minimization with respect to J leads only to a bulk equation of motion)
at the surface z = h. Remembering that the bulk viscous term in equation (3.17) also
contributes a surface term (tangential viscous stress), we obtain

φ̇ = −Γ L, (3.18)

βvx = η∂zvx + L∂xφ. (3.19)

Owing to the scaling relations, equations (3.18) and (3.19) remain invariant when we
take the h → 0+ limit. Thus they are precisely the GNBCs (Qian et al. 2003, 2006).
Note that we have been working in a reference frame where the solid surface (in the
x,y-plane) is still and hence vx in equation (3.19) is identical to the tangential slip
velocity. In the reference frame where the solid wall is moving along the x-direction
with velocity Vw , vx should be replaced by the slip velocity vslip

x = vx − Vw .
To relate equations (3.18) and (3.19) to the dynamic contact angle θd defined

at z =h → 0+ (illustrated in figure 3), we consider a gently curved interface with a
straight contact line parallel to the y-axis. Integrating L∂xφ along the x-axis across the
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fluid–fluid interface yields
∫

int
dx [L∂xφ] = γ cos θd + γ2 − γ1, with γ1 = γFS (φ = −1)

and γ2 = γFS (φ = + 1) (see figure 3). At equilibrium L = 0, from which we obtain∫
int

dx [L∂xφ] = γ cos θs + γ2 − γ1 = 0 (the Young equation), in which the dynamic
contact angle θd is replaced by the static contact angle θs , also defined at z = h → 0+.
It follows that

∫
int

dx [L∂xφ] = γ (cos θd − cos θs); hence L∂xφ is the uncompensated
Young stress which originates from the deviation of the fluid–fluid interface from
its static configuration. It should be noted that the uncompensated Young stress is
spatially peaked in the vicinity of the contact line, so that away from the contact line
L = 0 and the GNBCs reduce to the Navier boundary condition βvx = η∂zvx , i.e. the
slip velocity is proportional to the tangential viscous stress (Navier 1823).

3.3. Boundary conditions as the mathematical consequence of scaling the equations
of motion

Whereas in § 3.1 and § 3.2 the surface-layer thickness h is treated as a small but finite
quantity, here we carry out the mathematical limiting process of h → 0+ by using
the scaling relations, (3.6) to (3.13), to examine the resulting surface layer equations
of motion, (2.16) and (2.18), in that limit. Besides offering a consistency check, this
approach offers a more precise context in which the boundary conditions emerge,
as well as a framework to delineate the limitations on the validity of the boundary
conditions, e.g. by examining the higher-order terms in the limiting process.

Substituting the scaling relations (3.6), (3.7), (3.8), (3.10), and (3.11) into the x

component of the Stokes equation,

−∂xp + ∂x [2η (∂xvx)] + ∂z [η (∂zvx + ∂xvz)]

+

{
3γ

2
√

2

[
−ξ

(
∂2

xφ + ∂2
z φ

)
+

1

ξ
φ(φ2 − 1)

]
+

∂γ̄FS

∂φ

}
∂xφ − β̄vx = 0, (3.20)

yields to the leading order of h−1

1

h
∂ζ

[
η

(
ζ ; φ(0)

)
∂ζ v

(1)
x

]
− 1

h

3γ ξ

2
√

2
∂2

ζ φ
(1)∂xφ

(0) +
1

h

∂

∂φ
[Dγ (ζ ; φ) γFS(φ)]

∣∣∣∣
φ=φ(0)

∂xφ
(0)

− 1

h
Dβ

(
ζ ; φ(0)

)
β(φ(0))v(0)

x = 0, (3.21)

where ζ = z/h. With the help of the natural boundary conditions ∂ζφ
(1) = 0 and

∂ζ v
(1)
x =0 at ζ =0, integrating the above equation from ζ =0 to 1 yields

[
η

(
ζ ; φ(0)

)
∂ζ v

(1)
x

]∣∣
ζ=1

+

{
− 3γ ξ

2
√

2

[
∂ζφ

(1)
]∣∣

ζ=1
+

∂γFS(φ)

∂φ

∣∣∣∣
φ=φ(0)

}
∂xφ

(0)

− β
(
φ(0)

)
v(0)

x = 0. (3.22)

In the h → 0+ limit, equation (3.22) becomes the hydrodynamic boundary condition,
equation (3.19) at z = 0+. This boundary condition governs the tangential momentum
transport across the fluid–solid interface.

The other hydrodynamic boundary condition can be derived by using the scaling
solution for the advection–diffusion equation

φ̇ = ∇ ·
[
M∇

(
μCH +

∂γ̄FS

∂φ

)]
. (3.23)
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It can be shown that, to the leading order of h0, the material derivative φ̇ in the
surface layer can be expressed as

φ̇ = −Γ

{
− 3γ ξ

2
√

2

[
∂ζφ

(1)
]∣∣

ζ=1
+

∂γFS(φ)

∂φ

∣∣∣∣
φ=φ(0)

}
, (3.24)

where

1

Γ
= −

∫ 1

0

dζ

{∫ ζ

1

dζ ′

[
ζ ′

m
(
ζ ′; φ(0)

)
]}

. (3.25)

The details involved in deriving equations (3.24) and (3.25) are presented in Appendix
D. In the h → 0+ limit, equation (3.24) yields the hydrodynamic boundary condition,
equation (3.18) at z = 0+. Thus together with equation (3.22), we have recovered
the GNBCs through an alternative route. It is interesting to note that, for constant
m(ζ ; φ(0)) = m, an explicit relation between the mobility coefficient M = h3m and the
relaxational rate coefficient Γ can be derived:

1

Γ
= − 1

m

∫ 1

0

dζ

[∫ ζ

1

ζ ′dζ ′
]

=
h3

3M
. (3.26)

An identical result can also be deduced from equation (3.15). It should be noted that
in restoring M (in place of m) on the right-hand side of equation (3.26), h is the value
of the original surface-layer thickness, before the limiting process is taken.

It follows from the above that if we let h approach zero with the condition of
invariant boundary conditions, then the parameters/variables in the surface layer
must scale with h in the manner specified by equations (3.6)–(3.13).

3.4. Implications

Three implications can be drawn from this section. First, consistency of the
scaling relations demonstrates that hydrodynamic boundary conditions are a natural
manifestation of the Onsager principle as it is applied to the surface layer. Second,
since the parameters of the boundary conditions are directly tied to those in the
surface layer, their values can be related to the coefficients in the bulk equations
of motion, but under the influence of the wall potential (Barrat & Bocquet 1999;
Bocquet & Barrat 2007). Third, since the boundary conditions are the limiting form
of the equations of motion in the surface layer, they are part of the linear response
phenomena underpinned by the Onsager variational principle. In particular, since the
Stokes equation is also a consequence of the Onsager principle (see equation (2.16)),
the use of the boundary conditions (3.18) and (3.19) in continuum hydrodynamics
would guarantee (i) force balance and (ii) the predicted dynamics to be statistically
the most probable course of dissipative processes. In this regard we should note that
both boundary conditions, the relaxational (Allen–Cahn) equation for the phase field
variable (3.18) and the linear friction law (3.19), have their counterparts in the bulk
equations of motion. This is especially clear from their derivation by scaling the
surface-layer equations of motion. Thus the fact that they can resolve the moving
contact line problem (Dussan V. & Davis 1974) should not be a surprise from two
points of view. The first is that by requiring the continuum hydrodynamics to be
consistent with the same statistical mechanical principle as that underlying molecular
dynamics, the same (time-averaged) dynamic behaviour is expected. And since all
molecular interactions are finite in their magnitudes, no dissipative divergence should
arise. The second is that the Onsager principle inherently minimizes energy dissipation,
hence dissipative divergence is always avoided.
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Figure 6. (a) A schematic illustration for the immiscible two-phase Couette flow confined
between two planar solid surfaces that are parallel to the (x,y)-plane and separated by a
distance H . The upper surface moves with velocity V x̂ and the lower surface moves with
velocity −V x̂. Under the shear movement, the fluid–fluid interface (solid curve) deviates from
its static configuration (dashed circular arc) which has static contact angle θs . The channel is
long enough along the x-direction to ensure that single-phase linear Couette flow is recovered
far away from the fluid–fluid interface. (b) The tangential velocity profiles vx(x) at different z
levels (z/ξ = −20/3, −16/3, −12/3, −8/3, −4/3). The solid lines denote the results obtained
by employing the boundary-condition description; the dashed and dotted lines denote the
results obtained by employing the surface-layer description, for h = 2ξ and h = ξ respectively.
(c) The interface profiles (the locus φ = 0). The curves have the same meaning as in (b). The
thin horizontal lines mark the interface between the surface layer and the bulk fluid, for h = 2ξ
(dashed lines) and h = ξ (dotted lines) respectively.

4. Numerical verification
Numerical calculations have been carried out to demonstrate that the effects of

the surface layer on the bulk can be approximately described by the hydrodynamic
boundary conditions. Consider two immiscible fluids confined between two planar
solid surfaces parallel to the (x, y)-plane (Qian et al. 2003, 2004, 2006). Couette flow
is generated by moving the upper surface with velocity V x̂ and the lower surface with
velocity −V x̂ (see figure 6a). From both MD simulations and continuum calculations
based on the GNBCs, it has been shown that along the solid surface there is a smooth
transition from near-complete slip at the moving contact line to near-zero partial slip
far away from it (Qian et al. 2004). To show quantitatively the near equivalence of
the surface-layer description and boundary-condition description, we have carried out
two types of calculations. The first type employs the surface-layer description in which
the effects of the solid wall are described by the Navier–Stokes equation (obtained
by adding the inertia term to equation (2.16)) and the convection–diffusion equation
(2.18) coupled with the natural boundary conditions (2.20), (2.21), and (2.22). The
second type employs the GNBCs (3.18) and (3.19).
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Figures 6(b) and 6(c) show the tangential velocity profiles (vx(x) at different z levels)
and the interface profiles (the locus φ = 0), obtained from the two types of calculations.
The solid lines denote the results obtained by employing the boundary-condition
description; the dashed and dotted lines denote the results obtained by employing the
surface-layer description for two different values of h. The near equivalence of the
two descriptions is quantitatively demonstrated. In particular, it is seen that beyond
the surface layer, the calculated curves of the three cases tend to coincide. Deviations
between the two descriptions, however, are clearly visible in figures 6(b) and 6(c). They
are mostly due to the inaccuracy caused by using a slip length ls = η/β to describe a
surface layer whose thickness h is not sufficiently small compared to the slip length.
This is evident in figure 6(b): relatively larger deviations are found in the right half
of the space associated with a smaller slip length. The agreement for the interface
profiles is better than that for the velocity profiles. The three curves in figure 6(c) tend
to coincide quickly in the bulk away from the surface layer. The overall agreement
of the two descriptions is seen to be improved when a smaller surface-layer thickness
h = ξ is used. This is consistent with the mathematical limiting process of h → 0+ in
which the GNBCs emerge as leading-order effects of the surface-layer hydrodynamics
on the bulk. We note that in reducing h, those parameters for the surface layer, e.g.
β̄ , γ̄FS, and M , all treated as z-independent quantities here, have to be scaled in order
to keep the corresponding parameters (β , γFS, and Γ ) in the GNBCs invariant. From
these comparisons it follows that as the transverse z dimension of the system increases
relative to the surface-layer thickness h, the GNBCs accuracy improves monotonically
so that in almost all practical cases the hydrodynamic boundary conditions might be
treated as being exact.

The parameters used in the calculations are as follows. Taking ξ as the length
unit, V0 as the velocity unit, and ηV0/ξ as the stress unit, we carry out the GNBC
calculations for the dimensionless control parameters θs = 67.6◦, Mγ/V0ξ

2 = 0.47,
ρV0ξ/η = 0.003, ηV0/γ = 0.088, Γ γ ξ/V0 = 0.18, η/β1ξ = 10 and η/β2ξ =3.8 (where
β1 =β(φ = −1) and β2 =β(φ = +1)), H/ξ =16, and V/V0 = 0.5. As for the surface-
layer calculations, β̄ = β/h, γ̄FS = γFS/h, and M = Γ h3/3 in the surface layer are all
z-independent quantities whose values scale with h in order to keep the corresponding
parameters β , γFS, and Γ in the GNBCs invariant as h → 0+.

It should be noted that the use of the GNBC has resolved the classical problem of
the moving contact line (Qian et al. 2003, 2004, 2006), with the MD simulation results
quantitatively reproduced by continuum hydrodynamics. This should be expected,
since molecular dynamics must follow the statistical mechanical principle as embodied
in the Onsager principle, as noted earlier. Below we demonstrate the application of the
same approach to the derivation of liquid-crystal hydrodynamic boundary conditions.

5. Liquid-crystal hydrodynamic boundary conditions
Nematic liquid crystals (NLCs) have no translational long-range order and therefore

flow like a fluid. However, they have long-range orientational order, which gives rise
to many special properties, from orientational elasticity to anisotropic viscosity (de
Gennes & Prost 1993). In particular, optical birefriengence is the basis of NLCs
widespread application in display devices. NLC hydrodynamics is composed of two
elements: the orientational elastic free energy, developed by Oseen, Zocher, and Frank
(Oseen 1933; Zocher 1933; Frank 1958); and dissipative stress tensors, developed
by Ericksen, Leslie, and Parodi (Ericksen 1960; Leslie 1968; Parodi 1970). In the
presence of long-range orientational order, the alignment state of the NLCs is locally
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characterized by a unit vector n, the director, that denotes the axis of uniaxial
ordering. In a state of elastic distortion described by a variable director n(r), the
elastic distortion free energy is given by

Fd[n(r)] =

∫
dr [fd (n, ∇n)] , (5.1)

in which fd is the Frank–Oseen free energy density:

fd (n, ∇n) = 1
2
K1 (∇ · n)2 + 1

2
K2 (n · ∇ × n)2 + 1

2
K3 (n × ∇ × n)2 , (5.2)

where K1, K2, and K3 are the splay, twist, and bend elastic constants, respectively.
The rate of change of the elastic energy can be written as

Ḟ d =

∫
dr

[(
−∂j πjk +

∂fd

∂nk

)
∂nk

∂t

]
+

∫
dS

[
mj πjk

∂nk

∂t

]
,

where πjk = ∂fd/∂
(
∂jnk

)
, m is the outward pointing unit vector normal to the solid

surface, and
∫

dS denotes the surface integral at the solid surface. The elastic free
energy gives rise to the distortion stress tensor σ d , given by σ d

ji = −πjk∂ink + fdδji ,

and the distortion molecular field Hd , given by Hd
k = ∂j πjk − ∂fd/∂nk (de Gennes &

Prost 1993). It is easy to show that Ḟ d can be written as

Ḟ d =

∫
dr

[
−Hd

k ṅk

]
+

∫
dS[mj πjkṅk] +

∫
dr

[
σ d

ji∂jvi

]
, (5.3)

where ṅk = ∂nk/∂t + vj∂jnk is the material derivative. Under the one-constant
approximation K = K1 = K2 =K3, the elastic energy density becomes fd = 1

2
K(∂jnk)

2,

and consequently σ d
ji = −K∂jnk∂ink + fdδji and Hd

k = K∇2nk (Yue et al. 2004).
For the dissipative part of the Onsager variational action, it is necessary to first

define the viscous stress tensor σ v and the frictional molecular field Hv:

σ v
αβ = α1nαnβnμnνeμν + α4eαβ + α5nαnμeμβ + α6nβnμeμα + α2nαNβ + α3nβNα, (5.4)

−Hv
β = (α3 − α2) Nβ + (α6 − α5)nαeαβ, (5.5)

where the six αi are the Leslie viscosity coefficients, constrained by the Parodi relation
α2 + α3 =α6 − α5, e = 1

2
[∇v + (∇v)T ] is the rate of strain tensor, and the vector

N = ṅ − ω × n represents the rate of change of the director with respect to the
background fluid, with ω = 1

2
∇ × v being the angular velocity associated with the

rigid-body rotation of the fluid (de Gennes & Prost 1993). To obtain the constitutive
relations (5.4) and (5.5), each contribution to the entropy production is written as the
product of a ‘flux’ and its conjugate ‘force’, and each force is expressed as a linear
combination of the fluxes (linear dissipative response) (de Gennes & Prost 1993).
Hence the corresponding dissipation function can be written as

Φv =
1

2

∫
dr

[
σ v

ji(e, N)∂jvi − Hv
k (e, N)ṅk

]
=

1

2

∫
dr

[
σ vs

ji (e, N)eji − Hv
k (e, N)Nk

]
,

(5.6)

in which σ vs(e, N) stands for the symmetric part of σ v(e, N). It should be noted that
angular momentum conservation requires the antisymmetric part of σ v(e, N) to be
related to Hv(e, N) through the relation εijkσ

v
jk = εijknjH

v
k , from which we have in

the dissipation function σ v
ji∂jvi − Hv

k ṅk = σ vs
ji eji − Hv

k Nk . Note that due to the Parodi
relation, the matrix of the frictional coefficients in the quadratic functional Φv is
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symmetric, hence

δ
{

1
2

[
σ vs

ji (e, N)eji − Hv
k (e, N)Nk

]}
= σ vs

ji (e, N)δeji − Hv
k (e, N)δNk,

which can be further written as σ v
ji(e, N)∂j δvi − Hv

k (e, N)δṅk by using εijkσ
v
jk =

εijknjH
v
k . It follows that the variation of Φv is of the form

δΦv =

∫
dr

[
σ v

ji(e, N)∂j δvi − Hv
k (e, N)δṅk

]
.

According to the Onsager principle, by minimizing the functional A= Φv + Ḟ d with
respect to v and ṅ we obtain the equations of force balance in the absence of inertial
effects:

−∇p + ∇ · σ d + ∇ · σ v = 0, (5.7)

and

Hd + Hv − λn = 0. (5.8)

Here λ is a Lagrange multiplier imposed by the constraint n2 = 1, and p is similarly
identified as the Lagrange multiplier imposed by the incompressibility condition (see
equations (2.15) and (2.16)). Equations of force balance at the solid surface can also
be derived from the Onsager principle. This leads to the natural boundary conditions,
to be considered below.

5.1. Surface-layer dynamics and scaling

While bulk NLC has uniaxial symmetry, under the influence of wall potential the
surface layer is in general a biaxial environment in which there can be two axes of
symmetry – normal and parallel to the solid surface. This can happen, for example,
when the wall potential defines a preferred orientational direction for n that has
a component parallel to the surface. Thus the most general form of surface-layer
hydrodynamics can be extremely complicated. For the purpose of demonstrating the
general approach of deriving the boundary conditions, however, here we choose the
simplest model of a uniaxial surface layer, i.e. the preferred direction for n coincides
with the surface normal.

5.1.1. Dissipation function

The dissipation function pertaining to the surface layer consists of three terms:

Φs =
1

2

∫
dr

[
β̄v2

τ

]
, (5.9)

Φr =
1

2

∫
dr[κ̄ ṅ2], (5.10)

Φc =

∫
dr [χ̄ (n · m) (vτ · ṅ)] , (5.11)

where Φs arises from the translational slip relative to the solid wall, Φr from the
director rotation, and Φc from the cross-coupling between the translational and
rotational processes. Here vτ = v · (1 − mm) denotes the projection of v on the solid
surface, β̄ is the slip coefficient associated with the translational wall friction, κ̄ is the
coefficient associated with the rotational wall friction, and χ̄ is the coefficient that
measures how strongly the translational and rotational processes interfere with each
other. Assuming that the solid surface is in the (x, y)-plane and the NLC is in the
half-space z � 0, we have m = − ẑ, and β̄ , κ̄ , and χ̄ as functions of z, all approaching
zero when z >h. The simple forms adopted for Φs , Φr , and Φc need a few remarks:
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(a) The dissipation function is quadratic in the rates. With the slip and rotation
measured respectively by vτ and ṅ, we have two diagonal terms, β̄(z)v2

τ (Φs) for the
dissipation density due to slipping, and κ̄(z)ṅ2 (Φr ) due to rotation. Φc is the off-
diagonal cross-term which couples vτ and ṅ. It should be noted that in general, terms
like (n · m)2 v2

τ and (n · vτ )
2 with z-dependent coefficients may also appear in Φs , and

similarly (n · m)2 ṅ2 and (m · ṅ)2 with z-dependent coefficients may appear in Φr . They
do not affect the derivation of the boundary condition, and hence are neglected for
simplicity. Below we let β̄ and κ̄ be locally dependent on n, i.e. β̄ = β̄(z; n), κ̄ = κ̄(z; n).

(b) It is noted that the factor n · m is singled out in Φc for its dependence on n,
thereby making it simple to establish the correspondence with the similar term in
the bulk dissipation. For α3 = 0, that term in the bulk comes from the cross-term
in −α2(Nβ − nαeαβ)

2 = −α2(ṅβ − nα∂αvβ)
2 with α2 < 0, i.e. 2α2ṅβnα∂αvβ . It follows

that for the surface layer χ̄ (n · m) (vτ · ṅ) = χ̄ ṅβnαmα [vτ ]β with χ̄ > 0 should be the
corresponding form. This is based on the consideration that vτ is the velocity change
from the solid to the surface layer, which takes place along the −m direction over
a distance ∼ h, and hence the role of ∂αvβ in the bulk becomes −h−1mα [vτ ]β in the
surface layer, and one can heuristically identify χ̄ = −2α2/h, where α2 should be the
viscosity value in the surface layer, not necessarily the same as that in the bulk.

5.1.2. Orientational alignment energy

The orientational alignment energy distributed in the surface layer can be written
in the Rapini–Papolar form (Rapini & Papoular 1969) as Fw =

∫
dr [fw(z; n)], with

an energy density

fw(z; n) = − 1
2
w̄(z) (n · m)2 , (5.12)

in which w̄(z) is the distributed alignment strength that varies with z and extends
from 0 to h.

5.1.3. Variational functional and Euler–Lagrange equations

According to the Onsager principle, the surface-layer dynamics is governed by the
variational functional A= Φv + Φs + Φr + Φc + Ḟ d + Ḟ w , which is to be minimized
with respect to the rates {v, ṅ}, supplemented with the incompressibility condition.
This leads to the equations for force balance:

−∇p + ∇ · σ d + ∇ · σ v + gw + gs + gc = 0, (5.13)

and

Hd + Hv + Hw + H r + Hc − λn = 0, (5.14)

where gw , gs , and gc are the force densities, and Hw , H r , and Hc the molecular
fields, all narrowly distributed in the surface layer, with the superscripts w, s, r, and
c denoting their origins from Ḟ w , Φs , Φr , and Φc, respectively, and λ is a Lagrange
multiplier imposed by n2 = 1. Explicit expressions for these surface-layer forcing terms
are as follows:

gw = − 1
2
∇[w̄ (n · m)2], (5.15)

gs = −β̄v · (1 − mm) , (5.16)

gc = −χ̄ (n · m) ṅ · (1 − mm) , (5.17)

Hw = w̄ (n · m) m, (5.18)
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Figure 7. A schematic illustration for the two cross-coupling terms in the LC hydrodynamic
boundary conditions: (a) the tangential frictional force gc = −χ̄ (n · m) ṅ · (1 − mm) due
to director rotation measured by ṅ, and (b) the tangential molecular (rotational) field
Hc = −χ̄ (n · m) v · (1 − mm) induced by relative slip velocity, measured by vτ = v · (1 − mm).

H r = −κ̄ ṅ, (5.19)

Hc = −χ̄ (n · m) v · (1 − mm) . (5.20)

The frictional force gc due to director rotation and the molecular field Hc due to slip
represent the dynamic effects of the cross-term Φc, as illustrated in figure 7.

The natural boundary conditions

ẑ · (σ d + σ v) · (1 − ẑ ẑ) = 0 (5.21)

and

ẑ · π − λ0n = 0 (5.22)

are obtained by minimizing the action functional A with respect to v and ṅ at the
surface z = 0, with λ0 a Lagrange multiplier imposed by n2 = 1. Note that substituting
the second condition into the first one yields ẑ · σ d · (1 − ẑ ẑ) = 0, and hence ẑ · σ v · (1 −
ẑ ẑ) = 0 as well. Here and below we use the inward pointing unit vector ẑ for all
expressions.

5.1.4. Scaling relations

A set of scaling relations can be obtained by first requiring a few z-integrated
properties that owe their origin to the wall be independent of h, and then demanding
consistency with other parameters/variables describing the surface layer. We start
by proposing that the material properties β̄ = β̄(z; n), κ̄ = κ̄(z; n), χ̄(z), and w̄(z) are
distributed along the z-direction according to

β̄ =
1

h
Dβ (z/h; n) β(n), (5.23)

κ̄ =
1

h
Dκ (z/h; n) κ(n), (5.24)

χ̄ =
1

h
Dχ (z/h) χ, (5.25)

w̄ =
1

h
Dw (z/h) w, (5.26)

where Dβ , Dκ , Dχ , and Dw satisfy the normalization conditions

1

h

∫ h

0

dzDβ = 1,
1

h

∫ h

0

dzDκ = 1,
1

h

∫ h

0

dzDχ = 1,
1

h

∫ h

0

dzDw = 1.
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As a result the integrated quantities

β =

∫ h

0

dzβ̄, κ =

∫ h

0

dzκ̄, χ =

∫ h

0

dzχ̄, w =

∫ h

0

dzw̄

are independent of h.
We further propose that the director scales as

n(z) = n(0) + hn(1) (z/h) + O(h2), (5.27)

and the velocity scales as in equation (3.11):

v(z) = v(0) + hv(1) (z/h) + O(h2), (5.28)

such that ∇n and ∇v both scale as h0. Consequently, σ d , σ v , and Hv , in which only
the first-order derivatives ∇n and ∇v are involved, all scale as h0 to the leading order,
while Hd ( = K∇2n under the one-constant approximation) scales as ∂2

z n ∼ h−1.

5.2. Liquid-crystal boundary conditions

It follows from the scaling relations that to the leading order O(h−1), the equation of
tangential force balance in the surface layer can be written as

−∂ip + ∂zσ
d
zi + ∂zσ

v
zi + gw

i + gs
i + gc

i = 0, (5.29)

for i = x, y along the solid surface. Here we have used the fact that to the leading
order, ∂jσ

d
ji can be approximated by ∂zσ

d
zi and scales as ∂2

z n ∼ h−1. (Under the one-
constant approximation, ∂jσ

d
ji = −K∇2nk∂ink and ∂zσ

d
zi = −K∂2

z nk∂ink − K∂znk∂i∂znk ,
both equal to −K∂2

z nk∂ink at the leading order of h−1.) Similarly, ∂jσ
v
ji is approximated

by ∂zσ
v
zi and scales as ∂2

z v ∼ h−1. It is also noted that the force densities gw
i , gs

i , and
gc

i all scale as h−1. Using the natural boundary condition (5.21) and the scaling of β̄ ,
κ̄ , χ̄ , and w̄, we integrate equation (5.29) along the z-direction from 0 to h to obtain
one of the two boundary conditions:

[ ẑ · (σ d + σ v|z=h + Gw + Gs + Gc] · (1 − ẑ ẑ) = 0, (5.30)

in which

Gw =

∫ h

0

dzgw, Gs =

∫ h

0

dzgs, Gc =

∫ h

0

dzgc

are the three surface-layer-integrated forces. In deriving equation (5.30) from (5.29),

we keep only those terms that scale as h0 and hence the term
∫ h

0
dz[−∂ip] ∼ h drops

out. In the h → 0+ limit, σ d |z = h → σ d |z =0+ , σ v|z = h → σ v|z =0+ , n(0) → n and v(0) → v,
and equation (5.30) becomes a hydrodynamic boundary condition that governs the
tangential momentum transport across the fluid–solid interface z = 0+.

In equation (5.14) for the balance of molecular fields, Hd , Hw , H r , and Hc all
scale as h−1, while Hv scales as h0. Therefore, integrating equation (5.14) along the
z-direction from 0 to h yields, to the leading order O(h0), another boundary condition:

Πd + Πw + Πr + Πc − Λn = 0, (5.31)

where

Πd =

∫ h

0

dzHd, Πw =

∫ h

0

dzHw, Πr =

∫ h

0

dzH r , Πc =

∫ h

0

dzHc

are the surface molecular fields, with Λ a Lagrange multiplier imposed by n2 = 1. In
the h → 0+ limit, Πd → ẑ · π|z = 0+ , n(0) → n, v(0) → v, and equation (5.31) becomes
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the second hydrodynamic boundary condition that governs the molecular torque
transport across the fluid–solid interface z = 0+.

To further express the boundary conditions in more physical terms, we note that
according to equations (5.15), (5.16), and (5.17), the tangential part of Gw is given by

Gw · (1 − ẑ ẑ) = −w

2
∇

[ (
n(0) · ẑ

)2 ]
· (1 − ẑ ẑ),

Gs itself is tangential, given by

Gs = −βv(0) · (1 − ẑ ẑ),

and Gc is also tangential, given by

Gc = χ
(
n(0) · ẑ

)
ṅ(0) · (1 − ẑ ẑ).

(Note that Gs = Gs · (1 − ẑ ẑ) and Gc = Gc · (1 − ẑ ẑ).) Also, from the definition
Hd = ∇ · π − ∂fd/∂n and the natural boundary condition ẑ · π − λ0n = 0, we have

Πd =
∫ h

0
dzHd = ẑ · π|z =h, in which Hd is given by Hd

k = ∂zπzk ∼ h−1 to the leading

order. The other three surface molecular fields may be expressed as Πw = w(n(0) · ẑ) ẑ,
Πr = −κ ṅ(0), and Πc = χ(n(0) · ẑ)v(0) · (1 − ẑ ẑ). Hence the two LC boundary conditions
may be expressed as{

ẑ · (σ d + σ v) − w

2
∇[(n · ẑ)2] − βv + χ(n · ẑ)ṅ

}
· (1 − ẑ ẑ) = 0, (5.32)

ẑ · π + w(n · ẑ) ẑ − κ ṅ + χ(n · ẑ)v · (1 − ẑ ẑ) − Λn = 0. (5.33)

Physically, equation (5.32) is a generalized slip boundary condition, describing the
tangential force balance in the surface layer, where ẑ · σ d · (1− ẑ ẑ) and ẑ · σ v · (1− ẑ ẑ) are
the stress components due to the elastic correlation and viscous coupling, respectively,
− 1

2
w∇[(n · ẑ)2] · (1 − ẑ ẑ) is the Marangoni force due to the variation of the surface

alignment energy along the solid surface, −βv · (1 − ẑ ẑ) is the frictional force due to
the slip relative to the solid surface, and χ (n · ẑ) ṅ · (1 − ẑ ẑ) is the frictional force due
to the director rotation. Similarly, equation (5.33) is a condition for weak anchoring,
describing the balance of various molecular fields in the surface layer. Note that in
using equations (5.32) and (5.33) as the hydrodynamic boundary conditions in the
h → 0+ limit, v = v · (1 − ẑ ẑ) is tangent to the solid surface. The presence of the
cross-coupling term in the boundary conditions can imply interesting consequences,
e.g. flow-induced orientational switching in the weak anchoring limit.

6. Concluding remarks
Boundary conditions are sometimes considered within the context of kinetic theory,

as in the case of rarefied gasdynamics. While kinetic theory has the advantage of
being physically intuitive, it generally suffers from sensitivity to model details, such as
interfacial geometries. Hence it is difficult to draw general conclusions from kinetic
theory in regard to hydrodynamic boundary conditions. This is especially the case
for dense liquids. In contrast, Onsager’s variational principle takes the point of view
of ensuring force balance arising from the dynamics of energetic and dissipative
processes, so that the derived equations of motion, together with the boundary
conditions, can lead to hydrodynamics that predicts the most probable course of
motion. Hence the general approach presented here does not address the details of
the interfacial model. Instead, only a phenomenological framework is established, in
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which the hydrodynamic boundary conditions constitute an inherent component; and
within this framework the details of the interfacial model are swept into the relevant
parameters. In this context our work represents only a beginning to the understanding
of interfacial phenomena.

It should also be noted that the boundary conditions presented in this work are
inherently in the linear response regime. This is inevitable since they arise from
the Onsager principle. Deviations are thus expected, for example, in the high-shear-
rate regimes. The deviations may take two different forms. In the incipient stage
of nonlinearity, it may be expected that only the parameters acquire a shear-rate
dependence. For example, β may no longer be a constant but can acquire a dependence
on the magnitude of the slip velocity. However, deep in the nonlinear regime even
the form of the boundary condition may become invalid. When that happens one
has to re-examine the basic physics involved, and new models and frameworks will
be required.

We would like to thank Congmin Wu for the molecular dynamics results shown
in figure 2. Support of this work by RGC grant CA05/06.SC01 and No. 602007 is
gratefully acknowledged.

Appendix A. Molecular dynamics simulations of a confined simple fluid
The MD simulations were performed for a simple fluid confined between two

planar solid walls parallel to the (x, y)-plane. Interaction between the fluid molecules
was modelled by the Lennard–Jones potential UFF(r) = 4ε[(σ/r)12 − (σ/r)6], where r

is the distance between the molecules, ε and σ are the energy and range parameters,
respectively. Each of the two walls was constructed by four [001] planes of an fcc
lattice, with each solid atom attached to the lattice site by a harmonic spring. The
mean-squared displacement of solid atoms was controlled to obey the Lindemann
criterion. The fluid–solid interaction was modelled by a modified Lennard–Jones
potential UFS(r) = 4εFS[(σFS/r)12 − δ(σFS/r)6], with energy and range parameters
εFS = 1.16ε and σFS = 1.04σ , and a parameter δ for changing the wetting property of
the fluid. Both UFF and UFS were cut off at rc = 2.5σ . The mass of the solid atom
was set equal to that of the fluid molecule m, and the average number densities
of the fluid and wall were set at ρ =0.81σ −3 and ρw = 1.86σ −3, respectively. The
temperature was controlled at 1.4ε/kB , where kB is Boltzmann’s constant. The two
walls were separated by a distance of 16σ along the z-direction. Moving the top wall
at a constant velocity 1.0(ε/m)1/2 in the x-direction relative to the bottom wall induces
Couette flow. Periodic boundary conditions were imposed in the x- and y-directions.
More technical details can be found in Qian et al. (2003).

Appendix B. Interfacial stress components and wall potential
Consider a fluid in the half-space z � 0 bounded by a smooth solid surface at z = 0.

Here we consider only the short-range component of the wall potential. Hence the
fluid is in the wall potential Vw(z) that has a finite force range, i.e. Vw(z) = const. for
z � h. Consistent with the illustration in figure 1, the constant Vw(z) beyond z = h is
set to be zero in what follows. The hydrostatic pressure distribution satisfies

−∂zp − n∂zVw = 0, (B 1)
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from which the pressure can be expressed as

p(z) = pB −
∫ z

h

dz′[n(z′)∂z′Vw(z′)], (B 2)

with pB denoting the constant pressure beyond z = h, guaranteed by the constancy
of Vw in the bulk. According to Kirkwood & Buff (1949), the fluid–solid interfacial
tension γFS is given by

γFS =

∫ ∞

0

dz[σ‖(z) − σ⊥(z)], (B 3)

where σ‖ and σ⊥ are the parallel and normal components of the stress, i.e.
σ‖ = σxx = σyy and σ⊥ = σzz. Note that in defining the stress components σ‖ and σ⊥,
fluid–fluid and fluid–solid interactions both need to be taken into account. Therefore,
the hydrostatic equation of the force balance in the z-direction, equation (B 1), can
be rewritten as ∂zσ⊥ = 0 = −∂zp − n∂zVw , with σ⊥(z) being constant in the z-direction,
given by −pB in the bulk. Therefore, we have

σ⊥(z) = −p(z) −
∫ z

h

dz′[n(z′)∂z′Vw(z′)], (B 4)

according to equation (B 2). From equation (B 4) the difference between σ⊥(z) and
−p(z) within the surface layer is seen to be induced by the normal wall force density.
But since the wall force density is in the z-direction (with the atomic-scale lateral
inhomogeneities of the solid surface already smoothed out), the parallel component
of the stress is simply given by σ‖(z) = −p(z). It follows from equation (B 3) that the
interfacial tension γFS can be written as

γFS =

∫ h

0

dz

{∫ z

h

dz′[n(z′)∂z′Vw(z′)]

}
. (B 5)

Introducing a quantity with the dimension of energy density γ̄FS through the relation
γFS =

∫ ∞
0

dzγ̄FS(z), we have

γ̄FS(z) =

∫ z

h

dz′[n(z′)∂z′Vw(z′)], (B 6)

which vanishes beyond z = h. The fact that γ̄FS is finite only within a short distance
of the solid wall is verified by MD simulation results in figure 2(b), and lends support
to the concept that γFS is an interfacial quantity, as well as to the physical existence
of a surface layer.

Appendix C. Derivation of the reduced action functional ASL

Here we present the details involved in deriving the reduced action functional ASL

in equation (3.14) for the surface layer. We start with Φv = 1
4

∫
dr[η(∂ivj + ∂jvi)

2] in

which neither ∂xvk (∼= ∂xv
(0)
k ) nor ∂zvk (∼= ∂ζ v

(1)
k ) depends on h to the leading order.

Consequently, the integral Φv = 1
4

∫
dS

∫ h

0
dz[η(∂ivj + ∂jvi)

2] scales as h. That is, to
the leading order the viscous dissipation in the surface layer contributes a surface
integral of order ∼

∫
dS [h], and is thus negligible.
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For the next term Φs = 1
2

∫
dr[β̄v2

x] = 1
2

∫
dS

∫ h

0
dz[β̄(z, φ)v2

x], we have vx
∼= v(0)

x ,

β(φ) =
∫ h

0
dz[β̄(z; φ)], and φ ∼= φ(0), all independent of h to the leading order. Thus

Φs =
1

2

∫
dS

[
βv2

x

]
, (C 1)

where vx (∼= v(0)
x ) depends on x only, measuring the local slippage of the whole surface

layer.
For Φd = 1

2

∫
dr[J2/M], we use the fact that in the surface layer, J ∼= Jz ẑ, Jz

∼= −φ̇z,

and φ̇ ∼= ∂φ(0)/∂t + v(0)
x ∂xφ

(0) is nearly constant, so that

Φd =
1

2

∫
dS

∫ h

0

dz

[
J 2

z

M

]
=

1

2

∫
dS

∫ h

0

dz

[
φ̇

2
z2

M

]
=

1

2

∫
dS

[
φ̇

2

Γ

]
, (C 2)

where

1

Γ
=

∫ h

0

dz

[
z2

M

]
=

∫ 1

0

dζ

[
ζ 2

m

]
. (C 3)

In the last step on the right-hand side of equation (C 3), we have used (3.9) and the
definition ζ = z/h.

For Ḟ , the routine is similar, i.e. from equations (2.10) to (2.12), we have∫
dS

∫ h

0

dz

[(
μCH +

∂γ̄FS

∂φ

)
∂φ

∂t

]

∼=
∫

dS

{(
− 3γ ξ

2
√

2

∫ h

0

dz
[
∂2

z φ
]
+

∫ h

0

dz

[
∂γ̄FS

∂φ

])
∂φ

∂t

}

=

∫
dS

{[
− 3γ ξ

2
√

2

(
∂zφ|z=h

)
+

∂γFS

∂φ

]
∂φ

∂t

}
, (C 4)

in which we have used the relation μCH
∼= −3γ ξ/(2

√
2)∂2

z φ ∼ 1/h, and the natural
boundary condition ∂zφ|z = 0 = 0 (so that the surface integral of LCH in equation (2.10)
is zero).

By combining the above results, we obtain for the surface layer the reduced action
functional ASL in equation (3.14) to the leading order of h0.

Appendix D. Derivation of the hydrodynamic boundary condition of the
Allen–Cahn type

Here we present the details involved in deriving equation (3.24), which leads to the
hydrodynamic boundary condition (3.18) at z = 0+, in the h → 0+ limit.

In the surface layer, the leading-order contribution to φ̇ is ∂φ(0)/∂t + v(0)
x ∂xφ

(0),
which is on the order of h0. Thus the leading-order contribution to the right-hand
side should be the same order. Substituting the total chemical potential expression

μ = μCH +
∂γ̄FS

∂φ
=

3γ

2
√

2

[
− ξ

(
∂2

xφ + ∂2
z φ

)
+

1

ξ
φ(φ2 − 1)

]
+

1

h

∂

∂φ

[
Dγ

(
z

h
; φ

)
γFS(φ)

]
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and the mobility coefficient M = h3m (ζ ; φ) into ∇ · [M∇μ] yields

∇ · [M∇μ] = ∇ ·
(

h3m

(
z

h
; φ

)
∇

{
3γ

2
√

2

[
− ξ (∂2

xφ + ∂2
z φ) +

1

ξ
φ(φ2 − 1)

]

+
1

h

∂

∂φ

[
Dγ

(
z

h
; φ

)
γFS(φ)

]})
. (D 1)

By retaining only the leading-order (h0) terms, we obtain

φ̇ = ∂ζ

(
m

(
ζ ; φ(0)

)
∂ζ

{
− 3γ ξ

2
√

2
∂2

ζ φ
(1) +

∂

∂φ
[Dγ (ζ ; φ)γFS(φ)]

∣∣∣∣
φ=φ(0)

})
. (D 2)

Introducing the function

μ(0)
(
ζ ; φ(0)

)
= − 3γ ξ

2
√

2
∂2

ζ φ
(1) +

∂

∂φ
[Dγ (ζ ; φ)γFS(φ)]|φ=φ(0)

for the total chemical potential μCH +∂γ̄FS/∂φ ∼= (1/h)μ(0)(ζ ; φ(0)) to the leading order
of h−1, we can re-write equation (D2) as

φ̇ =
∂φ(0)

∂t
+ v(0)

x ∂xφ
(0) = ∂ζ

{
m

(
ζ ; φ(0)

)
∂ζ

[
μ(0)

(
ζ ; φ(0)

)]}
, (D 3)

from which we obtain

∂ζ

[
μ(0)

(
ζ ; φ(0)

)]
=

φ̇ζ

m
(
ζ ; φ(0)

) . (D 4)

Here we have used the facts that φ̇ is independent of ζ and ∂ζμ
(0) = 0 at ζ = 0. It

follows that the dependence of μ(0)(ζ ; φ(0)) on ζ is in the form of

μ(0)
(
ζ ; φ(0)

)
= φ̇

∫ ζ

1

dζ ′
[

ζ ′

m
(
ζ ′; φ(0)

)]
+ μ(0)

(
1; φ(0)

)
. (D 5)

From equation (3.13), it can be deduced that μ(0)(ζ ; φ(0)) ∝ h0 within the surface layer
in limit of h → 0+. Since the total chemical potential μ ∼ h−1 (equation (3.13)) has
to match the bulk value at ζ = 1, and the bulk value is a constant ∼ h0, it follows
that μ(ζ =1; φ(0)) = μ(0)(1; φ(0))/h ∼ h0, so that μ(0)(1; φ(0)) ∝ h and thus negligible
as h → 0+. It follows that equation (D 5) may be written as

μ(0)
(
ζ ; φ(0)

)
= φ̇

∫ ζ

1

dζ ′
[

ζ ′

m
(
ζ ′; φ(0)

)]
, (D 6)

with μ(0)(1; φ(0)) = 0, and hence the surface-layer-integrated total chemical potential
is of the integral form∫ h

0

dz

[
μCH +

∂γ̄FS

∂φ

]
=

∫ 1

0

dζ
[
μ(0)

(
ζ ; φ(0)

)]
= φ̇

∫ 1

0

dζ

{∫ ζ

1

dζ ′
[

ζ ′

m
(
ζ ′; φ(0)

)]}
.

(D 7)

In the above,
∫ 1

0
dζ [μ(0)(ζ ; φ(0)] can be evaluated as∫ 1

0

dζ

{
− 3γ ξ

2
√

2
∂2

ζ φ
(1) +

∂

∂φ

[
Dγ (ζ ; φ) γFS(φ)

]∣∣∣∣
φ=φ(0)

}

= − 3γ ξ

2
√

2

[
∂ζφ

(1)
]∣∣

ζ=1
+

∂γFS(φ)

∂φ

∣∣∣∣
φ=φ(0)

,
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by using the boundary condition ∂ζφ
(1) = 0 at ζ = 0 and the normalization condition∫ 1

0
dζ [Dγ (ζ ; φ)] = 1. Hence equation (D 7) may be re-expressed as

φ̇ = −Γ

{
− 3γ ξ

2
√

2

[
∂ζφ

(1)
]∣∣

ζ=1
+

∂γFS(φ)

∂φ

∣∣
φ=φ(0)

}
, (D 8)

where

1

Γ
= −

∫ 1

0

dζ

{∫ ζ

1

dζ ′
[

ζ ′

m
(
ζ ′; φ(0)

)]}
. (D 9)
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