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Brillouin Medal 
 

The Brillouin Medal honors the renowned French physicist, Léon Brillouin, who among many 

contributions to quantum mechanics and condensed matter physics has discovered the concept of the 

Brillouin zones. His discovery has laid the foundation for a rigorous mathematical treatment of wave 

motion in the reciprocal lattice space, and has since been applied to all problems that involve wave 

propagation in a periodic medium.  Brillouin is also known for the development of the BWK method of 

approximating solutions to the Schrödinger equation in 1926. Léon Brillouin was born in Sèvres, near 

Paris, in 1889. Brillouin studied physics at the École Normale Supérieure in Paris from 1908 to 1912. He 

was professor at the Sorbonne (1928), and subsequently professor at the College de France (1932-

1949). During the war, Léon Brillouin emigrated to the United States, where he became a professor at 

the University of Wisconsin (1941) and Harvard (1946). He received the US citizenship in 1949. From 

1948-53, he was Director of Electronic Education at IBM, and from 1953 until his death in 1969, he was a 

professor at Columbia University in New York City. In 1953, Professor Brillouin was elected a member of 

the National Academy of Sciences.  
 

At Phononics 2013, the Brillouin Medal is being inaugurated to “honor a specific seminal contribution, as 

presented by up to three related publications, by a single researcher or up to three researchers working 

in collaboration, in the field of phononics (including phononic crystals, acoustic/elastic metamaterials, 

nanoscale phonon transport, wave propagation in periodic structures, coupled phenomena involving 

phonons, and related areas)”. The medal is awarded biennially at the time of the Phononics 20xx 

conference. The recipient(s) deliver the Brillouin Lecture at the conference, and is (are) also invited to 

write a 6-page Brillouin Paper to be published alongside the conference proceedings. 
 

The 2013 Brillouin Medal is awarded to Professor Ping Sheng, Professor Che Ting Chan  and Professor  

Zhiyu Yang for their discovery of the concept of a “locally resonant acoustic metamaterial” and related 

contributions.   
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physics and served as the head of the physics department from 1999 to 2008. 
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Figure 1 (A) Cross section of a coated sphere that 

forms the basic structure unit (B) for an 8x8x8 

sonic crystal. (C) Calculated (solid line) and 

measured (circles) amplitude transmission 

coefficient along the [100] direction are plotted as 

a function of frequency.  The calculation is for a 

four-layer slab of simple cubic arrangement of 

coated spheres, periodic parallel to the slab.  The 

observed transmission characteristics correspond 

well with the calculated band structure (D), from 

200 to 2000 Hz, of a simple cubic structure of 

coated spheres.  Adapted from Ref. 1. 
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Abstract: We present the basic concept of acoustic metamaterials and their initial realization in 

the form of locally resonant sonic materials.  The development of acoustic metamaterials has led 

to the realization of many acoustic and elastic functionalities previously thought to be not possible, 

such as acoustic cloaking and the attenuation of sound in the 100 to 1000 Hz range by using thin 

membranes. 

I. Introduction 

The advent of photonic and phononic crystals, beginning in the 1980s, was at least partially propelled by 

analogy to electrons’ wave characteristics in crystalline semiconductors.  However, it is well known in 

solid state physics that there are two complementary ways to look at band and bandgap formation in 

electronic crystals.  One is Bragg scattering, which relies on crystal periodicity.  This is the basic 

mechanism utilized by photonic and phononic crystals.  The other is the tight-binding approach, in which 

the discrete electronic energy levels of the atoms are broadened into bands when they come close to each 

other and interact through the overlap of electronic wavefunctions.  Bandgaps are the remnants of the 

discrete energy level separations when the neighboring 

bands do not completely overlap.  Acoustic metamaterials’ 

underlying concept is based on this second perspective.   

Basic to the tight binding approach is that the atoms should 

have discrete levels that are the consequence of atoms’ 

internal structure.  For acoustic metamaterials, it means that 

the basic constituents should possess local resonances.  

Here the term “local resonance” is meant to distinguish it 

from structural resonances that are common to all elastic 

systems.  The initial realization1 of such a unit consists of 

metallic spheres, 1 cm in diameter, each wrapped in a thin 

layer of silicone rubber, shown in Fig. 1(A).  Such a unit 

has two resonances when it is embedded in a relatively 

rigid matrix. Oscillation of the metallic sphere, with the 

silicone rubber being the “spring,” constitutes the lower 

frequency resonance.  The higher frequency resonance is 

dominated by the vibration of the silicone rubber coating, 

with relatively small movement of the metallic sphere.  In 

Fig. 1(B) we show the units glued together into a cubic lattice 

by using epoxy. 

Such a material has interesting characteristics.  First of all, 

the resonance frequencies are relatively low since the 

metallic sphere is heavy and the silicone rubber constitutes a 

weak spring; they are noted to be completely independent of 

the lattice constant of the cubic lattice.  Second, no 

periodicity is required for the functionality of this material.   

mailto:sheng@ust.hk
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This is because of the local character of the resonances.  In fact, the existence of bandgaps in amorphous 

tetrahedrally-coordinated solids was shown previously2.  In general, bandgaps can arise from short-range 

order/structure (i.e., the form factor part of scattering from solids) just as well as from long-range 

periodicity (i.e., from the structure factor part of the scattering from solids). 

II. Negative effective dynamic mass density 

In the case of locally resonant sonic materials1, the low frequency bandgaps can be attributed to negative 

effective material parameter arising from the resonances.  And in this case it is due to the negative value 

of the dynamic mass density3, defined as 

/
eff

D f a     , (1) 

where f   denotes the spatially averaged force density and a   the averaged acceleration. Since the 

sound velocity is given by /
eff eff

v B D , with 
eff

B  denoting effective bulk modulus, a negative mass 

density implies evanescent waves for the frequency regime over which this is the case.  The definition of 

effective dynamic mass density, Eq. (1), is noted to differ from the static mass density of a composite, 

given by 
1 2

(1 )
eff

       for a two-component composite.  Physically this difference arises from the 

relative motions between the different components.  Whereas the arithmetic averaging of the mass 

densities implies motions in unison, the relative motion between the components, which can be amplified 

in the case of local resonances, can imply values of 
eff

D  that is complex or even negative.  Hence in Figs. 

1(C) and 1(D) we can see that the low frequency gap exists between the transmission dip and 

transmission peak.  This is precisely the regime over which the dynamic mass density is negative (see 

below).  

The transmission dip seen in Fig. 1(C) is easily verified to break the so-called mass density law that holds 

for the transmission T of air-borne sound through a solid wall1 of mass density   and thickness d that is 

much less than the relevant sound wavelength  : 

1
( )T d


 . (2) 

It is noted that in Eq. (2) the bulk modulus of the solid wall does not play a role; that is why it is denoted 

the mass density law.   The transmission dip shown in Fig. 1(C) is due to near-total reflection of the low 

frequency sound, since the absorption has been measured to be small.  What is more significant, however, 

is the different addition rule implied by the locally resonant sonic material.  That is, if we double the 

thickness d of the wall, the mass density law predicts a ~6 dB additional attenuation.  However, for the 

locally resonant sonic materials the doubling of thickness implies a multiplicative effect.  Hence if the 

original sample has 18 dB intrinsic attenuation, then a two-layer sample would mean a 36 dB attenuation.  

III. Development of acoustic meta-functionalities 

Elastic constants play an equally important role as the mass density in determining a material’s response 

to elastic/acoustic waves. In the context of elasticity, bulk modulus describes the elastic deformation that 

leads to a change in volume.  The realization of negative dynamic mass density makes obvious that 

another hallmark should be the realization of double negativity in which both bulk modulus and 

effective mass are negative. That would lead to a “left handed” material4. The existence of such 

acoustic metamaterial was first proposed and demonstrated through simulations in 20045. Negativity 

in bulk modulus means that the medium expands under compression and contracts upon release. 

Thermodynamics dictates that a system with such a static response characteristic must be unstable. 

However, negative bulk modulus is possible in the context of dynamic response of an elastic/acoustic 

system, whereby the material display an out-of-phase response to an AC pressure field.  Experimentally, 
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negative effective bulk modulus was first realized by the Berkeley group6. The structure consists of a 

fluid channel that is sideway shunted by a series of periodically placed Helmholtz resonators (HRs). 

Instead of utilizing combinations of several materials, this metamaterial system seeks to produce 

modulus-type response by shaping the geometry that confines fluid in which sound propagates. 

The realization of negative mass density and elastic bulk modulus sets the stage for new acoustic meta-

functionalities, aided by the tool of transformation optics/acoustics.  In electromagnetic waves, amazing 

wave manipulation devices such as invisibility cloaks have been realized using the new paradigm of 

transformation optics which is based on the covariance property of the Maxwell equations upon 

coordinate transformation7.  It turns out that we can build transformation acoustics on the same footing. 

Let us consider the time harmonic acoustic equation 
1 2

[ ( ) ( )] [ / ( )] ( ),x p x x p x  


     where   is 

frequency, ( )p x  and ( )x are the pressure and bulk modulus distribution and ( )x  is the mass density 

tensor. If we apply a coordinate transformation '( )x x  to map each point x  to a corresponding point 

'( )x x  in another space, the acoustic equation in the new space has the same form 

1 2
' [ '( ') ' '( ')] [ / '( ')] '( '),x p x x p x  


      with the constitutive parameters transforming as 

'( ') det ( )x A x    and 
1 1

'( ') [ ( ) ] / det
T

x A x A A 
 
 . Here A is the Jacobian matrix of coordinate 

transformation.  This equation relates the acoustic parameters of the transformed acoustic material to a 

coordinate transformation, and gives us the recipe to design materials that can bend acoustic waves in 

almost any way we desire by changing the coordinate systems8-10.  

A mapping that can produce acoustic cloaking in a 3D spherical geometry is the “radial push forward 

mapping”11,12 which expands a point into a sphere (a circle in 2D) and can be written as 

( '), ' , ' ,r f r        with 

 

',  ' ,
( ')

( ' ) / ( , ' ,

r r b
f r

b r a b a a r b




   





 (3) 

where a  and b  are the inner and outer radii of the cloaking shell and the resulting effective density and 

the modulus in the spherical acoustic cloaking shell have the form 

2

0

0

3 2

0

'
( ) ,

'

,

'
'( ', ', ') ( ) ( ) .

'

r

b a r

b r a

b a

b

b a r
r

b r a

 

 

  

   







 






 (4) 

These constitutive parameters are inhomogeneous and can attain extreme values.  Moreover, the effective 

dynamic density is anisotropic. It is clear that such materials do not exist in nature and the achievement of 

acoustic cloaking in some specific frequency hinges on the availability of acoustic metamaterials that can 

realize nearly arbitrary values of effective density and modulus tensors, owing to their resonant behavior.  

Acoustic cloaking has indeed been experimentally realized13,14. 

Other acoustic meta-functionalities have also recently been realized or pursued.  Acoustic focusing and 

superlensing15-25 were pursued theoretically and experimentally. An acoustic hyperlens was 

experimentally demonstrated26. Acoustic rectification27 and unidirectional acoustic diode28, were also 

recently experimentally realized. Hybrid elastic solid that can behave as liquid within a certain frequency 

range29 was shown to be possible, and the fact that the dynamic mass density can differ from the static 

mass density was also generalized to the low frequency regime30 for the fluid-solid composites. 
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Figure 2 Typical sample structure of the membrane-type acoustic 

metamaterial (bottom panels) and the testing geometry (upper panel). 

Adapted from Ref. 32. 

IV. Membrane-type acoustic metamaterials 

The functionality at subwavelength scale is one of the most important characteristics for acoustic 

metamaterials; hence its use in low frequency acoustics would be most promising, since low frequency 

sound is known for its difficulty to be attenuated and manipulated.  The early version of resonant sonic 

materials is still bulky.  Hence ideally one should have a membrane-type acoustic metamaterial which can 

both reflect and/or absorb sound in the 100-1000 Hz regime.  The realization of such “2D” acoustic 

metamaterials31 can also open the door to broad-band applications through stacking the membranes that 

are operative in non-overlapping frequency regimes. 

There is an intuitive dilemma 

encountered in attempting to reflect low 

frequency sound by using membrane 

samples, shown in Fig. 2.   That is 

because total reflection of air-borne 

sound from a solid surface implies that 

the solid surface acts as a node of the 

wave, i.e., the solid surface has no 

displacement.  However, for a soft 

membrane in the presence of an incident 

low frequency pressure wave, that seems 

intuitively very unlikely.   

By decorating the soft membrane (using 

the same material as that for the surgical 

glove) with a light button whose weight 

can be adjusted, we have realized the 2D 

version of the locally resonant sonic 

materials.  There are naturally two resonances in the low frequency regime, just as in the 3D case, and 

between the two resonances there is always a frequency at which not only are the two resonances 

simultaneously excited with the opposite phase, but more importantly, the averaged normal displacement 

w of the decorated membrane is zero. This is the anti-resonance condition, because at this frequency the 

membrane is totally de-coupled from the radiating modes as can be seen as follows. 

For acoustic wave in air,  
22 2 2 2

||
2k k v  


   , where 

||
k , k


 denote the wave vector components 

parallel or perpendicular to the surface of the membrane, respectively, v = 340 m/s is the speed of sound 

in air, and   is the wavelength.  At the air-membrane interface, we note that the normal displacement 

(which is usually sub-micron in magnitude and hence small compared to the membrane thickness) pattern 

of the membrane can be fully described by using two dimensional Fourier components of 
||

k .  If we 

decompose the normal displacement w into an area-averaged component plus another component of 

whatever is leftover, i.e., w = w + w
 
, then it should be clear that their respective Fourier components’ 

magnitudes must have a distribution, with the w part of the displacement having the overwhelming 

majority of the 
||

k  components with magnitudes 
||

2 2k d    .  Hence from the dispersion 

relation it follows that the associated 
2

0k

 .  That is, the w  part of the displacement can only cause 

evanescent waves.  In contrast, for the w part of the normal displacement the distribution of the 
||

k  

must be peaked at zero, owing to its piston-like motion.  Thus from the dispersion relation the associated 

 
22

~ 2k  


.  It follows that only the average component of the normal displacement can effect far-

field transmission.  If w = 0, then there can be no far-field transmission. 
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Figure 3 The effective dynamic mass of the membrane-type 

acoustic metamaterial (red symbols, right axis), together with the 

transmission coefficient (black solid curve, left axis), evaluated with 

an incident wave with pressure modulation amplitude of 1 Pa.  

Adapted from Ref. 32. 

The anti-resonance condition is easily shown to be the manifestation of the dynamic mass density 

dispersion, because 

   2

eff zz z zz
D h a h w      , (5) 

where zz denotes the normal stress, and h the membrane thickness.  It is seen that when w = 0, the Deff  

displays the behaviour shown in Fig. 3.  In the same figure we also plot the measured transmission.  If we 

use the dynamic mass density instead of the static mass density in the mass density law (Eq. (2)), then its 

validity seems to be recovered.   

In looking back to the 3D version, where the 

anti-resonance condition also holds, the first 

transmission dip frequency is seen to occur 

below that of the transmission peak, so that 

the bandgap is indeed due to the negative 

mass density value.  Also, in Fig. 3, Deff is 

negative with a decreasing trend (towards 

negative infinity) as the frequency 

approaches zero.  This would seem to 

contradict the common intuition that Deff 

should reduce to the volume-average value in 

the static limit.  The fact that it does not do so 

in the present case is due to first, the 

assumption that the boundary of the membrane 

is fixed, so that in the long wavelength limit 

the membrane essentially transfers its load 

onto the fixed boundary.  That means the fixed 

boundary can also be interpreted as a piece of 

very heavy mass.  Second, the negative sign of  Deff , signifying off-phase response to the external force, is 

a reflection of Newton’s 3rd law—the reaction is opposite to the applied force. Such behavior of
 
Deff  has 

also been referred to as the “Drude-type negative mass density” in analogy to free electrons in metal33,34. 

How about absorption of low frequency sound by membrane-type acoustic metamaterials?  Linear 

response dictates that the absorption coefficients must be small at low frequencies.  Hence to absorb 

effectively we must have high energy density.  This is usually achieved by using resonances.  However, 

resonance in enclosed cavities can have difficulties in coupling to the incident wave, whereas the usual 

resonances in open geometry, such as the membrane resonances in our acoustic metamaterials, would 

couple strongly to radiating modes.  In either case the absorption is weak.  By utilizing highly 

concentrated curvature energy that can occur at the perimeters of the decorated metallic platelets as seen 

in Fig. 4, we have achieved very high absorption of low frequency sound35.  This is because (1) the 

curvature energy is proportional to the second spatial derivative of w, squared, which implies energy 

density that can be orders of magnitude higher than the incident wave energy density; and (2) the regions 

in which the energy is concentrated can only couple to the evanescent waves, as can be deduced from the 

arguments presented above.  Hence in this particular case we essentially have open cavities that can 

concentrate energy and couple to the incident wave effectively, and yet do not radiate. 
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Liu, X. X. Zhang, Z. Q. Zhang, W. Wen, J. Mei, G. Ma, Jensen Li, M. Yang, Y. Wu, Y. Lai, Y. Mao, and 

Y. Y. Zhu. We also gratefully acknowledge the support, over the past 14 years, of RGC grants 

HKUST6145/99P, HKUST6143/00P, Direct Allocation Grant 99/00.SC30, HKUST605405, 

HKUST604207, HKUST606611, and HKUST2/CRF/11G. 
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Figure 4 Red curve denotes the measured 

absorption coefficient. There are 3 

absorption peaks located at 172, 340, and 

813 Hz. Blue arrows indicate the positions 

of the absorption peak frequencies 

predicted by finite-element simulations.  

The cross-sectional profiles of w along the 

x axis of the unit cell are shown in the 

insets for each of the three resonances.  

The straight sections (7.5mm x 13.5 

mm) of the profile indicate the positions of 

the platelets.  Red circles denote the 

measured profile by laser vibrometer, 

while blue curves are the finite-element 

simulation results. Kinks in the profiles are 

clearly seen, indicating regions of high 

curvature energy. A photo image of the 

sample is shown in the inset at the center 

of the figure.  Adapted from Ref. 35. 
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