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A simple analytic model is presented to describe the low-frequency effective mass densities of three-
component phononic crystals with local resonances. We show that the effective mass densities can turn nega-
tive close to the local resonances. Expressions for the effective mass densities are derived for both three-
dimensional systems with coated spheres embedded in a host matrix, and two-dimensional systems with coated
cylinders embedded in a host matrix.
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I. INTRODUCTION

A recent experiment1 showed that certain three-
component composites, consisting of hard spheres coated
with a soft cladding and dispersed in a stiff host medium,
exhibit complete elastic wave band gaps. These spectral gaps
arise from local vibration resonances of the coated spheres,
and have nothing to do with Bragg scattering.1 If the clad-
ding is very soft, the band-gap frequency can be very low,
making such a composite an interesting material for blocking
low-frequency sound. Such an anomalous response of the
system is the consequence of the coupling of the long-
wavelength elastic wave in the host medium with the local-
ized vibrational motion of the spheres. Such behavior is
rather analogous to the coupling of electromagnetic waves
with transverse optical phonons in an ionic crystal, leading to
a polariton gap and an effective negative dielectric constants
for near the resonance frequencies.2 Similar results were re-
ported for a three-component two-dimensional(2D) system:
resonance-induced band gap was observed for rubber-coated
lead cylinders embedded in an epoxy matrix.3 For 2D struc-
tures formed with rubber-coated square lead rods embedded
in an epoxy matrix, numerical simulations indicate that the
transmission coefficient show dips at resonant frequencies.
Dips in transmission loss spectra of stiff structures contain-
ing local resonant units can be modeled by simple one-
dimensional harmonic oscillators with frequency-dependent
effective complex mass.4 While the three-dimensional(3D)
system with rubber-coated lead spheres embedded in epoxy
can be described with full mathematical rigor using a mul-
tiple scattering approach,5 we show here that the essence of
the physics can be captured in a simple analytic model. Such
an analytic model is highly desirable for an intuitive under-
standing of the problem, as well as offering a quick and yet
reasonably good estimate of the effective properties of such a
complex system. This simple physical model is designed to
describe the three-component composite material with the
special configuration: hard spheres(or cylinders) coated with
soft material distributed uniformly(i.e., randomly or periodi-
cally) in a stiff matrix. It turns out that when the spheres and
the matrix are much harder than the coating, analytic formu-
lae that describe the effective mass density(EMD) of the
material that display resonance can be derived. It has been
shown previously1 that the low-frequency band gap was in-

duced by negative response functions at the band-gap fre-
quency. Since the sound speed is proportional toÎk /r,
wherek andr are modulus and density, respectively, a nega-
tive k /r implies an exponential wave attenuation. Here, we
describe the models for both 3D and 2D systems of such
structures, by calculating their effective mass density, and
show that EMD becomes negative near the resonance fre-
quencies, giving rise to exponential attenuation of wave.
When the resonance behavior is properly described, we find
that these structures behave like dispersive media as ex-
pected, having frequency dependent EMDs. This is in con-
trast to the ordinary composite structures without local reso-
nances. In that case, the EMDs of the structures are simply
the arthimatic averages of the mass densities of the compo-
nents. In the long wavelength limit away from the resonance
frequencies, the EMDs reduce to the arthimatic averages.
The negative EMD is seen to result from the coupling of
traveling waves with the local resonances. In particular, the
local resonances enable the strong coupling even though the
size of the locally resonant unit is much smaller than the
wavelength in the matrix, in contrast to the Raleigh scatter-
ing case. In what follows, we first consider the 3D systems in
Sec. II, followed by the 2D case in Sec. III. A brief summary
is presented in Sec. IV. The mathematical details for the 2D
case are presented in the Appendix.

II. THREE-DIMENSIONAL SYSTEMS

Consider a 3D three-component composite model consist-
ing of a collection of hard spheres, each coated with a soft
material, embedded in a matrix material. The basic building
block is shown schematically in Fig. 1, where the matrix
medium is labeled 1, the coating medium labeled 2, and the
hard-core sphere labeled 3. The inner and outer radii of the
coating layer are denoted witha andb, respectively. Because
of the softness of the coating medium, the hard-core sphere
is hardly deformed, and thus can be treated approximately as
being rigid. We are interested in wave propagation with a
wavelength that is very large compared with the dimension
of the inclusions. Subjected to a long-wavelength incident
wave(either longitudinal or transverse), the movement of the
spherical core(as well as that of the matrix 1 locally) can be
regarded as a vibration around the center of the sphere. Sup-
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pose that the vibration is along thez direction(marked by the
arrow in Fig. 1), the equation of motion for the sphere may
be expressed as

− m3v2U =E E
s

strrcosu − trusinuda2sinududf, s1d

whereU is the displacement of the sphere,m3 is the mass of
the sphere,trr and tru are stress components in medium 2
with r, u, and f, denoting the spherical coordinates. The
integration in the equation is performed on the surface of the
sphere. In medium 2, the motion of the medium satisfies the
elastic wave equation,6 given by

sl2 + 2m2d = s= ·ud − m2 = 3 = 3 u + r2v2u = 0, s2d

wherel2 andm2 are the Lamé constants, andr2 is the mass
density of medium 2. The azimuthal symmetry of the build-
ing block implies that displacements may be expressed as7

uW = ureWr + uueWu, s3d

or

uW = = F + = 3 S ] C

] u
eWfD , s4d

whereF andC are scalar potential functions, satisfying the
following scalar wave equations:

=2F + a2F = 0, s5d

=2C + b2C = 0, s6d

wherea=vÎr2/ sl2+2m2d, and b=vÎr2/m2. The solutions
for F andC may be written as

F = o
n=0

`

fAnjnsard + BnnnsardgPnscosud, s7d

C = o
n=0

`

fCnjnsbrd + DnnnsbrdgPnscosud, s8d

where jnsxd is thenth order spherical Bessel function,nnsxd
is thenth order spherical Neumann function, andPnsxd is the
nth order Legendre polynomial. Withu denoting the local
displacement of medium 3(see Fig. 1), by regarding the core

sphere and the matrix as almost rigid, continuity across the
interface requires that

uurur=b = u cosu, s9d

uuuur=b = − u sin u, s10d

uurur=a = U cosu, s11d

uuuur=a = − U sin u, s12d

which means that the expansions in Eqs.(7) and(8) actually
truncates forn.1. That leads to a set of linear equations

E11A1 + E12B1 + E13C1 + E14D1 = bu, s13d

E21A1 + E22B1 + E23C1 + E24D1 = bu, s14d

E31A1 + E32B1 + E33C1 + E34D1 = aU, s15d

E41A1 + E42B1 + E43C1 + E44D1 = aU, s16d

whereEijs are given by

E11 = j1sabd − abj2sabd,

E12 = n1sabd − abn2sabd,

E13 = − 2j1sbbd,

E14 = − 2n1sbbd,

E21 = j1sabd,

E22 = n1sabd,

E23 = − 2j1sbbd + bbj2sbbd,

E24 = − 2n1sbbd + bbn2sbbd,

E31 = j1saad − aaj2saad,

E32 = n1saad − aan2saad,

E33 = − 2j1sbad,

E34 = − 2n1sbad,

E41 = j1saad,

E42 = n1saad,

E43 = − 2j1sbad + baj2sbad,

E44 = − 2n1sbad + ban2sbad.

Let us denote the inverse of matrixE by T, then we get

A1 = sT11 + T12dbu+ sT13 + T14daU, s17d

FIG. 1. A basic unit in the three component composite material.
Mediums 1 and 3 are hard materials, and medium 2 is a soft mate-
rial. The arrows indicate the vibration directions for mediums 1 and
3, respectively.
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B1 = sT21 + T22dbu+ sT23 + T24daU, s18d

C1 = sT31 + T32dbu+ sT33 + T34daU, s19d

D1 = sT41 + T42dbu+ sT43 + T44daU. s20d

Since the strain tensor may be expressed in terms of the
displacement vector as6

e = 1
2s=uW + uW = d, s21d

and the stress tensor and the strain tensor are related by the
law of elasticity

tzj = l2serr + euu + ezzddzj + 2m2ezj, s22d

we can obtaintrr andtru, and then the right-hand side of Eq.
(1). Finally, we obtained the displacement of the sphere as

U = −

b

a
gsvd

Rsvd −
r3

r2

u, s23d

where r3 is the density of the sphere, and the frequency
dependentgsvd andRsvd are given, respectively, as

gsvd = sT11 + T12d j1saad + sT21 + T22dn1saad

− 2sT31 + T32d j1sbad − 2sT41 + T42dn1sbad, s24d

Rsvd = sT13 + T14d j1saad + sT23 + T24dn1saad

− 2sT33 + T34d j1sbad − 2sT43 + T44dn1sbad. s25d

Equation(23) relates the displacement of the sphere to the
displacement of the embedding matrix and we see that when
Rsvd=r3/r2, resonance occurs.

The expressions forA1, B1, C1, and D1, which will be
needed in the following, may be derived by substituting Eq.
(23) into Eqs.(17)–(20)

A1 = 3T11 + T12 − sT13 + T14d
gsvd

Rsvd −
r3

r2
4bu, s26d

B1 = 3T21 + T22 − sT23 + T24d
gsvd

Rsvd −
r3

r2
4bu, s27d

C1 = 3T31 + T32 − sT33 + T34d
gsvd

Rsvd −
r3

r2
4bu, s28d

D1 = 3T41 + T42 − sT43 + T44d
gsvd

Rsvd −
r3

r2
4bu. s29d

The force acting on the coated sphere by the embedding
matrix (medium 1) is given by

F23 =E E
s

strrcosu − trusinudb2sinududf. s30d

After some manipulations, we get

F23 = −
4

3
pb2r2v2fA1j1sabd + B1n1sabd

− 2C1j1sbbd − 2D1n1sbbdg

= −
4

3
pb3r2v23g1svd − g2svd

gsvd

Rsvd −
r3

r2
4u, s31d

where

g1svd = sT11 + T12d j1sabd + sT21 + T22dn1sabd

− 2sT31 + T32d j1sbbd − 2sT41 + T42dn1sbbd,

s32d

g2svd = sT13 + T14d j1sabd + sT23 + T24dn1sabd

− 2sT33 + T34d j1sbbd − 2sT43 + T44dn1sbbd.

s33d

We note that the force between the coated sphere and the
embedding medium, as expressed byF23, is a consequence
of the resonance behavior. Far away from the resonance and
in the low frequency limit, F23 reduces to F23

0 =−sm2

+m3dv2u, with m2 being the mass of the coating. Obviously
F23

0 is the force acting on the coated sphere by medium 1 if
we ignore the resonance. We can define the effective mass
density for the coated sphere throughF23 by

− r23
e V23v

2u = F23, s34d

whereV23= 4
3pb3 is the volume of the coated sphere. We thus

obtain

r23
e = r23g1svd − g2svd

gsvd

Rsvd −
r3

r2
4 . s35d

The effective mass density for the whole local unit can be
defined as

re = f1r1 + sf2 + f3dr23
e

= f1r1 + sf2 + f3dr23g1svd − g2svd
gsvd

Rsvd −
r3

r2
4 ,

s36d

wheref1, f2, andf3 are the filling fractions for media 1, 2,
and 3, respectively, satisfyingf1+f2+f3=1. Since at the
low-frequency limitF23 reduces toF23

0 , we find that the ef-
fective mass densityre reduces tore

0=f1r1+f2r2+f3r3,
which is the average density, i.e., the effective mass density
if the local resonance is ignored. It should be noted that the
force expressed in Eq.(31), which is obviously direction
independent, is applicable only when the composite proper-
ties are isotropic at long wavelength. That requires the build-
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ing blocks to be randomly distributed, or arrayed with high
symmetries, e.g., with cubic symmetries, so as to guarantee
the effective medium’s isotropy at long wavelength. Mean-
while, since the wavelengths in the matrix at the resonant
frequencies are much greater than the size of the resonant
unit, the longitudinal motion(when subjected to a longitudi-
nal incident wave) and the transverse motion(when sub-
jected to a transverse incident wave) of the unit are identical
locally, so the same dispersion relation for the effective mass
density is exhibited for the longitudial wave and the trans-
verse wave.

To show that the effective mass density may become
negative at some frequency regimes, we calculate the EMD
for the three-component system discussed in Ref. 1: rubber-
coated lead spheres embedded in epoxy matrix in a simple
cubic structure. The filling fraction is 47%, and the lead
sphere radiusa is 0.5 cm and the thickness of the rubber
coating is 0.25 cm. In all the calculations, small imaginary
parts (about 0.5% of the corresponding real parts) were in-
troduced into the elastic constants of the rubber coating to
mimic absorption. The resulting complex effective mass den-
sities are shown in Fig. 2(a), where the solid and dashed lines
represent the real and imaginary parts of the complex EMD,
respectively. It can be seen that the real and the imaginary
parts of the EMD display features typical of the Kramers-

Kronig relation. For the real part of the EMD, we observe
two frequency regions where it becomes negative, corre-
sponding almost exactly to the two stop bands of the sonic
crystal structures reported in Ref. 1. The static limit of the
EMD, i.e., re

0, is recovered at very low frequency far away
from the resonance frequencies of the coated spheres. We
have also calculated the vibrating amplitude of the spheres as
a function of the frequencies,which is also complex as shown
in Fig. 2(b), with the solid line corresponding to the real part
and the dashed line corresponding to the imaginary part. It is
observed that aroundf =378 Hz, there exists a resonance in
which the displacements of the spheres are very large and
experience a very sharp change from the in-phase state to the
out-of-phase state. The first negative EMD frequency region
in Fig. 2(a) corresponds to the out-of-phase region labeled as
B in Fig. 2(b). It is also interesting to note that in the in-
phase resonance region labeled A in Fig. 2(b), there exists a
large EMD enhancement[see Fig. 2(a)]. From Fig. 2(b), we
also observe a big change ofU at f =1333 Hz[inbetween C
and D in Fig. 2(b)], which corresponds to the second nega-
tive EMD region, but the magnitude is small, and thus the
negative EMD effect at the second region cannot be attrib-
uted to the vibration of the spheres. To further clarify the
physics at the first negative EMD region and the origin of the
second negative EMD region, we calculate the displacement
field distribution along a general radial direction(say, the
line from a to b at an angleu=p /4 shown in Fig. 1) in the
coating layer, for four frequencies: A atf =375 Hz, B at
f =380 Hz, C atf =1330 Hz, and D atf =1335 Hz. The re-
sults are shown in Figs. 3(a)–3(d), with the solid lines denot-
ing the real parts and the dashed line denoting the imaginary
parts. We observed that at frequencies labeled A and B, the
spheres are vibrating with big amplitude, and the coating
around them just follow their motion; while at frequencies C
and D, there are obviously resonant modes inside the coating
with displacement amplitude taking maximum values locally
in the coating medium, while the vibration of the spheres is
very small. We see that all the physics brought out by the
simple model is consistent with that by the exact multiple-
scattering calculation as was done in Ref. 1.

III. TWO-DIMENSIONAL SYSTEMS

We now consider a 2D three-component composite mate-
rial model that is formed with hard cylinders concentrically
coated with a soft material. These coated cylinders are em-
bedded in a matrix material. A cross section of the basic
building block can be also represented by Fig. 1, where me-
dium 3 now labels the hard cylinder. Suppose that a long
wavelength elastic wave is traveling along thex-y plane per-
pendicular to the axis of the cylinder. The cylinder, as well as
the embedding medium(i.e., medium 1) locally, is vibrating
around the cylinder axis. Suppose that the vibration is along
the x direction (the arrow direction in Fig. 1), the motion of
the cylinder satisfies

− m3v2U =E
0

2p

strrcosu − trusinudal du, s37d

whereU is the displacement of the cylinder,m3 is the mass
of the cylinder expressed asr3pa2l with r3 being the density,

FIG. 2. (a) The EMD(s) and (b) the displacement of the core
sphere for rubber-coated lead spheres embedded in an epoxy ma-
trix. The solid line and dashed line represent the real part and imagi-
nary part, respectively. The filling fraction for coated spheres is
47%, the radius of the sphere is 5.0 mm, and the coating thickness
is 2.5 mm. The displacement fields for the four frequencies labeled
A, B, C, and D will be shown in Fig. 3.
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a is the radius, andl is the length of the cylinders. Here,trr
and tru are stress components in medium 2 in a cylindrical
coordinate system, and the integration is performed on the
surface of the cylinder. Again in medium 2, the motion of the
medium should be described by the elastic wave equation
[i.e., Eq.(2)]. The mirror symmetry about thex axis indicates
that the displacement in medium 2 may be expressed in
terms of potential functions as

u = = F + = 3 sẑCd, s38d

or, in the present case, as

F = o
n=0

`

fAn1Jnsard + Bn1Nnsardgcossnud, s39d

C = o
n=0

`

fAn2Jnsbrd + Bn2Nnsbrdgsinsnud, s40d

whereJnsxd andNnsxd are thenth order Bessel function and
Neumann function. Similar to the derivation in the 3D case
(for the details, please see the Appendix), we obtain the ex-
pressions for the EMD for this 2D composite as

re = f1r1 + sf2 + f3dr23g1svd − g2svd
gsvd

Rsvd −
r3

r2
4 ,

s41d

where r1 and r2 are the mass densities for the matrix and
the coating materials, andf1, f2, and f3 are the volume
filling fractions of the matrix, the coating, and the core
materials, respectively, satisfyingf1+f2+f3=1. It can also
be shown that at the low-frequency limit,re reduces to
re

0=f1r1+f2r2+f3r3, i.e., the average density. The expres-
sions for the frequency dependentRsvd, gsvd, g1svd, and
g2svd are given in the Appendix.

To demonstrate that the EMD may also become negative
at some frequency regime, we calculate the EMD for a three-
component system composed of the same materials as the
preceding 3D system, that is, the rubber-coated lead cylin-
ders embedded in epoxy. The filling fraction for coated cyl-
inders is 40%, the cylinder radius is 0.5 cm, and the thick-
ness of the rubber layer is 0.25 cm. The calculated EMD is
shown in Fig. 4(a), where we also observe two frequency
regions where the real part of the EMD becomes negative.
The corresponding vibration amplitude of the cylinders
core is shown in Fig. 4(b), where we see that the first nega-
tive EMD region is again from the resonance of the lead

FIG. 3. The displacement fields(normalized to the displacement amplitudeu in medium 1) along the line froma to b in the coating layer
as shown in Fig. 1 at four frequencies:(a) at A, f =375 Hz;(b) at B, f =380 Hz,(c) at C, f =1330 Hz, and(d) at D, f =1335 Hz. The solid
line and dashed line represent the real part and imaginary part, respectively. From panels(a), and(b), we see that the displacement is largest
at a, which is the boundary with the core, showing that the core is vibrating strongly at the low frequency resonance. From panels(c) and
(d), which correspond to the higher frequency resonance, the displacement peaks inside the coating layer. The change of phase from below
to above the resonance is evident in these panels.
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cylinder. The second negative EMD region is from the
rubber layer resonance. The physics is thus qualitatively the
same as that in the 3D case.

IV. CONCLUDING REMARKS

In this paper we show that a simple analytic model can
account for low-frequency wave propagation phenomena in a
certain class of three-component composite materials1 that
exhibits sonic band gaps due to resonance. The origin of the
gap and the dispersion near the gap can be described by
adopting frequency dependent effective mass density that be-
comes negative near the resonance frequencies of the embed-
ded coated objects. The derivation here captures the essence
of the physics, and highlights the importance of the cladding
layer. Indeed, the resonance gaps will disappear if the coat-
ing is removed or replaced by a stiff material.1
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APPENDIX

In the appendix, we give the derivation of the EMD for
the 2D three-component composite in detail. The displace-
ment continuity at the boundaries gives

uurur=b = u cosu, sA1d

uuuur=b = − u sin u, sA2d

uurur=a = U cosu, sA3d

uuuur=a = − U sin u, sA4d

whereu is the local displacement of medium 1. From Eqs.
(39) and (40), we see that the expansions naturally truncate
for n.1, and we immediately get

E11A11 + E12A12 + E13B11 + E14B12 = aU, sA5d

E21A11 + E22A12 + E23B11 + E24B12 = aU, sA6d

E31A11 + E32A12 + E33B11 + E34B12 = bu, sA7d

E41A11 + E42A12 + E43B11 + E44B12 = bu, sA8d

whereEijs are defined as

E11 = aaJ0saad − J1saad,

E12 = J1sbad,

E13 = aaN0saad − N1saad,

E14 = N1sbad,

E21 = J1saad,

E22 = baJ0sbad − J1sbad,

E23 = N1saad,

E24 = baN0sbad − N1sbad,

E31 = abJ0sabd − J1sabd,

E32 = J1sbbd,

E33 = abN0sabd − N1sabd,

E34 = N1sbbd,

E41 = J1sabd,

E42 = bbJ0sbbd − J1sbbd,

E43 = N1sabd,

E44 = bbN0sbbd − N1sbbd.

Denoting the inverse of matrixE by T, we get

FIG. 4. (a) The EMD(s) and (b) the displacement of the core
cylinder for rubber-coated lead cylinders embedded in an epoxy
matrix. The solid line and dashed line represent the real part and
imaginary part, respectively. The filling fraction for coated cylin-
ders is 40%, the radius of the lead cylinder is 5.0 mm, and the
coating thickness is 2.5 mm.
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A11 = sT11 + T12daU + sT13 + T14dbu, sA9d

A12 = sT21 + T22daU + sT23 + T24dbu, sA10d

B11 = sT31 + T32daU + sT33 + T34dbu, sA11d

B12 = sT41 + T42daU + sT43 + T44dbu. sA12d

We finally obtain

U = −

b

a
gsvd

Rsvd −
r3

r2

u, sA13d

whereRsvd andgsvd are expressed as

Rsvd = sT11 + T12dJ1saad + sT21 + T22dJ1sbad

+ sT31 + T32dN1saad + sT41 + T42dN1sbad,

sA14d

gsvd = sT13 + T14dJ1saad + sT23 + T24dJ1sbad

+ sT33 + T34dN1saad + sT43 + T44dN1sbad,

sA15d

respectively. Resonance occurs atRsvd=r3/r2.
The final expressions forA11,A12,B11,B12 are

A11 = 3sT13 + T14d − sT11 + T12d
gsvd

Rsvd −
r3

r2
4bu, sA16d

A12 = 3sT23 + T24d − sT21 + T22d
gsvd

Rsvd −
r3

r2
4bu, sA17d

B11 = 3sT33 + T34d − sT31 + T32d
gsvd

Rsvd −
r3

r2
4bu, sA18d

B12 = 3sT43 + T44d − sT41 + T42d
gsvd

Rsvd −
r3

r2
4bu. sA19d

The force acting on the coated cylinder by medium 1 may be
expressed as

F23 =E
0

2p

strrcosu − trusinudlbdu, sA20d

which is obtained as

F23 = − pblr2v2fA11J1sabd + A12J1sbbd

+ B11N1sabd + B12N1sbbdg sA21d

=− pb2lr2v23g1svd − g2svd
gsvd

Rsvd −
r3

r2
4u, sA22d

and

g1svd = sT13 + T14dJ1sabd + sT23 + T24dJ1sbbd

+ sT33 + T34dN1sabd + sT43 + T44dN1sbbd,

sA23d

g2svd = sT11 + T12dJ1sabd + sT21 + T22dJ1sbbd

+ sT31 + T32dN1sabd + sT41 + T42dN1sbbd.

sA24d

We note that the force between the coated cyliner and the
embedding medium, as expressed byF23, is a consequence
of the resonance behavior. Far away from the resonance and
in the low-frequency limit, F23 reduces to F23

0 =−sm2

+m3dv2u, with m2 being the mass of the coating.F23
0 is the

force acting on the coated cylinder if we ignore the reso-
nance. We can define the effective mass density for the
coated cylinder throughF23 by

− r23
e V23v

2u = F23, sA25d

where V23=pb2l is the volume of the coated cylinder. We
obtain

r23
e = r23g1svd − g2svd

gsvd

Rsvd −
r3

r2
4 . sA26d

The effective mass density for the whole local unit can be
defined as

re = f1r1 + sf2 + f3dr23
e

= f1r1 + sf2 + f3dr23g1svd − g2svd
gsvd

Rsvd −
r3

r2
4 ,

sA27d

wheref1, f2, andf3 are the filling fractions for media 1, 2,
and 3, respectively, satisfyingf1+f2+f3=1. It can be seen
that at the low-frequency limit,re reduces tore

0=f1r1
+f2r2+f3r3, i.e., the average density.
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