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We present a structurally and conceptually simple acoustic double negative metamaterial comprising

two coupled membranes. Owing to its symmetry, the system can generate both monopolar and dipolar

resonances that are separately tunable, thereby making broadband double negativity possible. A homo-

genization scheme is implemented that enables the exact characterization of our metamaterial by

the effective mass density and bulk modulus even beyond the usual long-wavelength regime, with the

measured displacement fields on the sample’s surfaces as inputs. Double negativity is achieved in the

frequency range of 520–830 Hz. Transmission and reflection predictions using effective parameters

are shown to agree remarkably well with the experiment.
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The emergence of acoustic and elastic metamaterials has
significantly broadened the horizon for acoustic or elastic
waves. Novel phenomena such as focusing and subdiffrac-
tion imagining [1–4], near-field amplification [5], cloaking
[6–9], localization of ultrasound [10], one-way transmis-
sion [11–13], and super absorption [14] have been pro-
posed or experimentally demonstrated. At the core of
these phenomena are the resonance-induced effective ma-
terial characteristics such as the negative effective mass
[5,15–18], negative effective modulus [19,20], or negative
shear modulus [21,22].

With the realization of negative dynamic mass density in
the membrane system [16] and negative modulus via the
Helmholtz resonators (HR) [19], a natural extension is the
doubly negative acoustic metamaterial based on the com-
bination of the two [23]. However, coupling between the
membrane and the HR is not straightforward, as the geo-
metric symmetries of the two systems are different. Hence
it is only recently that such an attempt was successfully
demonstrated in the low frequency limit [24,25]. However,
combining two different structures is not the only strategy
to the realization of acoustic double negativity. It was
shown theoretically that a single resonating unit can dis-
play overlapping responses in multiple angular momentum
channels [21], including monopolar and dipolar, which are
the key to the realization of acoustic double negativity [26].
Other routes to achieve double negativity, such as the
geometric-induced band folding [27], have also been dem-
onstrated theoretically and numerically.

In this Letter, we show both experimentally and theo-
retically the realization of double negativity in a single
resonating structure, based on two coupled membranes.
The work was motivated primarily by symmetry consid-
erations. Consider a homogeneous 1D system of finite
extent. The (transversely averaged) motions of two end
surfaces represent two independent degrees of freedom—a
symmetric mode in which the two surfaces move in phase,

and an antisymmetric mode in which the two surfaces
move out of phase with each other. These two modes can
characterize, respectively, the dipolar and monopolar reso-
nances of the system. They correspond to the two effective
parameters of the system because in the dipolar case there
is center of mass motion and hence the corresponding
resonance is denoted masslike, whereas in the monopolar
case the center of mass remains stationary and only the
bulk modulus plays a role; hence, it is denoted bulk mod-
uluslike [26]. Provided the eigenfrequencies of the two
resonances are tunable via system parameters, it is straight-
forward to realize double negativity in a desired frequency
range. A distinct advantage of such a system is that, due
to the simplicity and symmetry of our metamaterial, we
can afford exact characterization of the system by using
the measured end surface displacements, even beyond the
usual long-wavelength regime [21,28,29]. From the
extracted effective parameter values, the predicted trans-
mission and reflection spectra can be compared to the
experiment. In what follows we show that such a simple
1D system can indeed be realized, by coupling two mem-
branes. While the membranes would inevitably have trans-
verse dimensions, it is shown that in the low frequency
limit where the relevant wavelength is much larger than the
transverse dimension, the system is accurately 1D as far as
the propagating waves are concerned.
In Fig. 1(a) we show the structure of the metamaterial

that comprises two identical circular membranes, each
with radius R ¼ 14 mm, thickness 0.2 mm, and decorated
by a circular rigid platelet (radius of 4.5 mm and mass of
159 mg) attached to the center. The two membranes are
each fixed to a rigid cylindrical side wall with a radial
tensile stress 1:3� 106 Pa. They are connected by an
acrylic plastic ring, which has a thickness of 1.5, inner
radius 10, and height 6.0 mm. The ring has a mass of
395 mg, and the materials parameters of the membranes
can be found in Ref. [14]. The amplitude and phase of the
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transmission and reflection were measured in a modified
impedance tube apparatus, comprising two Brüel and Kjær
type-4206 impedance tubes with the sample sandwiched in
between [30]. The front tube has two sensors, plus a loud-
speaker at one end to generate a plane wave in the tube.
The back tube has one sensor to measure the transmitted
wave. Figures 2(a) and 2(b) show the measured transmis-
sion and reflection amplitudes, respectively. Three trans-
mission peaks, located at 290.1, 522.6, and 834.1 Hz
are seen.

We limit the relevant acoustic frequency f by the con-
dition v0=f ¼ � > 2R, where v0 ¼ 343 m= sec is the
speed of sound in air. Thus we have f < 1:225� 104 Hz
under this constraint. An immediate consequence is that as
far as the radiation modes are concerned, i.e., transmission
and reflection, the system may be accurately considered as
one dimensional. This can be seen as follows. The normal
displacement u of the membrane may be decomposed as
u ¼ hui þ �u, where hui represents the surface-averaged
normal displacement of the membrane (here hi represents
surface averaging) and �u the fine details of the membrane
motion. In the air layer next to the membrane surface, the
acoustic wave must satisfy the dispersion relation k2k þ
k2? ¼ ð2�=�Þ2, where kkð?Þ represents the wave vector

component parallel (perpendicular) to the membrane sur-
face. Because the two-dimensional fine pattern of kk can be
described by a linear superposition of kk’s, all of which
must be greater than 2�=2R> 2�=�, it follows that the

relevant k2? < 0. That is, the displacement component �u

leads only to evanescent, nonradiating modes. The dis-
placement component, hui, on the other hand, represents
the pistonlike motion of the membrane and has kk
components peaked at kk ¼ 0; hence, it is coupled to the

radiation modes.
Simplification to a 1D system greatly facilitates the

visualization of the relevant symmetries of the two types
of resonances, involving either the in-phase or the out-of-
phase motion of the two membranes. An important element
of our experimental measurements is the use of laser
vibrometer (Graphtec AT500-05) to map the normal dis-
placement u across the membrane on the transmission side,
plus the relative phase �� between the two membranes,
which can be detected by the relative motion between the
two platelets. In Figs. 1(b)–1(d) we show three displace-
ment fields of the coupled-membrane system at the trans-
mission peaks, i.e., resonance frequencies (f1þ ¼ 290:1,

f2� ¼ 522:6, and f3þ ¼ 834:1 Hz). The black curves

delineate the simulated results by using the COMSOL multi-
physics finite element package, whereas the red circles
represent the measured results using laser vibrometer.
Excellent agreement is seen. For the first mode, both
membranes oscillate in unison, carrying the ring together
in a translational motion. For the second eigenmode, the
ring is motionless and only the membranes vibrate.
Because the acrylic plastic ring is rather rigid, it is impos-
sible for the soft membrane to compress the ring at such
low frequencies. Consequently, the ring acts like an anchor,
and the central portions of the two membranes vibrate in an
out-of-phase manner. For the third eigenmode, the ring and

FIG. 2 (color online). (a) Transmission coefficient and
(b) reflection coefficient of the metamaterial. The open circles
are the experimental results obtained using the impedance mea-
surements; the solid curves are calculated from �� and �� shown
in Fig. 3. Excellent agreement is seen. The band gaps are shaded
gray, the double-negative passband (between 520 and 830 Hz) is
light gray (yellow), and the double-positive passband is without
shading.

FIG. 1 (color online). (a) Schematic drawing of the metama-
terial. (b) Numerically simulated (black curves) and experimen-
tally measured (red circles) vibration profiles (eigenfunctions) of
the first eigenmode. Here and in (c) and (d) circular symmetry is
assumed. The rigid circular platelet is shown schematically by
the hollow rectangle. (c) The second eigenmode. (d) The third
eigenmode. For the third eigenmode, the relative phase is noted
to be somewhat larger than that for the first mode. Here f� is
the corresponding eigenfrequency and ��� the relative phase
difference between the two central plates.
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the platelets vibrate in opposite phase, but the motion of the
two membranes is in unison. It is seen that the simulated
phase relation between the two platelets agrees with the
experimental results almost perfectly.

While the first and third eigenmodes are clearly dipolar
in character and hence of mass-density type (MDT), the
second mode has the monopolar symmetry and hence is of
bulk-modulus type (BMT) [26]. For the dipolar resonance,
the total mass of the ring and the platelets serves as
the most important parameter for tuning its frequency.
For the monopolar resonance, the membranes’ separation
and transverse dimension are the crucial parameters. The
fourth eigenmode is noted to be at a much higher frequency
of 2976.3 Hz. Its effect in the frequency range of our
interest is minimal, and therefore it is ignored in the
following analysis.

The two relevant effective material parameters are the
dynamic mass density �� (arising from the symmetric
mode) and the effective bulk modulus �� (arising from
the antisymmetric mode). To extract these two effective
parameters, we propose a homogenization scheme, with
detailed derivation presented in the Supplemental Material
[31], based on the fact that the behavior of our system is
dictated by the resonant eigenmodes. The scheme needs
only the three relevant eigenfunctions to delineate the
correlated motions on the two ends (i.e., the two mem-
branes). This aspect is distinct from the homogenization
schemes in which matching the response of the entire
frequency range of interest is required [21,32–34].

Consider the eigenfunction expansion of the scalar
Green function [29],

Gð ~x; ~x0Þ ¼ X

�

u��ð ~xÞu�ð ~x0Þ
��ð!2

� þ i!�� �!2Þ ; (1)

where angular frequency ! ¼ 2�f, ���
R
�u

�
�ð ~xÞ�ð ~xÞ�

u�ð ~xÞd~x denotes the averaged mass density for the �th
eigenfunction u�ð ~xÞ, �ð ~xÞ is the local mass density, and!�

and �� are the corresponding resonant frequency and
dissipation coefficient. By using the experimentally mea-
sured eigenfunctions u�ð ~xÞ [as shown in Figs. 1(b)–1(d), in
which circular symmetry is assumed], the relevant �� can
be evaluated from its definition. The dissipation coeffi-
cients ��’s can be evaluated from the experimentally
measured membrane displacement, with details shown in
the Supplemental Material [31]. For the frequency range
of interest, it turns out that only three eigenfunctions
are needed; i.e., � ranges from 1 to 3 only. In Table I
we present the relevant parameter values of the three
eigenfunctions, evaluated from the measured membrane
displacement as shown in Fig. 1.

By carrying out the cross-sectional average on G
(denoted by hGi), we obtain a symmetric component, �Gþ,
and an antisymmetric component, �G�, where

�G� ¼ hGðx0; x0Þi � hGðx0;�x0Þi

¼ X3

�¼1

hu��ðx0Þi½hu�ðx0Þi � hu�ð�x0Þi�
��ð!2

� þ i!�� �!2Þ ; (2)

and the two coordinates are now specified at the positions
of the two coupled membranes. The cross-sectional aver-
aged values of hu�ð�x0Þi can be directly obtained from the
laser vibrometer data (Fig. 1) for the three eigenfunctions;
hence, together with the values of �� and �� (Table I) we
can obtain the numerical values of �G� for all the relevant
frequencies.
Now consider a homogeneous 1D system of length 2x0.

The Green function of such a 1D system is uniquely
determined by the two material parameters �� and ��. In

particular, we can have the similar quantities �Gð1DÞ
� that are

given by the formulas [35]

�Gð1DÞ
þ ¼ � cotðx0! ffiffiffiffi

��
p

=
ffiffiffiffi
��

p Þ
!

ffiffiffiffi
��

p ffiffiffiffi
��

p ; (3a)

�Gð1DÞ� ¼ tanðx0! ffiffiffiffi
��

p
=

ffiffiffiffi
��

p Þ
!

ffiffiffiffi
��

p ffiffiffiffi
��

p : (3b)

By requiring �G� ¼ �Gð1DÞ
� , we obtain two sets of equations

that determine �� and �� as functions of frequency. As the
solutions are multiple valued, we select the branch with
the longest wavelength. Results are shown in Figs. 3(a)
and 3(b). For the purpose of clarity, only the real parts of
the effective parameters are plotted. The corresponding
imaginary parts are shown in the Supplemental Material
[31]. The frequency range in light gray (yellow) denotes
the double negativity regime—520 to 830 Hz—which is
noted to be fairly broad.
It should be noted that in the above homogenization

scheme no use has been made of the usual long-wavelength
approximation. Hence, even if the effective wavelength
in our sample is comparable to 2x0, the relevant effective
parameter values should still be accurate as far as the
surface response (and hence the far-field wave field) of
the system is concerned.
From �� and ��, we can analytically calculate the trans-

mission and reflection coefficients T and R from the 1D
model (see the Supplemental Material [31]). The results
are displayed in Fig. 2 as solid curves. They are seen
to agree remarkably well with the experiments (open
circles) with no adjustable parameters, even beyond the

TABLE I. Values of f�, ��, and �� for the first three eigen-
functions.

� 1 2 3

f� (Hz) 290.1 522.6 834.1

�� (104 kg=m3) 2.72 2.95 1.19

�� (Hz) 10.20 12.79 49.94
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usual long-wavelength regime, e.g., around f~1þ and f2�
where the half wavelength is on the order of 2x0.

By periodically repeating the unit cells in the plane
parallel to the membranes, a planar array [36–38] or a
wall with overall transport properties similar to a single
unit cell can be constructed. In Sec. III of the Supplemental
Material [31] we give an experimental demonstration
showing that the transmission and reflection characteristics
of an array, comprising identically constructed units, is
similar to a single cell. It confirms the fact that each cell
is well isolated from its neighbors.

The transmission properties of our metamaterial are
determined by two factors: impedance matching with air
and the values of effective wave vectors. We notice that
Reð ��Þ crosses zero precisely at the two eigenfrequencies
f1þ and f3þ [Fig. 3(a)], arising from the two dipolar

resonances. A direct consequence is that the effective
impedance j �Zj ¼ j ffiffiffiffiffiffiffiffi

�� ��
p j [Fig. 3(d)] matches well with

the background air. Two transmission peaks, accompanied
by reflection minima (Fig. 2), are seen at f1þ and f3þ .

The antiresonance frequency, represented by f~1þ , is

located between the two MDT eigenfrequencies due to
the out-of-phase hybridization of the two neighboring
MDT eigenmodes that implies huðx0Þi þ huð�x0Þi ¼ 0
[16]. To simplify the picture, we have tuned the BMT
frequency f2� to coincide with the antiresonance f~1þ to

within several Hz. Owing to dissipative broadening, our
calculation shows j �Zj to display a small dip but the value is
still fairly large in this frequency range [Fig. 3(d)] and
hence mismatches with air. The transmission dip, usually
expected at the antiresonance frequency f~1þ , is effectively

countered by the BMT resonance. However, the trans-
mission peak at this frequency [Fig. 3(c)] is due to the
Fabry-Perot effect of constructive interference. That is,

�k ¼ �=2x0 at f2� , with 2x0 being the thickness of the

metamaterial.
The key frequencies discussed above, f1þ , f~1þ (f2�), and

f3þ , divide the spectrum into two passbands. The first one

[white regions in Figs. 2 and 3 with f 2 ðf1þ ; f~1þðf2�ÞÞ], is
a conventional double-positive band. The second one
[light gray (yellow) regions in Figs. 2 and 3 with f2
ðf~1þðf2�Þ;f3þÞ], is due to the overlapping of the negative

�� and negative �� bands. In the doubly negative frequency

regime, the effective wave vector �k ¼ !
ffiffiffiffiffiffiffiffiffi
��= ��

p
is real;

hence, the acoustic wave is propagative. However, the
wave response is out of phase to that of the double-positive
medium, as can be seen from the negative slope of the
dispersion in Fig. 3(c).
Single-negative band gaps are found in two regimes,

f < f1þ and f > f3þ (the gray bands in Figs. 2 and 3).

The first gap is due to negative-valued ��, whereas the
second gap is due to the negative ��. Single negativity in
the effective parameters gives rise to pronounced imaginary
part of the effective wave vectors within the band gaps even
in the absence of dissipative effects, so that the acoustic
wave must be evanescent. However, we notice that the
transmission coefficients within the band gaps are not
necessarily small. This is due to the relatively long decay
length, given by d ¼ Imð �kÞ�1. The minimum d is�13 mm
[31], which is still larger than the thickness of our sample.
Hence the evanescent soundwave is penetrative in this case.
To conclude, we have implemented a very simple acous-

tic metamaterial using two coupled membranes in which
the effective parameters can be exactly characterized.
Double negativity in both the dynamic mass density and
effective bulk modulus is achieved in a fairly broad fre-
quency regime. The simplicity of the structure makes them
suitable as the basic units for constructing acoustic

FIG. 3 (color online). Effective parameters of the metamaterial. For clarity, only the real parts of the dynamic mass density �� (a) and
effective bulk modulus �� (b) are shown. These effective parameters are, respectively, normalized to the static mass density of lead,
�lead ¼ 1:13� 104 kg=m3, and the typical static Young’s modulus of latex rubber, Erubber ¼ 1:9� 106 Pa. The real part of the
effective wave vector �k and the magnitude of the effective impedance �Z are shown in (c) and (d), respectively, with �Z normalized by
~Z ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�leadErubber

p ¼ 1:5� 105 N sm�3. The band gaps are shaded gray, the double-negative passband is light gray (yellow), and the
double-positive passband is white.
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metamaterial devices with complex functionalities.
Examples include but are not limited to acoustic super-
lensing, acoustic Fresnel zone plates, gradient-index
devices, and even near-field devices. In addition, the pro-
posed theory framework makes extraction of effective
parameters relatively simple and accurate, thereby allow-
ing for easier and more precise control over the device
properties.
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I.  Exact Effective Parameters Characterization Using Surface Response  

The purpose of a homogenization scheme is to extract a small number of effective 

parameters for the efficient description of composite properties as perceived by an external 

observer.  In the present case, we employ the motions at the two bounding surfaces as the central 

element in our approach. 

From either numerical simulation (solid curves in Fig. 1) or experimental measurements, 

such as those by laser vibrometer (open circles in Fig. 1), the eigenstates  ( )u x  of the 

composite material form an orthonormal complete set for any of its possible motion field ( )u x .  

Here u denotes the normal displacement of the 1D system along the thk  direction.  For each 

eigenstate, a generalized mass density is defined as 

* ( ) ( ) ( )u x x u x dx   


  ,            (S1a) 

resonance angular frequency 2 f    is given by 

2 * ( ) ( ) ( ) /ikkm

i m

u x C x u x dx
x x

    


  
   

  
 ,        (S1b) 

where summation over indices i and m is assumed; and generalized dissipation coefficient (for 

   ) is given by [1] 

* ( ) ( ) ( ) /ikkm

i m

u x x u x dx
x x

     


  
  

  
 .        (S1c) 

Here ( )x  is the spatial distributed mass density for the heterogeneous composite, and 
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( )ikkmC x  and ( )ikkm x  are the 4 th -ranked tensors for its elastic modulus and dissipation 

coefficients, respectively, specialized to the case when all the displacements are along the thk  

direction. These quantities provide a formal eigenfunction expansion for the Green function 

[2-4]: 

*

2 2

( ) ( )
( , )

( )

u x u x
G x x

i

 

      


 

 
 .           (S2) 

It is seen from Eq. (S2) that each term in the summation is dominant in the frequency regime 

around its eigenfrequency  .  Hence, for the purpose of investigation in our finite (and low) 

frequency range, only a few eigenstates are needed. 

As argued in the text, as long as we are interested only in the propagating radiation modes, 

the problem is effectively one-dimensional (1D).  For a 1D system, the external wave field is 

only sensitive to the motion of the two bounding surfaces.  By averaging over the cross section, 

a set of 1D surface response functions can be obtained as 

*

0 0 0
0 0 0 0 2 2

( ) ( ( ) ( ) )
( , ) ( ),

( )

u x u x u x
G G x x G x

i
x   

      


       
 





  ,   (S3) 

where the symbol   stands for surface averaging, and 0x  denote the positions of the two 

bounding surfaces. 

Now consider a homogeneous 1D sample with length 2x0.  The eigenfunctions of such a 

system are simply given by 

 0

0 0

( )1
( ) cos , 1,2,3

2

x x
u x

x x





 
   

   

with
0 0( ) 1/ 2u x x .  The relevant eigenfrequencies are given by 0/ / (2 )x    . Here 

  and   are the bulk modulus and mass density of the homogeneous system. If we require the 

external wave response of this homogeneous 1D system to be identical to that of our 

experimental system, it is obvious that such a requirement can be accurately satisfied since the 
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external wave field is sensitive only to the motion of the two bounding surfaces, and we have 

exactly two effective parameters,   and  ,for satisfying this constraint at each frequency (this 

also makes clear why our scheme works in 1D, but in higher dimensions the long-wavelength 

approximation becomes necessary).  It turns out that for the 1D homogeneous systems, the 

eigenfunction expansion of the Green function can be analytically evaluated, with the results 

shown in the text, reproduced here for completeness: 

(1D) 0cot( / )x
G

  

  
   ,            (S4a) 

(1D) 0tan( / )x
G

  

  
  .            (S4b) 

The homogenization condition is then simply 

(1D)GG   .                (S5) 

Substitution of Eq. (S4) into Eq. (S5) leads to analytical solutions for the effective dynamic 

mass density and the effective bulk modulus as 

2

0

arctan( / )
( )

G G

x G G
 



 

 





,            (S6a) 

0( )
arctan( / )

x

G G G G
 

   


 

.         (S6b) 

Here the values of G  at each frequency can be directly determined from experimentally 

measured surface displacement plus the values of the   (which can be easily evaluated) and 

  (see below).  

The effective wave-vector k  and effective impedance Z  can also be evaluated as 

 
0

( ) 1
( ) arctan /

( )
k G G

x

 
 

 
    ,        (S7a) 

1
( ) ( ) ( )Z

G G
    

  

 


.          (S7b) 
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The results of these evaluations are shown in Fig. S1. 

 

II.  Evaluation of Dissipation Coefficients αβ  
and Mass Density αρ   

Even with its definition in Eq. (S1c), the dissipation coefficients   are not easy to be 

determined directly since the dissipative tensor ikkm  is usually not available. However, these 

dissipation coefficients can still be extracted from the magnitude of surface motion during wave 

scattering, which can be measured by laser vibrometer. 

At resonance, the system is strongly coupled to either monopolar or dipolar motions, so that 

its surface normal displacement average at 0x  may be written as 

0 0 0 0( ) ( ) (1 )
2

i
u x F x G Z u S G      ,         (S8) 

where 0( )F x denotes the force acting on the material from air at 0x , 0Z  is the impedance of air, 

0u  is the maximum displacement of the incident wave, and    0 0/S Z G i Z G i       are 

the scattering coefficients for the system for the symmetric and anti-symmetric modes (indicated 

by the subscript sign) [5].  Here u  denotes the displacement to be that measured 

experimentally, instead of the normalized eigenfunction u .  

We note that at resonance, G  is related to its eigenfunction 0( )u x  as 

 
2

02 | ( ) |u x
G

i



  






.              (S9) 

Substitution of (S9) into (S8) leads to 

 

2

0 0

0 02

0 0

2 ( ) | /
( )

2 ( ) |

|

/|

Z u x
u x u

Z u x

 



  



 



.          (S10) 

Therefore, the dissipation coefficient   may be directly solved from Eq. (S10) as 

2

0 0 0

0

2 ( ) |
1

(

|

)

Z u x u

u x




 




  
  

  
.           (S11) 

More explicitly, if we relate u  and u  by the relation   



 5 

0 0, ,( ) ( ) /u x r u x r A  ,            (S12) 

then A is given by  

    2 2[ ]A u x dx


   

    
p2 2

rubber plate 0
0 0

4 ( ) ( ),
R r

h u r rdr h u x r rdr     
   

 
r2

r1

2

ring 0 ,2 ( )
r

r
h u x r rdr  .          (S13) 

The three separate integrals arise from the three separate regions that can be clearly visualized in 

Fig. 1.  From Eq. (S11), we then obtain 

 
22

0 0
02 0

0
0

(
8

, )
( , )

1
2

R

R

Z u
x r rdr

R x r rdr

R
u

u
 









 
  
  


 
  






.      (S14) 

For the mass density  , we can evaluate its value directly as 

 
2

rubber 0 rubber
0

2 2 ( ),
R

h u x r rdr       

          
p 2

plate 0 plate
0

2 ( ,2 )
r

h u x r rdr     

          
r2

r1

2

ring 0 ring,2 ( )
r

r
h u x r rdr   .         (S15) 

The evaluated   and   for the three relevant eigenfunctions are presented in Table I. 

 In the following, we show in Fig. S1 the evaluated dynamic mass density, effective bulk 

modulus, the effective wave vector, and the impedance of our sample, all as functions of 

frequency based on both numerically simulated eigenfunctions (open triangles) and 

experimentally measured eigenfunctions (solid curves).  The imaginary parts are shown in red, 

the real parts in black.  In Fig. S2 we show the transmission and reflection predictions obtained 

from the effective parameters in the homogeneous 1D model.  Excellent agreement is seen. 
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III.  Transmission Through a Planar Array 

As mentioned in the text, the locally resonant nature of the coupled-membrane system 

enables it to be repeated and fit onto an existing wall / skeleton, forming a planar array without 

changing its characteristics, as long as each cell is well isolated from its neighbors.  A wall 

comprising a large array of such unit cells can exhibit dramatic frequency dependent behavior, 

predictable from the effective parameters of the unit cell.   

To demonstrate this, we manufactured a set of coupled-membranes systems with radius of 12 

mm, the two stiff plates have radius of 4.5 mm and weight of 190 mg.  In the middle we place a 

10 mm height rigid ring that has a mass of 380 mg. The ring has an outer radius of 10.5 mm and 

thickness of 1.5 mm. Note that due to the constraints imposed by our experimental setup and 

fabrication ability, the unit cell’s parameters are slightly different from those in the main text. By 

arranging five such unit cells them into a 50 mm radius circular aluminum plate (Fig. S3(a)), the 

intensity transmission coefficient has been measured under normal incidence (open circles in Fig. 

S3(b)).  The measured result for a single cell is also plotted in Fig. S3(b) as red symbols.  

Based on the homogenized effective parameters, the amplitude transmission coefficient for the 

metamaterial-modified plate can be easily calculated.  The results for the two cases are shown as 

solid curves in Fig. S3(b).  Excellent agreement is seen.  The similarity between the array and 

single cell is also each to see.  
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FIGURE S1.  Effective parameters of the metamaterial.  The dynamic mass density   (a) and 

effective bulk modulus   (b) are respectively normalized to the static mass density of lead, 

4 3

lead 1.13 10  kg/m   , and the typical static Young's modulus of latex rubber, 
6

rubber 1.9 10E   Pa. 

The wave-vector k  and the effective impedance Z  are shown in (c) and (d), respectively, with Z  

normalized by 
5 -3

lead ruuber 1.5 10 N s mZ E     . The solid curves are results based on measured 

eigenfunctions and the open triangles are from numerically simulated eigenfunctions. Real parts of the 

parameters are colored in black, and imaginary parts are in red. The bandgaps are shaded in grey, the 

double-negative passband is colored in yellow, and the double-positive passband is in white. 
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FIGURE S2.  (a) Transmission coefficient and (b) reflection coefficients of the metamaterial. The open 

circles are the experimental results obtained using the impedance measurements, the solid curves are 

calculated from   and   shown in Fig. S1.  Excellent agreement is seen.  Color black is standing for 

amplitudes and color red is for phases. The bandgaps are shaded in gray, the double-negative passband is 

shaded in yellow, and the double-positive passband is without shading. 
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FIGURE S3.   (a) A photo image of an array comprising five unit cells. The cyan circle represents the 

cross section of our impedance tube. (b) Normalized transmission plotted as a function of frequency f . The 

open circles are the experimental results obtained using the impedance measurements, the solid curves 

are calculated from the homogenized effective parameters.  Black stands for results of five-unit planar 

array and red represents the transmission for a single unit cell. The bandgaps are shaded in gray, the 

double-negative passband is shaded in yellow, and the double-positive passband is without shading. 

Except for the magnitude, the similarity of the two curves is clearly seen, thereby confirming the good 

isolation between the unit cells.   
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