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Abstract. Owing to recent observations of superconductivity in quasi-one-
dimensional (1D) systems, Josephson arrays composed of aligned and weakly
coupled 1D superconducting nanowires have attracted renewed interest for
modeling the experimental data. Carrying out Monte Carlo simulations, we go
beyond the traditional mean field results to show that the competition between
1D fluctuations and the transverse Josephson coupling between the nanowires
can lead to a 1D–3D crossover transition at a temperature Tc below the mean field
T O

C of the wires, with interesting and surprising pre-transitional characteristics.
In particular, the specific heat exhibits a rounded peak between Tc and T O

C , and
the phase correlation length within the transverse ab plane diverges at Tc from
above, in a manner consistent with that of a 2D Berezinskii–Kosterlitz–Thouless
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transition. Simultaneous with the above, quenching of phase fluctuations along
the c-axis of the wires is also seen to occur at Tc. These behaviors are
in excellent agreement with the experimental manifestations observed in the
superconductivity of 4 Å carbon nanotubes.

The Hohenberg–Mermin theorem [1, 2] dictates that there cannot be any sharp phase transition
into a long-ranged ordered state in one-dimensional (1D) systems, owing to long-wavelength
thermal fluctuations. An interesting question hence arises: what should the behavior of an array
of aligned and weakly coupled superconducting nanowires be? This question is relevant because
with today’s nanofabrication facilities, thin superconducting nanowires [3–8] and nanowire
arrays [9–12] can be tailored, and an understanding of how a phase-coherent superconducting
state can be achieved in a nanoscale electronic circuit is of fundamental interest.

An example of a system of superconducting nanowire arrays is presented by the 4 Å
carbon nanotubes embedded in the aligned, linear pores of the aluminophosphate-five (AFI)
zeolite, with a transverse wall-to-wall separation of only 0.96 nm. There has been electrical [13],
magnetic [4, 14] and thermal specific heat [15] evidence indicating superconductivity
in this composite material on the nanoscale [16]. There are also intrinsically quasi-1D
superconductors [17, 18] that exhibit a similar behavior. Theoretically, it has been shown,
within the mean-field approximation, that a transition toward a 3D long-range ordered state
can occur in a quasi-1D system under certain conditions [19–26]. However, the dimensional
crossover behavior near the transition temperature has not been the focus of attention. Also,
while the magnetic property of an anisotropic 3D model has been reported [27], the specific heat
characteristics, as well as the electrical transport properties, remain to be theoretically explored.

By using Monte Carlo simulations [28] on a Ginzburg–Landau (GL) model [29] of
Josephson-coupled superconducting nanowires, we show in this work that even when the
transverse coupling is weak, there can be a dimensional crossover transition in the ab plane
perpendicular to the c-axis of the superconducting nanowires. This transition, occurring at a
Tc below the mean-field T O

C of the nanowires, is characterized by the establishment of quasi-
long-range order of the superconducting phase in the transverse ab plane, simultaneous with
the suppression of phase fluctuations along the c-axis of the nanowires. In particular, the phase
correlation function in the ab plane displays the signature of a Berezinskii–Kosterlitz–Thouless
(BKT) transition [30, 31]. However, the specific heat, which exhibits a peak between Tc

and T O
C , is shown to be dominated by fluctuations in the magnitude of the superconducting

wavefunctions within individual nanowires. These characteristics, in conjunction with their
magnetic field dependences, are in excellent agreement with the manifestations of 4 Å carbon
nanotube superconductivity [13–15]. They may serve as a paradigm for the transitional behavior
of quasi-1D superconductors [17, 18, 32].

Consider a system of superconducting nanowires with their c-axes aligned along the z-
coordinate, forming a two-dimensional (2D) triangular lattice in the xy (ab)-plane as shown
in figure 1. We use this simplified model to capture the essential characteristics of an
inhomogeneous quasi-1D system in which the transverse coupling between the nanotubes can
vary, e.g., through the different amounts of the c-axis overlap between neighboring nanotubes.
Hence the term ‘nanowire’ is meant to represent those thin arrays of strongly coupled carbon
nanotubes, while the weak transverse Josephson serves the role of inter-nanowire interactions.
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Figure 1. A graphic representation of the model. The nanowires are aligned
along the z-axis and form a 2D triangular lattice in the xy-plane. The red arrows
denote the weak Josephson coupling between nearest-neighbor nanowires. In this
work, each nanowire represents an array of strongly coupled nanotubes.

The GL free energy functional for a quasi-1D nanowires system is given by

FGL =

∑
i, j

∫
d3r

[
α

∣∣ψi, j

∣∣2
+
β

2

∣∣ψi, j

∣∣4
+

∑
µ=x,y,z

1

2mµ

∣∣∣∣ (
h̄

i
∂µ − e∗ Aµ

)
ψi, j

∣∣∣∣2

+
1

2µ0

(
∇ × EA

)2
]

+
∑

〈i j,i ′ j ′〉

ξx0ξy0

∫
dz Jxy

∣∣ψi, j (z)
∣∣ ∣∣ψi ′, j ′ (z)

∣∣ [
1 − cos

(
ϕi, j −ϕi ′, j ′

)]
. (1)

Here the first term is the GL free energy of the individual nanowires and the second
term represents the Josephson coupling between the nearest-neighbor nanowires. While the
free energy along the c-axis is expressed in the continuum form, in the ab plane it is
inherently discrete in nature. The indices i and j denote the nanowires, ψi, j(Er)= |ψi, j(Er)| eiφi, j

is a complex, spatially varying order parameter, α = a(T − T O
C ), β = b, where a and b

are two phenomenological parameters, T O
C denotes the nominal mean-field phase-transition

temperature, e∗
= 2e, mµ is the effective mass for one Cooper pair along the µ-direction, EA

is the magnetic vector potential, and ξx0, ξy0 are the zero-temperature coherence lengths along
the x- and y-directions, respectively. Jxy is a parameter that describes the strength of Josephson
coupling in the transverse directions.

Equation (1) can be expressed in the following dimensionless form:

F̄GL =
FGL

ε0kBT O
C

=

∑
i, j

∫
d3r̄

[
2 (t − 1)

∣∣ψ̄i, j

∣∣2
+

∣∣ψ̄i, j

∣∣4
+

∑
µ=x,y,z

2
∣∣ (

−i∂̄µ − 2π Āµ
)
ψ̄i, j

∣∣2

]
+

∑
〈i j,i ′ j ′〉

∫
dz̄ J̄xy

∣∣ψ̄i, j (z)
∣∣ ∣∣ψ̄i ′, j ′ (z)

∣∣ [1 − cos
(
φi, j −φi ′, j ′

)]
,

(2)

where ε0 = a2 T O
C

2
ξx0ξy0ξz0/2bkBT O

C is the zero-temperature condensation energy within the

volume ξx0ξy0ξz0, in units of kBT O
C . Note that ξµ0 = h̄/

√
2mµaT O

C is the zero-temperature
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coherence length, which also serves as the length unit, µ(= x, y, z), t = T/T O
C . Note also

that ψ̄i, j = ψi, j/|ψ0|, and |ψ0| =

√
aT O

C /b is the zero-temperature mean-field value of
∣∣ψi, j

∣∣.
Āµ = Aµξµ/80, and 80 = hc/2e is the flux quantum. Here J̄xy = 2Jxy/aT O

C is the relative
ratio between the transverse Josephson interaction and the GL free energy of individual
nanowires. The zero-temperature mean-field penetration depth is assumed to be much larger
than the zero-temperature coherence length, i.e. λµ0 � ξµ0, so that the system is an extreme
type II superconductor [33]. Hence the magnetic energy may be regarded as a constant and
neglected.

The specific heat is evaluated in the manner given in [15]. That is, we use the
Bardeen–Cooper–Schrieffer (BCS) specific heat expression [33]

C = 2β2kB

∫
g (ε)exp (βE)

[
1 + exp (βE)

]−2
(

E2 +
1

2
β

d12

dβ

)
dε, (3)

with the gap function 1(T, B) evaluated by the GL theory. Here β = 1/kBT, E =
√
ε2 +12,

g(ε)= N (0)
√

1 + ε/εF, εF is the Fermi energy, N (0) is the density of states at the Fermi level,
[1/1(0)] =

√
〈|ψ |2/|ψ0|

2〉, with 1(0) being the gap function at B = 0, t = 0 and 1(0)=

gkBT O
C with g = 3 fixed by the experimental data.
Since the Josephson interaction energy between the nanowires is much smaller than the

GL free energy of the individual nanowire, it is negligible in the evaluation of the specific
heat. Hence only the first term in the GL free energy functional is important. We discretize the
system by using the zero-temperature coherence length ξµ0 as the discretization scale. Inside
the nanowire, the material characteristics are treated as being isotropic, i.e. ξx0 = ξy0 = ξz0 = ξ0.
We use Monte Carlo simulation to evaluate the gap function. By setting ξ0 = 13 nm, the cross-
sectional width of each nanowire to be 3ξ0, the length to be greater than 64ξ0, T O

C = 15 K and
ε0 = 3, we obtain the results as shown in figure 2. Good agreement with the experiment is
seen [15]. It should be noted that in this case each nanowire should correspond to a thin array
of 4 Å carbon nanotubes embedded in AFI zeolite [34]; hence, it is quasi-1D in character. In
particular, the magnetic field dependence in our model arises mainly from this quasi-1D nature
of the nanowires. The rounded peaks of the specific heat arise from the competition between
the fluctuations inherent in the quasi-1D systems [35], which can grow with the magnitude of
the gap function as the temperature is lowered below T O

C , simultaneous with the decreasing
coherence length of the system.

The Josephson coupling between the nanowires, while weak, can nevertheless have
important consequences. In quasi-1D superconductors [36], the electronic transport behavior
below the mean-field T O

C is dominated by the thermally activated phase slips [37, 38]. Compared
with phase fluctuations, the fluctuations in the modulus of the GL order parameter are small and
can therefore be neglected at temperatures somewhat lower than T O

C . Hence, to examine the
effects arising from weak Josephson coupling, we fix the modulus of the GL order parameter
and study only its phase fluctuations.

At low temperatures, the phase fluctuations are mainly of long-wavelength character;
hence, to a reasonably good approximation, the transverse fluctuations inside nanowires
are weak since they must have short wavelength. We therefore treat the phase along
the transverse direction of each nanowire as having a single value within a discretized
unit. In this manner, the discretized form of the GL free energy functional, equation (2),
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Figure 2. Specific heat of superconducting 4 Å carbon nanotubes embedded
in AFI zeolite. Solid lines represent the experimental data. The dots are the
simulated results with the parameters given in the text, with the high temperature
value normalized to that of the experiment.

becomes

F̄GL =
FGL

ε0kBT O
C

=

∑
i, j

∑
k

4dξz0

ξx0ξy0

∣∣ψ̄ (
t, Āy

)∣∣2 [
1 − cos

(
φi, j,k+1 −φi, j,k

)]
+

∑
〈i j,i ′ j ′〉

∑
k

d

ξz0
J̄xy

∣∣ψ̄ (
t, Āy

)∣∣2 [
1 − cos

(
φi, j,k −φi ′, j ′,k

)]
. (4)

Here, the magnetic field is applied along the x-axis, i.e. perpendicular to the c-axis of
the nanowire. The gauge EA = (0, Ay, 0) with Ay = −Bz is adopted. In equation (4) we
have neglected a term that is constant as a function of temperature and magnetic field.
The modulus of the order parameter, |ψ̄(t, Āy)|, is a function of temperature and magnetic
field; it can be obtained from 〈|ψ̄i, j |〉 in a similar manner as in the computation of the gap
function, without considering the weak Josephson coupling; and J ′

z = 4 dξz0|ψ̄(t, Āy)|
2/ξx0ξy0,

J ′

xy = d J̄xy|ψ̄(t, Āy)|
2/ξz0. The size of the system is denoted by N = Nx × Ny × Nz. We have

tested and found that the weak inter-nanowire coupling has a negligible effect on the magnetic
field dependence of the system.

We would like to note the similarity of our model to the anisotropic 3D xy-model. However,
here the coupling constant is noted to be a function of temperature and magnetic field. In
order to describe the coherence and phase fluctuations, we denote the phase coherence of the
system by

η =
1

N

〈∣∣∣∣∣
N∑

l=1

exp (iφl)

∣∣∣∣∣
〉
, (5)
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Figure 3. (a) Phase coherence under different magnetic fields applied
perpendicular to the c-axis of the nanowires. The green symbols denote the
reference case where there is no Josephson coupling, i.e. a pure 1D system. For
J ′

xy/J ′

z = 1/12 000, a dimensional crossover transition into an overall coherent
system is seen, with a transition temperature that shifts downward with the
applied magnetic field. In (b) and (d), the phase correlation function is plotted as
a function of the distance of separation within the xy (ab)-plane. In (b), the plot is
in the log–linear scale. In (d), the plot is in the log–log scale. From (b) and (d), it
is clear that t = 0.483 should be close to the transition. In (c), the correlation
length ζ above the transition temperature is shown to fit the BKT transition
behavior ζ = ζ0 exp [c/

√
t − tC], with tC = 0.479, ζ0 = 0.381, c = 0.245. Here

the black symbols are the simulation results and the red line represents the
straight line fit to the data.

with η = 1 denoting complete coherence. The correlation function is defined by 0(Er)=

〈cos(φEr −φ0)〉 − (〈cosφEr〉〈cosφ0〉 + 〈sinφEr〉〈sinφ0〉), and phase fluctuations along the c-axis
(z-direction) are measured by

1η2
z =

1

Nz

〈
Nz∑

m=1

∣∣∣∣∣ exp (iφm)−
1

Nz

Nz∑
l=1

exp (iφl)

∣∣∣∣∣
2〉
. (6)

Here 1η2
z =1 means incoherence. It should be noted that phase fluctuations along the c-axis

constitute an indicator of the resistance in quasi-1D superconductors, owing to the relationship
between the appearance of voltage (resistance) and the rate of phase slips [37, 38].

We have carried out Monte Carlo simulations to evaluate the quantities defined above.
Because the system is anisotropic and 3D, we have employed the Wolff algorithm [39] to
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Figure 4. Phase fluctuations along the c-axis. Green symbols denote the case of
no transverse coupling. The red symbols denote the case of J ′

xy/J ′

z = 1/12 000.
It is seen that the weak transverse coupling can have a quenching effect on the
c-axis fluctuations when the system establishes overall phase coherence.

improve the speed and accuracy of the simulations. The same parameter values as in the
calculation of the specific heat are used here. By taking Nx = Ny = 60, Nz = 800, J̄xy = 1/3000
(J ′

xy/J ′

z = 1/12 000) and using the periodic boundary condition, we find a transition at around
t = 0.5, shown in figure 3, in which the system transforms from individual nanowires to a 3D
coherent system. That is, the transition represents a dimensional crossover from 1D to 3D with
a tC between 0.4 and 0.5. The application of a magnetic field is seen to shift the transition
temperature downward (figure 3(a)), as seen experimentally [13].

The correlation function in the xy-plane varies from exponential decay as a function of
separation (in the xy-plane) above the transition temperature to a power-law decay below
the transition temperature. This is similar to the behavior of a BKT transition. To further
corroborate this similarity, we note that the correlation length in the BKT transition (above the
transition temperature) is known to vary as ζ = ζ0 exp [c/

√
t − tC], where c is a dimensionless

constant. This form yields an excellent fit to our simulation data, with tC = 0.479 and c = 0.245.
These parameters are similar to the experimental observations [13], in which the temperature
dependence of the ab plane resistance yields tC = 0.411, c = 0.206 in one sample and tC =

0.396, c = 0.272 in another. It should be noted that in a BKT transition, the temperature
dependence of the resistance is determined by the divergence behavior of the in-plane phase
correlation length. Hence it is especially satisfying that not only is the functional form of the
correlation length divergence in good agreement with what was observed in the experiment, the
value of the dimensionless constant, c, is too.

The appearance of coherence in the transverse plane should have a quenching effect on the
phase fluctuations along the z-direction, since effectively the cross-sectional area of the quasi-
1D system has increased so as to approach the 3D. By setting Nx = Ny = 12, Nz = 3200, we
obtain the result shown in figure 4. The fluctuations are seen to display a sharp drop at around

New Journal of Physics 14 (2012) 103018 (http://www.njp.org/)

http://www.njp.org/


8

tC. Compared with the quasi-1D nanowires with no Josephson coupling (green symbols), the
suppression of the fluctuations is clearly seen. This behavior is noted to be consistent with the
drop in resistance along the c-axis of the 4 Å carbon nanotubes as measured by four-probe
geometry [13, 15].

In summary, we have used Monte Carlo simulations for a transversely discrete GL model
to study the superconducting behavior of quasi-1D nanowires, weakly coupled with inter-wire
Josephson interaction. Due to the quasi-1D characteristics of the system, the peak of the specific
heat is broadened. The weak transverse coupling between the nanowires is seen to induce a
1D–3D crossover with transverse phase correlation characteristics bearing the signature of a
BKT transition in the ab plane. The phase fluctuations along the c-axis are shown to display
a sharp drop around this transition. All these behaviors are consistent with the experimental
observations of the 4 Å carbon nanotube system.
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