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Abstract
The dynamics of droplet spreading is investigated by molecular dynamics simulations for two
immiscible fluids of equal density and viscosity. All the molecular interactions are modeled by
truncated Lennard-Jones potentials and a long-range van der Waals force is introduced to act on
the wetting fluid. By gradually increasing the coupling constant in the attractive van der Waals
interaction between the wetting fluid and the substrate, we observe a transition in the initial
stage of spreading. There exists a critical value of the coupling constant, above which the
spreading is pioneered by a precursor film. In particular, the dynamically determined critical
value quantitatively agrees with that determined by the energy criterion that the spreading
coefficient equals zero. The latter separates partial wetting from complete wetting. In the
regime of complete wetting, the radius of the spreading droplet varies with time as R(t) ∼ √

t ,
a behavior also found in molecular dynamics simulations where the wetting dynamics is driven
by the short-range Lennard-Jones interaction between liquid and solid.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The wetting phenomena of droplets on solid substrates are
frequently encountered in our daily life and have found
extensive industrial applications, e.g. coatings, printing, plant
protection and tertiary oil recovery [1, 2]. For a complete
description of wetting dynamics, it is necessary to understand
the dynamic processes occurring in the immediate vicinity of
the moving contact line. As first observed by Hardy [3], a
microscopic thin film, called the precursor film, propagates
ahead of the macroscopic spreading droplet which completely
wets the substrate in the final equilibrium state. The
existence of this precursor film makes the droplet spreading
a complicated problem in which multiple length scales
are involved. Various hydrodynamic [4–6] and molecular-
kinetic [7] models and theories have been proposed and

significant achievements have been made towards a more
accurate and complete understanding of the wetting dynamics.
While there has been rapid advances in experimental efforts,
molecular dynamics (MD) simulations have been playing a
very important role in our exploration of the wetting dynamics,
especially at the microscopic scale.

Among the many modeling issues involved in MD
simulations, the interaction between the droplet and the
substrate is of central importance. When the solid substrate
was modeled to be smooth by using the integrated Lennard-
Jones (inverse 9–3 LJ) potential, the observed spreading rates
were linear in time, i.e. R ∼ t , where R is the radius
of the wetted area at the solid surface [8–10]. For solid
substrates with molecular structure, the fluid–solid interaction
was modeled by an inverse 12–6 Lennard-Jones potential,
and the spreading rates were found to follow the R2 ∼
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log(t) behavior [11]. For the spreading of liquid drops of
chain molecules on a solid substrate with lattice structure,
the radius of the spreading layers was found to increase with
time with the square root behavior R2 ∼ t [12, 13]. For
the spreading of a droplet of a volatile atomic fluid on a
solid substrate, the radius of the spreading layers was found
to follow the square root behavior regardless of system size,
lattice geometry and thermostating [14]. The R2 ∼ t behavior
has been observed in a few experiments [15–19]. The square
root behavior was also observed in MD simulations when a
long-range van der Waals-like potential was added to act on
the wetting fluid [10, 12, 13]. However, only one or two
values were chosen for the strength of this additional potential.
In fact, MD simulations with a focus on van der Waals
interactions are found to be relatively lacking, considering the
role played by the long-range interactions in the hydrodynamic
approaches [1].

Early MD simulations for the moving contact line [20, 21]
showed that fluid slips at the solid surface in the vicinity of the
contact line. Recently, through analysis of extensive MD data,
the generalized Navier boundary condition was proposed to
replace the no-slip boundary condition [22, 23]. A continuum
description of immiscible two-phase flows at solid surfaces
has been obtained by combining the generalized Navier
boundary condition with the Cahn–Hilliard hydrodynamic
formulation. Its numerical implementation has produced
continuum solutions in quantitative agreement with MD
simulation results. More recently, this continuum model has
been used to investigate the development of the precursor film
in droplet spreading driven by the long-range van der Waals
interactions between fluid and solid [24], with the numerical
results showing the dynamic wetting behavior predicted by
early theoretical studies. Nevertheless, MD simulation results
are not yet available for comparison with, and verification of,
the results from the continuum model.

The purpose of the present paper is to carry out MD
simulations to investigate the effects of a long-range, attractive
van der Waals interaction between the wetting fluid and the
solid. When the strength of the long-range attractive force is
strong enough, a precursor film can be initiated and developed.
The critical strength for the emergence of the precursor film is
found to correspond to the transition from partial to complete
wetting. This confirms the results from the continuum model
calculations [24]. The spreading rates measured in our
simulations are found to agree with experimental observations
and a few other MD simulations.

This paper is organized as follows. The technical details of
our MD simulations are described in section 2, followed by the
simulation results presented in section 3. The critical coupling
constant in the van der Waals interaction for the transition from
partial to complete wetting is predicted in section 3.1. Our
results for the dynamics of droplet spreading are presented
in section 3.2, showing that the critical coupling constant for
the emergence of the precursor film quantitatively agrees with
that for the wetting transition. In section 3.3, further results
are presented regarding the spreading rates. The paper is
concluded in section 4 with a few remarks.

2. Molecular dynamics simulations

In our MD simulations, two immiscible fluids are confined in
a rectangular box. The wetting fluid, which is going to spread
later on, takes the initial shape of one-quarter of a cylinder,
with the cylindrical axis parallel to the y direction. Projected
onto the xz plane, the wetting fluid is initially positioned in
the lower left corner of the system. This is to simulate the
spreading behavior in two-dimensional (2D) space. The rest
of the rectangular fluid space is filled by the other fluid, which
is nonwetting. Together, the two fluids are confined in the z
direction by two planar solid walls parallel to the xy plane.
They are also confined in the x direction by two planar invisible
walls parallel to the yz plane. Each of the two solid walls is
constructed by two [001] planes of an fcc lattice, with each
solid molecule attached to a lattice site by a harmonic spring.
The periodic boundary condition is used in the y direction only.

The wetting and nonwetting fluids are both monatomic.
The pair interaction between fluid molecules is modeled by a
modified Lennard-Jones (LJ) potential Uff(r) = 4ε[(σ/r)12 −
δff(σ/r)6], where r is the distance between the molecules, ε

and σ are the energy and range parameters of the interaction,
respectively, and δff = 1 for like molecules and δff = −1 for
molecules of different species (with the immiscibility ensured
by the negative δff). The molecular interaction between solid
wall and fluid is modeled by a modified LJ potential Uwf(r) =
4εwf[(σwf/r)12 − δwf(σwf/r)6], with the energy and range
parameters εwf = 1.16ε and σwf = 1.04σ , and δwf for
specifying the wetting property of the fluid. We use the same
wall–fluid interaction for the wetting and nonwetting fluids,
mostly with δwf = 0.8. Both Uff and Uwf are cut off at
rc = 2.5σ . Before the long-range van der Waals interaction
between the wetting fluid and the solid wall is turned on, the
fluid–fluid interface meets the solid wall with a contact angle of
90◦. The two invisible walls are not constructed by molecules
but simply modeled by the potential Vex(x) = 4ε[ π

45 (
σ

x−xl
)9 −

π
6 ( σ

x−xl
)3 + π

45 (
σ

xr−x )9 − π
6 ( σ

xr−x )3], which prevents the fluid
molecules from escaping through the left and right boundaries.
Here xl and xr are the x coordinates of the left and right
boundaries of the simulation box. The potential Vex is cut off
at x − xl = 5σ and xr − x = 5σ .

The droplet of the wetting fluid is forced to spread by
turning on the long-range van der Waals interaction between
the wetting fluid and the solid wall. This is modeled by the
potential

UVW(z) = − Ap

3

1

(z − z0)3
, (1)

which acts on each molecule of the wetting fluid. Here z0 is the
z coordinate of the upper [001] plane of the bottom wall and z
is the z coordinate of the fluid molecule. The coupling constant
Ap is directly related to the Hamaker constant. That is, if the
fluid has a uniform number density ρ, then the potential energy
density that gives rise to the attractive van der Waals interaction
between fluid and solid is of the form − A

6π
1

(z−z0)
3 , where A is

the Hamaker constant [1, 24], given by A = 2π Apρ. Note
that, because of the short-range repulsive interactions, there is
always a narrow void between the fluid boundary and the solid
surface, i.e. z is always larger than z0. In the present study, Ap
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is the only parameter that will be varied to change the spreading
behaviors. Physically, the van der Waals interaction arises from
the long-range attraction (∼ − 1/r 6) in molecular interaction
potentials. In the simulations presented here, all the molecular
pair interactions are truncated, and the long-range attractive
van der Waals interaction is modeled by UVW(z), introduced as
an external potential acting on the wetting fluid. The − 1

(z−z0)
3

dependence results from a volume integral over the half-space
that bounds the fluids from below.

The mass of a solid molecule is equal to that of a
fluid molecule m. The number density of the solid wall is
ρw = 1.86σ−3. The average number density of each fluid
is ρ = 0.81σ−3. With each solid molecule attached to a
lattice site by a harmonic spring, the Lindemann criterion is
satisfied (to maintain the crystalline structure of the solid wall).
The temperature is controlled at 1.4ε/kB by the Langevin
thermostat, where kB is the Boltzmann constant. The equations
of motion are integrated using a velocity Verlet algorithm with
a time step �t = 0.001τ , where τ = √

mσ 2/ε is the time unit.
As to the size of the simulated systems, there are two

major considerations. On the one hand, our purpose is to
observe and measure how the spreading proceeds in space and
time. The droplet of wetting fluid should be large enough to
provide a continuous supply to the growing wetting film, and
the substrate (i.e. the bottom wall) should be long enough
to support the development of a long film. On the other
hand, we need to reduce the CPU time for each time step by
simulating small systems as the spreading process may be slow.
In the simulations presented in this paper, the initial radius
of the droplet is R0 = 32σ . Most of the systems measure
100.7σ × 7.7σ × 39.9σ along the x , y and z directions. (The
distance between the two planes of each solid wall is 0.65σ .
Hence the distance between the inner planes (which face the
confined fluids directly) of the bottom and top walls is 38.6σ .)
The wetting fluid, initially confined in the lower left corner
of x2 + (z − z0)

2 � R2
0 (with x = 0 at the left boundary

and z0 = 0.65σ at the upper plane of the bottom wall), is
subject to the attraction towards the bottom wall through the
van der Waals interaction, which is turned on immediately
after the fast equilibration of fluids. There are 27 344 particles
in total, including 1872 solid molecules in each wall and
4928 molecules in the spreading droplet.

A series of MD simulations have been performed with
the coupling constant Ap (representing the Hamaker constant)
varied in a wide range. It is observed that there exists a
critical coupling constant above which a precursor film can
be developed. It has been accepted for a long time that, in
the regime of complete wetting characterized by a positive
spreading coefficient, the spreading of a droplet is pioneered by
a precursor film (see, e.g., [1], for a hydrodynamic treatment).
In the present study, this rather general phenomenon has
been observed in our MD simulations for two immiscible
monatomic fluids on a structured solid substrate, with a long-
range interaction between the wetting fluid and the substrate.
We understand that there have been MD simulations which also
showed some critical coupling constant for the occurrence of
the precursor film, for differently modeled fluids and fluid–
solid interactions [25]. To simulate long precursor films

for a strong van der Waals interaction, we use systems that
measure 120σ or 140σ in the x direction without changing
the dimensions in the other two directions. All simulations are
stopped before the tip of the precursor film approaches the right
boundary in the x direction within a distance of 10σ .

To avoid the volatility of the spreading droplet, chain
molecules have usually been used in MD simulations, with
adjoining LJ atoms linked by the FENE potential [26, 27],
by the harmonic potential [9] or by a confining potential
∼r 6 [12, 28, 29]. By suppressing the volatility, the polymeric
liquids used in experiments can be better simulated. In our
simulations, although the spreading droplet is a monatomic
fluid, it is surrounded by the other immiscible fluid and
hence there is no volatility at all. We would like to
mention that immiscible fluids of equal density and equal
viscosity have been used to simulate the contact-line motion
in immiscible two-phase flows [21, 22, 30] and continuum
hydrodynamic calculations have been carried out as well for
these systems [23, 24, 30, 31]. We hope that the present
study can serve as a starting point for future studies involving
immiscible fluids of variable density and viscosity ratios.

3. Simulation results

3.1. The spreading coefficient and critical coupling constant

The dynamics of spreading is controlled by the spreading
coefficient

S = γ1 − [γ2 + VVW(∞)] − γ, (2)

which takes into account both the short-range and long-range
interactions. Here γ1 and γ2 are the interfacial free energies per
unit area at the wall–fluid interface (with the subscripts ‘1’ and
‘2’ denoting the nonwetting and wetting fluids, respectively),
γ is the interfacial free energy per unit area at the fluid–fluid
interface and VVW(∞) is the potential energy per unit area
accumulated in the wetting fluid due to its (attractive) van der
Waals interaction with the substrate. Physically, γ1, γ2 and
γ all arise from the short-range interactions, i.e. truncated
Uwf(r) and Uff(r). That is, these interfacial quantities can
be defined whether the long-range interaction is present or
not, and they are determined by the short-range interactions
alone. While the long-range interaction between the wetting
fluid and the substrate can be obtained by summing up the
long-range tails of the 1/r 6 interaction, the pair interactions
have been cut off for computational reasons. Therefore, the
long-range interaction has been modeled by adding UVW(z) as
an external potential acting on the wetting fluid. In this way,
the interaction between the wetting fluid and the substrate has
been compensated. The interpretation of our results is based on
equation (2), in which γ2 is supplemented by VVW(∞), with
the former determined by the truncated pair interactions and
the latter by UVW(z). In our simulations, the two fluids have the
same short-range interaction (i.e. Uwf) with the solid substrate,
so γ1 = γ2 and S = −VVW(∞) − γ (with VVW(∞) < 0 due
to attraction and γ > 0 due to short-range repulsion).

With γ2 + VVW(∞) acting as the effective interfacial
free energy per unit area for the wetting fluid on the solid
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Figure 1. The van der Waals energy per unit area VVW plotted as a
function of Ap in UVW for three different values of δwf in Uwf. The
critical value of Ap is determined by VVW = −4.55εσ−2 (indicated
by the dotted line). A larger δwf leads to a smaller critical value
of Ap.

surface, a negative value of S leads to partial wetting while
a positive value of S leads to complete wetting. That is, if γ1 >

[γ2 + VVW(∞)] + γ , then the free energy of the solid/fluid-1
(nonwetting) interface can be lowered by intercalating a film
of fluid-2 (wetting), with the total free energy per unit area
given by [γ2 + VVW(∞)] + γ . In our simulations, VVW(∞)

and γ can both be measured and the critical value of Ap

in the potential UVW(z) can be determined by the condition
S = −VVW(∞) − γ = 0 for the transition from partial to
complete wetting.

Given UVW(z) as the van der Waals energy per molecule
between the wetting fluid and the substrate, VVW(∞) is
measured by calculating the sum of the van der Waals energies
for all the fluid molecules. The van der Waals force acting
on each fluid molecule is −dUVW/dz = − A

(zi −z0)
4 , to be

turned on immediately after the initial equilibration of fluids.
The molecular density close to the substrate oscillates along
the z direction and the attractive van der Waals interaction
tends to increase the near-surface density. As soon as the
molecular distribution is stabilized, we begin to calculate the
van der Waals energies for all the fluid molecules, from which
VVW(∞) is obtained as the time average of

VVW(∞) = 1

s

∑

i∈s

UVW(zi ), (3)

where s is the substrate area covered by the wetting fluid. In
equation (3), VVW(∞) is defined as the total van der Waals
energy (per unit substrate area) accumulated in the wetting
fluid. This accumulation takes place in a distribution of fluid
molecules in the z direction normal to the substrate. In order
to let VVW(∞) saturate (i.e. acquire the lowest negative value),
the wetting fluid has to be sufficiently thick. (The − 1

(z−z0)
3

dependence of UVW(z) leads to a long-range tail of the energy
per unit area that varies with the film thickness and tends to
thicken the wetting film [1].) Figure 1 shows VVW(∞) as a
function of Ap.

Figure 2. The stress anisotropy σzz − σxx measured as a function of
x in the interfacial region for a fluid–fluid interface parallel to the yz
plane. The interfacial tension γ = 4.55εσ−2 is obtained by
evaluating the integral

∫
int dx (σzz − σxx ).

To measure the fluid–fluid interfacial tension γ , a fluid–
fluid interface parallel to the yz plane is stabilized (with a
contact angle of 90◦) and the microscopic stress anisotropy
is measured as a function of x in the interfacial region
(sufficiently far away from any confining wall). The
interfacial tension γ is measured according to its mechanical
definition [32] γ = ∫

int dx (σzz(x) − σxx (x)), where
∫

int dx
denotes the integration across the fluid–fluid interface along x ,
and σzz and σxx are the zz and xx components of the stress
tensor. With the temperature fixed at 1.4ε/kB and the two
fluid densities fixed at 0.81/σ 3, we obtain γ ≈ 4.55εσ−2

(see figure 2). So the critical value of Ap is determined by
the condition VVW(∞) = −4.55εσ−2. We have measured
VVW(∞) as a function of Ap for three different values of δwf

in the short-range wall–fluid interaction Uwf(r). The larger
δwf is, the more strongly are fluid molecules attracted toward
the wall. With a larger near-surface density, the same amount
of VVW(∞) can be accumulated with a smaller value of Ap.
Therefore, the critical value of Ap decreases with an increasing
δwf, as shown in figure 1.

3.2. Transition from partial to complete wetting: the dynamic
precursor

Before the van der Waals interaction is turned on, the wetting
fluid is positioned in the lower left corner of the system and
forms one-quarter of a cylinder, with a contact angle of 90◦. As
soon as the van der Waals interaction is turned on, a local, fast
deformation of the fluid–fluid interface is initiated immediately
above the real contact line. That is, the droplet undergoes
a fast expansion at the bottom without changing the overall
shape. Physically, the old mechanical equilibrium across the
fluid–fluid interface is broken by the van der Waals interaction,
which greatly increases the pressure in the wetting fluid near
the lower surface. As the wetting fluid is pulled towards the
solid wall, its base expands quickly and hence penetrates into
the nonwetting fluid. Since the van der Waals interaction
takes effect only within a narrow range (due to the (z −

4
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Figure 3. Time evolution of the fluid–fluid interface from t = 0τ to
4000τ , obtained for Ap = 19εσ 3 and δwf = 0.8. The wetting fluid
takes the initial shape of one-quarter of a cylinder (with a radius of
32σ ). The spreading starts at t = 0 when the van der Waals
interaction is turned on. Each curve is the projection of the
fluid–fluid interface onto the xz plane. Each two neighboring curves
are separated by a time interval of 400τ . To locate the interface, the
2D sampling region is divided into small rectangular bins, each of
�x = 0.84σ by �z = 0.50σ in size. Averaging over 500 time steps
in each bin yields the densities of the two fluids, from which the
interface is located. Note that 500�t = 0.5τ , very short compared to
the time evolution of the interface. The system measures
100.7σ × 7.7σ × 39.9σ along the x , y and z directions. There are
27 344 particles in total, including 1872 solid molecules in each wall
and 4928 molecules in the spreading droplet.

z0)
−4 dependence of the attractive force), this penetration is

accomplished by a thin film. In the regime of complete wetting,
the total free energy can be continuously lowered if the wetting
fluid acquires an ever-increasing coverage over the substrate.
Therefore, the near-surface penetration proceeds through a
precursor film that develops progressively ahead of the nominal
contact line. (The nominal contact line refers to the edge of
the macroscopic part of the droplet behind the precursor film.
Were droplets of much larger size used, it would be easier to
recognize the nominal contact line.) With the precursor film
penetrating further into the nonwetting fluid, its tip, i.e. the
real contact line, slows down due to the increased friction,
presumably proportional to the film length. Meanwhile, given
the limited size of the droplet, the overall shape of the wetting
fluid behind the film changes noticeably because much has
been transported into the developing precursor. Figure 3
shows the time evolution of the fluid–fluid interface for a
spreading droplet. The results obtained for this particular case
already demonstrate features commonly found in the regime of
complete wetting. We want to point out that, due to the finite
size of the spreading droplets used here, the nominal contact
line cannot be precisely located. This may affect the accuracy
in determining the critical coupling constant for the occurrence
of the precursor film.

Controlled by the strength of the van der Waals interaction,
the sign of the spreading coefficient S determines the shape
taken by the wetting fluid in final equilibrium, which either
exhibits a finite (apparent) contact angle (for partial wetting
with S < 0) or becomes a pancake (for complete wetting with
S > 0). (The pancake refers to a film of finite thickness
due to the long-range tail of the van der Waals energy per
unit area, quickly truncated towards the real contact line [1].)
Physically, it is expected that the two distinct equilibria can be
revealed, before they are finally reached, by different spreading

behaviors. Below we present the numerical evidence for a
transition in spreading dynamics controlled by the coupling
constant Ap, which is varied from the regime of partial wetting
to that of complete wetting.

According to figure 1, Ap = 19εσ 3 falls into the regime of
complete wetting for δwf = 0.8. Consequently, the precursor
is formed to lead the spreading, as illustrated in figure 3. With
δwf fixed at 0.8 and Ap gradually varied from 18εσ 3 to 11εσ 3,
figure 4 shows a series of snapshots of the spreading drops, all
taken at t = 4000τ (as for the last curve in figure 3). It is
observed that there exists a critical value for Ap above which
the spreading is pioneered by a precursor film. In particular,
a larger Ap leads to a longer film, i.e. the film develops faster
under a stronger attraction by the wall. Below the critical value,
the spreading droplets are led by a wedge only, without a film
ahead. As Ap is increased, the (negative) spreading coefficient
S approaches zero and so does the apparent contact angle θe

(with cos θe = 1 + S/γ ). Though defined in equilibrium,
the decreasing θe is already manifested by the leading wedge
which becomes thinner as Ap moves closer to the critical value.
According to figure 4, the critical value of Ap, by which the
two distinct spreading behaviors are separated, is somewhere
between 14εσ 3 and 15εσ 3, in agreement with that determined
by the energy criterion in figure 1.

Figure 5 shows the time evolution of the fluid–fluid
interface for three different values of Ap, with δwf fixed at 1.0.
No noticeable difference is seen as Ap changes from 12εσ 3 to
13εσ 3: the spreading is led by a wedge only. The precursor
film shows up, however, as Ap reaches 14εσ 3. This indicates
that the critical value of Ap is between 13εσ 3 and 14εσ 3,
smaller than that for δwf = 0.8, as indicated in figure 4. While
this trend agrees with that predicted by the energy criterion in
figure 1, the agreement is only semi-quantitative. (Figure 1
predicts the critical value to be between 12εσ 3 and 13εσ 3 for
δwf = 1.0.) The small discrepancy may be attributed to the
small thickness of the film, and the change of the fluid–fluid
interfacial tension γ by the proximity of the wall.

While a transition in spreading characteristics can be
visually confirmed from figures 4 and 5, a more quantitative
measure is needed to better locate the transition point.
Physically, the precursor film extends from the nominal contact
line to the real contact line. However, due to the limited size of
droplets in MD simulations, the nominal contact line cannot
be unambiguously located. From those snapshots taken for
different spreading droplets, we find that, though the nominal
contact line cannot be pinpointed, the precursor film always
extends out of the wedge with a thickness of about three
molecular layers. Accordingly, the length of the precursor film
is approximately defined as the x distance from the real contact
line to the position where the film thickness is 3σ . Figure 6
shows the film length as a function of Ap for different times.
For Ap � 15εσ 3, this length never exceeds 5σ and does not
increase in time. For Ap > 15εσ 3, however, the film length
shows a continuous increase with time, and this increase is
faster for larger Ap. From these results, the transition is located
near Ap = 15εσ 3. In spite of the strong fluctuation, this
agrees with the observation in figure 4 and also the critical
value determined in figure 1. Finally, we want to describe
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Figure 4. Snapshots of the spreading droplets at t = 4000τ , obtained for Ap = 11εσ 3, 12εσ 3, . . . , and 18εσ 3, with δwf = 0.8. Here Ap

increases from left to right, then from top to bottom. All the molecular positions are projected on the xz plane.

some features of the fluctuation. Close to the critical value
of Ap, the film shows a strong fluctuation in its thickness, i.e.
molecules supplied by the wedge are frequently used to thicken
the film rather than to lengthen the film. (In the continuum
description, the equilibrium thickness of the pancake scales
with the spreading coefficient S as

√
γ /S [1]. Therefore, a

strong fluctuation in thickness is expected for S → 0+.) A
recent study has shown that droplet spreading can be enhanced
by thermal fluctuations [33]. For Ap well above the critical
value, the first layer of wetting fluid may be pinned by the
substrate from time to time due to the strong attraction.

3.3. The rate of spreading

How fast a droplet spreads on a substrate has been studied
for decades. Factors affecting the rate of spreading include
the microstructure of the droplet, the interaction between the
droplet and the substrate, the nature of the substrate, etc. There
have been many MD simulations performed to clarify the
various effects of these factors. Among these MD simulations,
however, the van der Waals interaction between the wetting
fluid and the substrate has seldom been explicitly taken into
account in the form of a quasi-long-range interaction with
power-law dependence on normal distance (z). Physically, the
long-range part of the interaction, which can be included in the
so-called disjoining pressure, has been proved to be important
to the static and dynamic wetting phenomena [1, 34]. In

particular, it has been shown experimentally that the Hamaker
constant can be continuously varied on chemically modified
silica surfaces [35]. Therefore, it is necessary to carry out
MD simulations to investigate the effects of the van der Waals
interaction on spreading droplets.

Figure 7 shows how the base radius of the
spreading droplet grows as a function of time. The
diffusive spreading behavior R(t) ∼ √

t has been ob-
served in many experiments [15–19] and MD simula-
tions [10, 12, 14, 26, 28, 29, 36, 37]. In fact, this spreading
behavior dates back to the Lucas–Washburn equation [38, 39].
There have also been different spreading behaviors reported
from MD simulations. Bekink et al [14] pointed out that
the penetration of fluid atoms in the solid lattice leads to
a subdiffusive regime for layer spreading, with R(t) ∼√

log10 t [11]. Linear spreading behavior was reported for the
spreading of a nonvolatile liquid drop on a homogeneous solid
substrate that is continuous without atomic structure [8, 10].
The results in figure 7 show R(t) ∼ √

t for Ap above the
critical value 15εσ 3 but below ∼ 20εσ 3. Further increasing
Ap leads to a time dependence of R faster than

√
t . The

R(t) ∼ √
t behavior observed in our simulation can be

attributed to (i) the spreading drop, surrounded by the other
immiscible fluid, is nonvolatile, (ii) there is no penetration
into the substrate and (iii) the substrate has atomic lattice
structure, by which a viscous coupling between the fluid and
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Figure 5. Time evolution of the fluid–fluid interface from t = 0τ to
4000τ , obtained for Ap = 12εσ 3 (a), 13εσ 3 (b) and 14εσ 3 (c), with
δwf = 1.0. Each two neighboring curves are separated by a time
interval of 400τ .

Figure 6. Precursor film length plotted as a function of Ap for
different times, with δwf fixed at 0.8. The film length is measured
from the real contact line to the position where the film thickness is
3σ .

the solid is induced. These are key features of the precursor
film in many experiments and simulations [40]. The deviation
from the R(t) ∼ √

t behavior for extremely large Ap (way
above the critical value for complete wetting) is an interesting
observation but may not be of practical value. This deviation
might arise from the finite size of the spreading droplets which
are quickly depleted by the fast growing film.

Figure 7. The base radius of the spreading droplet R, measured from
the position of the real contact line, is plotted as a function of the
square root of time t , with δwf fixed at 0.8 and Ap varied from 15εσ 3

to 35εσ 3.

Figure 8. The base radius R plotted as a function of Ap for different
times, with δwf fixed at 0.8.

It has been pointed out that strong fluid–solid interactions
increase both the driving force and the resistance in wetting
dynamics, while weak interactions decrease both the driving
force and the resistance [41]. The two effects usually do
not cancel out because of their complicated dependences on
the interaction strength. Figure 8 shows the dependence of
the base radius R on the coupling constant Ap. It is seen
that, above the critical value 15εσ 3, R increases with the
increasing Ap due to the increasing driving force, but with a
decreasing slope due to the increasing resistance. Physically,
the development of the precursor film is driven by the positive
spreading coefficient S = −VVW(∞) − γ , which increases
linearly with Ap − 15εσ 3 (with 15εσ 3 being the critical value
for the transition from partial to complete wetting). It has
been shown that, in approaching the real contact line, the
film is truncated at a thickness ∝√

γ /S [1]. Therefore, an
increase of S tends to make the film thinner, leading to an
increase in viscous dissipation (due to a tighter confinement)
and an increase in fluid–solid friction as well (due to a closer
proximity of the fluid to the substrate). Consequently, the

7
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σ)

Figure 9. The film length fL plotted as a function of time for
different values of Ap, with δwf fixed at 0.8.

increase of R with Ap is slowed down when Ap becomes very
large. It is also interesting to note that, across the critical value
15εσ 3, the curves for R versus Ap show the steepest variation,
an indicator of the formation of the precursor film. This feature
becomes more transparent in the continuum calculation based
on a continuum model that takes into account the contact-
line slip and the van der Waals interaction explicitly (see
figure 4 in [24]). While the spreading dynamics shown in our
MD simulation is consistent with that in the corresponding
continuum calculation, we want to point out that the time
duration explored in our MD simulation is, in fact, quite short,
corresponding to the initial stage of the continuum calculation.
Nevertheless, we are still able to observe that, for at a given
time, the curve becomes the steepest at Ap = 15εσ 3, and this
feature becomes more apparent at later times. The transition so
indicated agrees with the result in section 3.2.

In figure 6, the film length fL was plotted as a function of
Ap to exhibit the transition. Figure 9 shows fL as a function of
time t in a log–log plot. It is seen that below Ap = 15εσ 3,
there is no visible increase of fL with t as seen from the
very noisy data. In this regime, fL defined in figure 6 is
actually contributed by the tiny front of the wedge that makes
a finite contact angle. Above Ap = 15εσ 3, the film develops
according to the power law log10 fL = α log10 t +β . Figure 10
shows the variation of the exponent α with Ap, with α simply
fluctuating a bit above zero for Ap � 15εσ 3. The transition
from partial to complete wetting is now clearly demonstrated
by the steep jump of α around Ap = 15εσ 3. It is ready to be
seen that, for Ap � 20εσ 3, α reaches and stays around 0.65.
This is qualitatively consistent with what we have observed in
figure 7: the base radius R follows R(t) ∼ √

t for 15εσ 3 <

Ap < 20εσ 3 and shows a time dependence faster than
√

t for
Ap > 20εσ 3. We note that fL (in figures 6, 9 and 10) has
been defined as the x distance from the real contact line to
the position where the film thickness is 3σ (see section 3.2).
If we use 5σ instead, the saturation value of α becomes 0.6
approximately, indicating a film development faster than

√
t .

More simulation results are yet to be collected to clarify the
additional effect of the long-range van der Waals force on the
rate of spreading.

Figure 10. With fL in figure 9 fitted by log10 fL = α log10 t + β, the
exponent α is plotted as a function of Ap.

4. Concluding remarks

MD simulations have been carried out to investigate the
dynamics of droplet spreading driven by a long-range,
attractive van der Waals interaction between the wetting fluid
and the substrate. It has been demonstrated that, if the coupling
constant in the van der Waals force is above a critical value,
a precursor film can be initiated and developed. Furthermore,
this dynamically determined critical coupling constant is found
to quantitatively agree with the equilibrium transition point at
which the spreading coefficient is zero. Therefore, the results
first obtained from the continuum model calculations [24]
have been confirmed. The spreading rates measured in our
simulations also agree with experimental observations and a
few other MD simulations.

We would like to point out that, to save the time of
computation, very strong van der Waals forces have been
used in simulating the initiation and development of precursor
films. That makes the spreading coefficient S not very small
compared to the interfacial tension γ . As a consequence,
the precursor films are of molecular-scale thickness (∼√

γ /S)
and also develop quickly. It has been shown that Tanner’s
law for spreading can be recovered even if the truncated
van der Waals effects and the resulting precursor film are
limited to distances of the order of three atomic diameters
from the substrate [42]. If we want to investigate the dynamic
details within the precursor film (e.g. slip, for comparison
with continuum predictions), a much smaller S is required to
generate a thicker film with slower dynamics, for which the
MD simulations would be more costly. Work in this direction
is currently underway.
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