
Chapter 5

Dynamic Mass Density and Acoustic

Metamaterials

Jun Mei, Guancong Ma, Min Yang, Jason Yang, and Ping Sheng

Abstract Elastic and electromagnetic waves are two types of classical waves that,

though very different, nevertheless display many analogous features. In particular,

for the acoustic waves, there can be a correspondence between the two material

parameters of the acoustic wave equation, the mass density and bulk modulus, with

the dielectric constant and magnetic permeability of the Maxwell equations. We

show that the classical mass density, a quantity that is often regarded as positive

definite in value, can display complex finite-frequency characteristics for a com-

posite that comprises local resonators, thereby leading to acoustic metamaterials in

exact analogy with the electromagnetic metamaterials. In particular, we demon-

strate that through the anti-resonance mechanism, a locally resonant sonic material

is capable of totally reflecting low-frequency sound at a frequency where the

effective dynamic mass density can approach positive and negative infinities. The

condition that leads to the anti-resonance thereby offers a physical explanation of

the metamaterial characteristics for both the membrane resonator and the 3D locally

resonant sonic materials. Besides the metamaterials arising from the dynamic mass

density behavior at finite frequencies, we also present a review of other relevant

types of acoustic metamaterials. At the zero-frequency limit, i.e., in the absence of

resonances, the dynamic mass density for the fluid–solid composites is shown to

still differ significantly from the usual volume-averaged expression. We offer both

a physical explanation and a rigorous mathematical derivation of the dynamic mass

density in this case.
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5.1 Introduction

The novel characteristics of metamaterials represent an emergent phenomenon in

which the basic mechanism of resonances, when considered in aggregate, can give

rise to material properties that are outside the realm provided by Nature. In the case

of acoustic metamaterials, the novel characteristics directly arise from the finite-

frequency behavior of the two relevant material parameters—the mass density and

bulk modulus. The focus of this chapter is on the dynamic mass density and its

related metamaterial characteristics. For completeness, a brief review of other types

of acoustic metamaterials is also presented.

It is well known that in the quantum mechanical band theory of solids, the

effective mass of an electron can change sign depending on its energy within an

energy band. However, as this is attributed to the electron’s wave character, the

classical mass density is usually regarded as a positive-definite quantity since the

quantum mechanical effects are absent. In particular, for a two-component com-

posite, the effective mass density is usually given by the volume-averaged value:

reff ¼ fD1 þ ð1� f ÞD2; (5.1)

whereD1ð2Þ denotes the mass density of the 1st (2nd) component, and f is the volume

fraction of component 1. We denote the static mass density (5.1) reff .
An implicit assumption underlying the validity of the static mass density expres-

sion is that in the presence of wave motion, the two components of the composite

move in unison. However, this assumption is not always true. For a composite

comprising many identical local resonators embedded in a matrix material, if the

local resonators’ masses move out of phase with the matrix displacement (as when

the wave frequency o exceeds the resonance frequency of the resonators), then we

have a case in which the matrix and the resonators’ masses display relative motion.
If, in addition, we assume that the local resonators occupy a significant volume

fraction, then it is clear that within a particular frequency range, the overall

effective mass density can appear to be negative [1–6]. This fact can be simply

illustrated in a one-dimensional (1D) model [7, 8], where n cylindrical cavities of

length d are embedded in a bar of rigid material. Within each cavity, a sphere of

mass m is attached to the cavity wall by two identical springs with elastic constant

K. An external force F acts on the rigid bar, which has a static massM0, as shown in

Fig. 5.1.

For the first resonator, the displacements of the sphere and the right wall

are denoted by u and U, respectively (Fig. 5.1). By assuming that � f1 and � f2
are the forces on the sphere exerted by the left and right springs, respectively,

with f2 along the same direction as F, and f1 the opposite, then Hook’s law tells us

that � f1 þ f2 ¼ �2KðU � uÞ . From Newton’s second law, we have f1 � f2 ¼
ð�ioÞ2mu. From these two relations, we obtain u ¼ 2K

2K�mo2 U. Applying Newton’s

second law to the rigid bar, we have Fþ n ð f2 � f1Þ ¼ ð�ioÞ2M0U . Hence F ¼
ð�ioÞ2 ½M0U þ nmu� ¼ ð�ioÞ2ðDeffVÞU . Here the effective dynamic mass
density Deff is defined as F=ð�o2UÞ:
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DeffV ¼ M0 þ nm
u

U
¼ M0 þ nm

1� ðo2=o2
0Þ
; (5.2)

where o2
0 ¼ 2K m= and V denotes the total volume of the system. Thus negative

dynamic mass is possible at finite frequencies (when o2 is in the range of o2
0), and

this phenomenon enables the realization of acoustic metamaterials. Equation (5.2)

is also informative in showing that the dynamic mass density is generally defined as

the averaged force density f divided by the averaged acceleration a, i.e.,

Deff ¼ h f i hai= ; (5.3)

where hi denotes averaging over interfaces with the external region of the observer.
Obviously, this is precisely how (5.2) is obtained. The above simple example serves

to illustrate the point that the dynamic mass density, in the presence of relative

motion between the components, can differ from the volume-averaged static mass

density. In more realistic models in which the matrix is an elastic medium, it will be

shown below that the dynamic mass density’s resonance-like behavior is directly

associated with the anti-resonance(s) of the system.

In the limit of o ! 0 so that resonances can be excluded, the volume-averaged

mass density holds true for most composites. However, the fluid–solid composites

constitute an important exception. A well-known example is the fourth sound of

liquid helium 4 in a porous medium [9], which arises from the relative motion

between the liquid helium 4 and the solid frame—even at the low-frequency limit.

More generally, it is well known that for a fluid–solid composite, there is a viscous

boundary layer thickness ‘vis ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
� rfo=

p
at the fluid–solid interface, where �

denotes the fluid viscosity and rf the fluid density. It is clear from the definition

of ‘vis that the � ! 0 limit cannot be interchanged with theo ! 0 limit since in the

former case ‘vis ! 0 whereas in the latter case we have ‘vis ! 1. Thus the Biot

slow wave, predicted as a second longitudinal wave in a fluid–solid composite [10]

and eventually experimentally verified [11], may be viewed as a “fourth sound” for

the viscous fluid, valid when the pore size ‘ of the porous medium is larger than ‘vis
[12]. Thus the dynamic mass density of a fluid–solid composite is what governs the

wave propagation when the dimensionless ratio
ffiffiffiffiffiffiffiffiffiffiffiffiffi
� rfo=

p
‘= <<1.

Fig. 5.1 A one-dimensional acoustic metamaterial composed of a series of local resonators

embedded in a rigid bar. Here the directions of f1 and f2 are shown as that on the left and right

walls of the cavity, respectively. Adapted from [7]
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In what follows, we describe in Sect. 5.2 the initial realization of acoustic

metamaterials based on the concept of local resonators and their special

characteristics. In particular, it is shown that such metamaterials can break the

mass density law, which governs air-borne sound attenuation through a solid wall.

This is followed by the presentation of the membrane-type metamaterials in

Sect. 5.3 that may be regarded as the two-dimensional (2D) version of resonant

sonic materials. The unifying characteristic of the anti-resonance and negative

dynamic mass density is emphasized in both Sects. 5.2 and 5.3. In Sect. 5.4, we

give a brief review of other types of acoustic metamaterials that have since been

realized. Section 5.5 is devoted to the dynamic mass density in the low-frequency

limit (for the fluid–solid composites), prefaced by a short review of the multiple-

scattering theory (MST). We conclude in Sect. 5.6 with a brief summary and some

remarks on the prospects and challenges.

5.2 Locally Resonant Sonic Materials: A Metamaterial Based

on the Dynamic Mass Density Effects

In Fig. 5.2a we show a cross-sectional photo image of the basic unit for the locally

resonant sonic material [1]. It comprises a metallic sphere 5 mm in radius coated by

a layer of silicone rubber. Figure 5.2b is a picture showing a cube assembled from

these basic units with epoxy, in a simple cubic structure with a lattice constant of

1.55 cm. It is clear that the metallic sphere of the basic unit acts as a heavy mass,

with silicone rubber as the weak spring. Hence there must be a low-frequency

resonance. Moreover, the resonance is local in character, to be distinguished from

the structural resonances that are common to any mechanical object. Figure 5.2c, d

show the transmission characteristics and band structure of the crystal shown in

Fig. 5.2b, respectively. It is noted that there is a deep transmission dip at 380 Hz,

followed by a transmission maximum at 610 Hz. This pattern is repeated at

1,340 Hz and 1,580 Hz. Here the solid line is the theory prediction calculated

from the MST, and the solid circles are the measured data. They show good

agreement. In Fig. 5.2d, the calculated band structure is shown. The flat band

edges, at 380 Hz and 1,340 Hz, are characteristic of local (anti-)resonances that

are very weakly coupled to each other.

It is seen that the structure shown in Fig. 5.2b has a complete bandgap between

380 Hz and 610 Hz. In contrast to phononic crystals where the relevant wavelength

corresponding to the primary bandgap frequency must be comparable to the lattice

constant, here the wavelength (in epoxy) at 380 Hz is ~300 times the lattice

constant. That is, the locally resonant sonic materials can open phononic gaps at

frequencies that are much lower than that derived from considerations of their

structural length scales. In fact, since the effect is due to local resonances, and these

resonances depend only on the rubber’s elastic constants and metal sphere’s mass,

the bandgap frequency should be totally decoupled from structural considerations.
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The fact that the locally resonant sonic materials can have bandgaps may be

simply explained by using analogy with the tight binding approach for the elec-

tronic structure calculations, in which the starting point is the discrete electronic

energy levels in individual atoms. Our local resonances also have a discrete

spectrum. When the atoms interact with each other (through the hopping matrix

element in the tight binding formulation), the discrete energy levels broaden into

energy bands. If the interaction is weak, the bands may not completely overlap and

what remain are exactly the bandgaps. Moreover, the band edges are usually flat

just as what we see in Fig. 5.2d. From this analogy, it is plausible that since

periodicity plays only an implicit role in the tight binding approach, it may not be

a necessary requirement for the creation of bandgaps. Hence it was shown by

Weaire [13] that in tetrahedrally bonded system (such as the amorphous silicon),

the existence of bandgaps indeed does not require long-range periodic order. This is

another aspect that differs from phononic crystals, in which the bandgap is the result

of Bragg scattering.

Fig. 5.2 (a) Cross section of a coated sphere that forms the basic structure unit (b) for an 8� 8

�8 sonic crystal. (c) Calculated (solid line) and measured (circles) amplitude transmission

coefficients along the [100] direction are plotted as a function of frequency. The calculation is

for a four-layer slab of simple cubic arrangement of coated spheres, periodic parallel to the slab.

The observed transmission characteristics correspond well with the calculated band structure (d),

from 200 to 2,000 Hz, of a simple cubic structure of coated spheres. Figure adapted from [1]
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Below we present the novel functionality of the locally resonant sonic material

together with its relevant physics. It will be seen that the dynamic mass density

behavior of the system naturally emerges as the dominant cause of its special

characteristics.

5.2.1 Metamaterial Functionality

In Fig. 5.2c, it is seen that at 380 Hz, the locally resonant sonic material can have a

sharp minimum in transmission. In order to appreciate the significance of this

phenomenon, it is necessary to first review the law of acoustic attenuation by a

solid wall, usually denoted the mass density law.
Consider a sound wave in air with angular frequencyo impinging normally on a

solid wall of thickness d, mass density r2 and bulk modulus k2. Sound transmission

amplitude is given by

T ¼ 4n exp ðik2dÞ
ð1þ nÞ2 � ð1� nÞ2exp ð2ik2dÞ

; (5.4)

where k2 ¼ o=
ffiffiffiffiffiffiffiffiffiffiffiffi
k2=r2

p
is the wavevector in solid and n ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2r2=k1r1
p

is the

solid–air impedance ratio, with k1 and r1 denoting the bulk modulus and mass

density of air, respectively. For solid walls that are less than a meter in thickness,

which is usually the case, we have k2d � 1 and n � 1 for frequencies less than

1 kHz. In that limit, an accurate approximation to (5.4) is given by

T ffi i
2

ffiffiffiffiffiffiffiffiffiffi
r1k1

p
or2d

: (5.5)

It is seen that the bulk modulus of the wall does not appear in (5.5). That is, to a

high degree of accuracy, the sound attenuation through a solid wall is independent

of whether the wall is rigid or soft. Only the wall’s mass per unit area (r2d) matters.

That is why (5.5) is called the mass density law. But perhaps the most important

aspect of (5.5) is that T is inversely proportional to the sound frequency. Hence low-

frequency sound is inherently difficult to attenuate. This is the reason why low-

frequency noise is such a pernicious source of urban environmental pollution.

In Fig. 5.3, we plot the measured amplitude transmission coefficient (solid

circles with the connecting solid line) for a 2.1-cm slab of composite material

containing 48 vol% of randomly dispersed coated metal spheres (same as the one

whose cross-sectional picture is shown in Fig. 5.2a) in an epoxy matrix. As a

reference, the measured amplitude transmission coefficient through a 2.1-cm slab

of epoxy is also plotted (open squares connected by thin solid line). The dashed and
dot-dashed lines, respectively, show the calculated transmission amplitudes of a

2.1-cm epoxy slab and a 2.1-cm homogeneous slab of the same density as that of the
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composite material containing the coated spheres. The arrows indicate the dip

frequency positions predicted by the multiple-scattering calculation for a mono-

layer of hexagonally arranged coated spheres in an epoxy matrix.

In Fig. 5.3, the comparison between the measured results for the composite slab

and the mass density predictions shows clearly that the locally resonant sonic

materials can break the mass density law at particular low-frequency regimes,

thereby exhibiting acoustic metamaterial characteristics.

5.2.2 Theoretical Understanding

In order to gain an understanding of the metamaterial functionality, we have

performed finite-element simulations by using the COMSOL Multiphysics. In the

simulations, the mass density, Young’s modulus, and Poisson’s ratio for the lead

sphere are 11:6� 103kg/m3, 4:08� 1010Pa, and 0.37, respectively. The mass

density, Young’s modulus, and Poisson’s ratio for the silicone rubber are 1:3� 103

kg/m3, 1:18� 105Pa, and 0.469, respectively. Corresponding parameters for epoxy

are 1:18� 103kg/m3, 4:35� 109Pa, and 0.368, respectively. Standard values for

air, i.e., r ¼ 1:23 kg/m3, ambient pressure of 1 atm, and speed of sound in air of

c ¼ 340m/s, were used. Two types of simulations were performed.

We first calculate the spectrum of transmission coefficients for a plane wave

normally incident onto one unit cell along the z-direction. Periodic boundary

conditions along the x- and y-directions were used. Radiation boundary conditions

Fig. 5.3 Measured amplitude transmission (solid circles; the solid line is a guide to the eye)

through a 2.1-cm slab of composite material containing 48 vol% of randomly dispersed coated

lead spheres in an epoxy matrix. As a reference, the measured amplitude transmission through a

2.1-cm slab of epoxy is also plotted (open squares connected by a thin solid line). The dashed and
dot-dashed lines, respectively, show the calculated transmission amplitudes of a 2.1-cm epoxy slab

and a 2.1-cm homogeneous slab of the same density as that of the composite material containing

the coated spheres. Adapted from [1]
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were used at the input and output planes of the air domain in the simulations. Two

transmission peaks, with frequencies at 606 Hz and 1,576 Hz, were found. We also

found two transmission dips, at 374 and 1,339 Hz.

We have also calculated the eigenmodes for one unit cell. Many eigenmodes

were found. Out of these, we select the ones that are symmetric with respect to both

the x- and y-directions, since otherwise the modes would not couple to the normally

incident plane wave. The resulting triply degenerate eigenfrequencies are located at

606 and 1,571 Hz, respectively. They are seen to be almost identical with the
frequencies of the transmission peaks.

In Fig. 5.4a, we show the calculated displacement configurations around the first

peak frequency, where the lead sphere is seen to move as a whole along the

direction of wave propagation. Around the second peak, the maximum displace-

ment occurs inside the silicone rubber, as shown in Fig. 5.4b. In Fig. 5.5, we show

the calculated strain tensor components exz and eyz at the first and second dip

frequencies, respectively. It can be seen that strains occur at the lead–rubber and/or

the rubber–epoxy interfaces, which in fact can also be inferred from the displace-

ment configurations as shown in Fig. 5.4. Below we show that the dip frequencies
correspond to anti-resonances where the dynamic mass density displays a

resonance-like behavior.

Figure 5.6 displays the calculated dynamic mass densityDeff for one unit cell of

the locally resonant sonic material. Around 370 and 1,340 Hz, i.e., the transmission

dip frequencies, the dynamic mass density Deff ¼ r � sh iz azh i= clearly displays a

resonance-like behavior. Thus the transmission peaks correspond with the eigen-

frequencies, and the dips in the transmission are associated with anti-resonances at

which we have a dynamic mass density resonance profile. In particular, it is shown

below that at the anti-resonance frequencies, the average normal displacement of

the unit cell surface (in the matrix material) vanishes, hence azh i ¼ �o2 uzh i goes
through a zero and therefore it is easy to see that Deff acquires a resonance-like

behavior, with a diverging magnitude at the anti-resonance frequency. In a sense,

the mass density law seems to recover its validity–but only if its value replaces the

static mass density.

Fig. 5.4 Calculated displacement configurations around the first (a) and second (b) peak frequencies.

The displacement show is for a cross section through the center of one coated sphere, located at the

front surface. The arrows indicate the direction of the incident wave. Adapted from [1]
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Fig. 5.5 Calculated strain components exz (a) and eyz (b) at the first dip frequency, and exz (c) and
eyz (d) at the second dip frequency, within the z ¼ 0 cross section plane within one unit cell. Red
and blue colors denote positive and negative values of strain components, respectively, and green
indicates near-zero strain

Fig. 5.6 Dynamic effective mass densityDeff for one unit cell of the local resonant sonic material

as shown in Fig. 5.2. Around the anti-resonance frequencies (transmission dip frequencies),

resonant behavior of Deff is evident
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5.2.3 Physical Underpinning of the Anti-resonances

Mechanical anti-resonances constitute a very common phenomenon [14]. They are

also of practical importance in mechanical systems. For example, the change in

frequencies of anti-resonances can be an indicator of structural damages [15, 16]; it

is also an element that needs to be taken into account in the design and modeling of

the cantilever for atomic force microscopes [17–19].

By focusing on the surface normal displacement of the mechanical system, it is

possible to appreciate the physical underpinning of this phenomenon. That is, an

anti-resonance always occurs between two resonances. At the anti-resonance fre-

quency, the two neighboring resonances are simultaneously excited but with the

opposite phase, since the resonance response is given by 1=ðo2
i � o2Þ , with oi

denoting the angular frequency of the ith resonance and oi <o<oiþ1. As the two

eigenfunctions are spatially orthogonal to each other, it is possible to demonstrate

that in varying the frequency continuously from oi tooiþ1, there must be a point at

which the averaged normal surface displacement is zero. In Fig. 5.7, we show the

averaged normal surface displacement uzh i at a unit cell when the incident wave is

along the z-direction. It can be seen that uzh i passes through zero at around the

transmission dip frequencies, and that is the underlying mechanism of the diver-

gence of Deff ¼ r � sh iz �o2 uzh ið Þ�
in the relevant frequency regime. It therefore

follows that the dynamic mass density must have a resonant behavior at anti-

resonance, giving rise to total reflection of the acoustic waves. It is also seen that

Fig. 5.7 Averaged normal surface displacement uzh i for one unit cell of the locally resonant sonic
material when a plane wave is incident along the z-direction. Large uzh i amplitude corresponds

with the transmission peak. Around the transmission dip frequency (lower side of the transmission

peak frequency), uzh i passes through zero (indicated by the red arrows), thereby leading to the

divergence of Deff as shown in Fig. 5.6
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uzh i exhibits divergent behavior at the eigenmode frequencies where the peak

transmissions occur.

The understanding that the dynamic mass density’s behavior–as the underlying

cause of the anti-resonances–offers the possibility of generalization of this principle

to the regime of ultrasound and even optical phonons. However, such experimental

manifestations at high frequencies are still to be pursued.

5.3 Membrane-Type Acoustic Metamaterials

The metamaterial functionality of the locally resonant sonic materials operates only

in a limited range of frequencies. Such a disadvantage can be overcome if there are

membrane-type locally resonant sonic materials since one may be able to stack

these membranes, each operative at a different frequency regime, so as to broaden

the effective frequency range of the stacked sample.

However, making a membrane-type acoustic metamaterial that can totally reflect

the low-frequency sound may seem to be anti-intuitive at first sight because a total-

reflecting surface is usually a node, implying no displacement. However, a mem-

brane is generally soft and elastically weak, hence difficult to have zero movement.

But what we shall show, both theoretically and experimentally, is that precisely

because of its weak elastic moduli, even a small membrane can have multiple low-

frequency resonances. As there can be an anti-resonance between two resonances, it

follows that the average normal displacement of the membrane vanishes at the anti-

resonance frequency, thereby causing a resonant behavior of the dynamic mass

density together with a diverging magnitude at the anti-resonance frequency. Total

reflection occurs as a result.

It should be noted, however, that even though the average normal displacement

is zero, the membrane displacement is not everywhere zero. But such nonzero

displacement couples only to non-radiating evanescent waves, which can be

ignored as far as the far-field transmission and reflection are concerned.

Below we give a detailed account of this simple system.

5.3.1 Sample Construct

In Fig. 5.8, we show our sample to consist of a circular rubber membrane decorated

with a small button of varying mass (at the center of the membrane) for the purpose

of tuning the eigenfrequencies [20]. These decorated membranes are assembled

into a larger plate. The measurement setup, illustrated in the top panel, comprises

two Brüel and Kjaer type-4206 impedance tubes with a sample sandwiched in

between. The front tube has a loudspeaker at one end to generate a plane wave.

There are two sensors in the front tube to sense the incident and reflected waves.

The third sensor in the back tube, terminated with a 25-cm-thick anechoic sponge
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(enough to minimize reflection), senses the transmitted wave. The signals from the

three sensors are sufficient to resolve the transmitted and reflected wave amplitudes,

in conjunction with their phases.

5.3.2 Vibrational Eigenfunctions and the Anti-resonance
Phenomenon

In Fig. 5.9a, c, we show the finite-element COMSOL simulation results on the

vibrational eigenmodes of a button-decorated rubber membrane. Here the circular

button has a radius of 4.5 mm and a mass of 160 mg, and the rubber membrane is

28 mm in diameter and 0.2 mm in thickness. The mass density, Young’s modulus,

and Poisson’s ratio for the rubber are 980 kg/m3, 2� 105Pa, and 0.49, respectively.

A radial pre-stress, on the order of 105 Pa, has been applied to the membrane.

The two lowest-frequency eigenmodes are shown. It is seen that for the lowest

frequency eigenmode, at 250 Hz (Fig. 5.9a), the button and the membrane (on

which it is attached) move in unison. However, for the mode at ~1,050 Hz

(Fig. 5.9c), the button’s oscillation amplitude is small whereas the surrounding

rubber’s oscillation amplitude is fairly significant. Figure 5.9b shows the profile at

the anti-resonance frequency. It should be noted that in contrast to the 3D locally

resonant sonic materials (see 5.2), in which the resonance and anti-resonance

frequencies are closely grouped together, for the membrane-type acoustic

metamaterials the resonance and anti-resonance frequencies are well-separated.

Fig. 5.8 Typical sample structure of the membrane-type acoustic metamaterial (bottom panels)
and the testing geometry (upper panel)

170 J. Mei et al.



In Fig. 5.10, it is shown that each of the transmission peaks corresponds with an

eigenmode of the system. Between the two eigenfrequencies, there is clearly a sharp

dip in transmission. At this dip frequency (~440 Hz), both eigenmodes are excited,

but with opposite phase. Their superposition leads to the mode profile shown in

Fig. 5.9b. A closer examination of this transmission dip configuration shows that

the averaged normal displacement of the mode is accurately zero. The dynamic

mass density, defined as

Deff ¼ � szzh i h azh ið Þ= ¼ szzh i o2h wh i� ��
; (5.6)

Fig. 5.9 The first eigenmode (a) and the second eigenmode (c). The profile at the dip frequency is

shown in (b)

Fig. 5.10 The effective dynamic mass of the membrane-type acoustic metamaterial (red
symbols, right axis), together with the transmission coefficient (black solid curve, left axis),
evaluated with an incident wave with pressure modulation amplitude of 1 Pa

5 Dynamic Mass Density and Acoustic Metamaterials 171



displays a resonance-like behavior in which Deff has a divergent magnitude

precisely at the anti-resonance frequency, as shown in Fig. 5.10. Here szz denotes
the zz component of the stress tensor, z being the direction normal to the membrane

surface, az is the acceleration along the z-direction, equal to � o2w for time-

harmonic motions, with w being the normal displacement of the membrane and

h being the thickness of the membrane. In accordance with the principle of the mass

density law, if one allows the dynamic mass density to play the role of the static

mass density, then total reflection should occur. However, a more accurate picture

for explaining the total reflection phenomenon is as follows.

5.3.3 Anti-resonance and the Non-radiating Evanescent Mode

Consider the dispersion relation for the acoustic wave in air, k2jj þ k2? ¼ o2 v2
� ¼

ð2p l= Þ2, where k*jj, k? denote the wave vector components parallel or perpendicular

to the surface of the membrane, respectively, v ¼ 340 m/s is the speed of sound in

air, and l is the wavelength. At the air–membrane interface, we note that the normal

displacement (which is usually sub-micron in magnitude and hence small compared

to the membrane thickness) pattern of the membrane can be fully described by

using 2D Fourier components of k
*

jj . If we decompose the normal displacement

w into an area-averaged component and a component of whatever is left over, i.e.,

w ¼ <w>þ dw, then it should be clear that their respective Fourier components’

magnitudes should have a distribution, illustrated schematically in Fig. 5.11.

Here d denotes the lateral size of the membrane. Since d is usually much smaller

than the wavelength l, it follows that for the dw part of the displacement, the

overwhelming majority of the k
*

jj components will have magnitudes kjj
�� �� 	 2p d= �

2p l= . Hence from the dispersion relation, it follows that the associated k2?<0.

That is, the dw part of the displacement can only cause evanescent waves. In

contrast, for the wh ipart of the normal displacement, the distribution of the kjj
�� ��must

be peaked at zero, owing to its piston-like motion. Thus again from the dispersion

relation, the associated k2? 
 ð2p l= Þ2. It follows that only the average component of

the normal displacement can affect far-field transmission. If wh i ¼ 0, then there can

be no far-field transmission. We therefore arrive at the conclusion that total

reflection is the necessary consequence of the membrane status at the anti-

resonance frequency.

However, even at the anti-resonance frequency, the membrane is not stationary.

Figure 5.12 displays the finite-element COMSOL simulation result at the anti-

resonance frequency. It indicates evanescent waves being emitted, with a decay

length on the order of a millimeter. This fact distinguishes a membrane reflector

from its rigid (and heavy) wall counterpart.

In Fig. 5.10, it should be noted that before the first resonance, Deff is negative

with a decreasing trend (toward negative infinity) as the frequency approaches zero.

This would seem to contradict the common intuition that Deff should reduce to the
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volume-averaged value in the static limit. The fact that it does not do so in the

present case is due to two factors. First, the divergent magnitude is a reflection of

the boundary condition. Since the boundary of the membrane is fixed, the mem-

brane essentially transfers its load onto the fixed boundary in the long wavelength

Fig. 5.11 The parallel Fourier components’ distribution for (a) wh i and (b) dw components,

respectively. For (b), the peak of the distribution lies higher than 2p=d because the feature sizes for
the dw component must be smaller than d

Fig. 5.12 The normal velocity field distribution near the membrane at the transmission dip

frequency, where the black dashed line denotes the position of membrane plane. The left axis

(which is also the symmetry axis) is in units of millimeter, while the velocity is in mm/s (calculated

with the same incident wave intensity as that for Fig. 5.10). The wave is incident from the bottom.

The decay characteristic near the two sides of the membrane surfaces indicates a decay length of

3 mm
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limit. That means the fixed boundary can also be interpreted as a piece of very

heavy mass. Second, the negative sign of Deff, signifying off-phase response to the

external force, is a reflection of Newton’s third law—the reaction is opposite to the

applied force. Such behavior of Deff , also referred to as the “Drude-type negative

mass density” in analogy to free electrons in metal, has been studied in different

structures [21, 22].

5.3.4 Experimental Verification

Experimentally, we have used laser Doppler vibrometer (LDV) to directly verify

the wh i ¼ 0 condition at the transmission minimum frequency. The amplitude

transmission spectrum of the membrane-type metamaterial system was also

measured. Both show very good agreement with the predictions of finite-element

COMSOL simulations.

In Fig. 5.13 the correlation between the transmission coefficient and jhwij is
clearly demonstrated. In Fig. 5.14, we give a detailed comparison between the

measured normal displacement profiles and the COMSOL simulation results on

Fig. 5.13 The black open circles are the measured transmission coefficient (left axis), and the red
solid circles are the LDV-measured jhwij(right axis, arbitrary unit). The red line is to guide the eye.
A clear correlation is seen
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the two eigenmodes, together with the profile at the anti-resonance frequency. Very

good agreement is seen. In particular, if one uses the experimental profile to

calculate the average normal displacement, wh i ffi 0 is obtained at the anti-

resonance point.

In Fig. 5.15, we show a comparison of the theory and experimental transmission

spectra, in which the black solid curve denotes the calculated amplitude transmis-

sion coefficient and the open circles represent measured data. The dashed red line is

the prediction of the mass density law. Excellent agreement is obtained. In particu-

lar, the transmission peaks’ correspondence with the vibrational eigenmodes, as

well as with the transmission dip’s amplitude and frequency, all conform to the

theory predictions.

Fig. 5.14 The calculated (upper panel) and measured (middle and lower panels) normal displace-

ment profiles on the two eigenmodes (left and right columns) and the anti-resonance mode (central

column). The frequencies of the three profiles are (from left to right) around 230 Hz, 450 Hz, and

1,050 Hz. Displacement profiles are measured with ~0.25 Pa incident wave amplitude. Note that

the simulation results (top panels) are only half of the experimental profiles (bottom panels), since
the simulation results are symmetric and therefore the other half need not be shown
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5.3.5 Addition Rule

As stated earlier, one of the purposes of developing the membrane-type

metamaterials is to stack them so as to make the stacked sample more effective at

a particular frequency as well as to broaden the frequency range of the metamaterial

functionality. Here we illustrate the results of such stacking to be indeed in line with

what was expected.

An important point about stacking is that the membrane–membrane separation

should be larger than the evanescent decay length generated by the dw part of the

membrane displacement. Only when this condition is satisfied would the two

membranes be regarded as truly independent, in the sense of having no near-field

coupling.

We first examine quantitatively the effect of stacking two decorated membranes

with the same anti-resonance frequency. In order to contrast with the traditional

mass density law, we note that if the thickness of a solid wall is doubled, then the

mass density law predicts the transmission amplitude to be halved, i.e.,

T / 1

roðd þ dÞ ¼ ð0:5Þ 1

rod
; (5.7)
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Fig. 5.15 Measured transmission coefficient amplitude (black open circles) and the COMSOL

simulation results (black solid curve). The red dashed line is the mass density law prediction
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a 6 dB increase in sound intensity attenuation is expected. In order to achieve 18 dB

attenuation, which is the usual desired increment, it follows that the wall thickness

has to be increased by a factor of 8! In contrast, for the membrane-type

metamaterials, the attenuation rule is given by

T / exp ½�const:ðd þ dÞ� ¼ fexp ½�const:d�g2: (5.8)

From the above, it can be seen that in terms of dB, the addition rule for the mass

density law is logarithmic in character, whereas it is linearly additive for the

membrane-type metamaterials, which is much more effective. In Fig. 5.16a,
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Fig. 5.16 Measured transmission spectra for stacking two membranes operating at almost identi-

cal frequencies (a) and three membranes operating at different anti-resonance frequencies (b)
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we show the result of stacking two almost identical membrane-type metamaterials.

The green and red curves are the transmission spectra of the two membranes,

measured individually. The violet curve is the measured result by stacking the

two together. At the anti-resonance frequency, almost 49 dB in intensity attenuation

has been achieved. That is, stacking two nearly identical membranes shows an

enhancement of ~20 dB in attenuation over a single membrane at the anti-resonance

frequency.

It should be further noted that the resonant frequency of the first eigenmode is

tunable by varying the weight of the central mass, in a manner that is proportional to

the inverse square root of the central mass. The frequency of the second eigenmode,

since its vibrational amplitude is mostly in the membrane, is insensitive to the

weight. As the anti-resonance is a superposition of these two eigenmodes, it is viable

to tune the anti-resonance frequency by varying the weight of the central mass.

To illustrate that stacking can broaden the frequency range of the membrane-

type metamaterial functionality, we have fabricated a panel comprising three

membranes operative at different anti-resonance frequencies. In Fig. 5.16b, the

individually measured transmission spectra are shown as the red, green, and cyan

curves. The transmission spectrum of the stacked sample is shown as the violet

curve. The additive character of the panel is clearly seen from the remnant trans-

mission dips of the three membranes.

To achieve broadband attenuation, we have fabricated panels with multiple

weights in each unit cell (e.g., four weights in one cell). Multiple weights introduce

degenerate eigenmodes, and as a result, the panel’s transmission spectrum has

many transmission minima. We have further tuned the frequency positions of the

anti-resonance dips so that by stacking several panels, a broadband attenuation

sample can be achieved. The separation between the neighboring panels is 15 mm,

much larger than the evanescent decay length at the transmission dips. This sample

(left panel, Fig. 5.17) has a total weight of 15 kg/m2, and the average transmission

loss is 45 dB over the 50–1,500 Hz frequency range (Fig. 5.17, right panel) [23].

Fig. 5.17 Broadband attenuation sample (left) and its measured transmission loss (right)
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5.4 Other Types of Acoustic Metamaterials

Subsequent to the initial demonstration of metamaterial characteristics of the

locally resonant sonic materials, there has been a proliferation of other types of

acoustic metamaterials during the past decade. This section is devoted to a brief

survey of some major achievements in this field, with emphasis on the negativity in

bulk modulus.

5.4.1 Negative Effective Bulk Modulus

Elastic constants play an equally important role as the mass density in determining a

material’s response to elastic/acoustic waves. In the context of elasticity, bulk

modulus describes the elastic deformation that leads to a change in volume [24].

Intuitively, such deformation can be understood as a result of hydrostatic pressure

with no preferred direction(s). This geometric characteristic of the bulk modulus,

which differs from that of mass density, carries over to the consideration of

effective bulk modulus (EBM) for acoustic metamaterials.

Multipole expansion is a standard technique that can be used to reveal the geo-

metric character of the response functions. Being omnidirectional, bulk modulus-

type response has the highest degree of rotational symmetry. Translated into the

language of multipole representation, such response must be dominated by the

monopole term [25]. On the other hand, mass density-type response is strongly

directional as evidenced by the vibrational modes we analyzed in previous sections.

It has the dipole symmetry.

Negativity in bulk modulus means that the medium expands under compression

and contracts upon release. Thermodynamics dictates that a system with such a

static response characteristic must be unstable. However, negative bulk modulus is

possible in the context of dynamic response of an elastic/acoustic system, whereby

the material display an out-of-phase response to an AC pressure field. Some

theoretical models, such as water with suspending air bubbles [26], have been

proposed for the realization of negative EBM.

In terms of experimental realization, there has been only one recipe so far that

successfully achieved negative EBM [27]. The structure consists of a fluid channel

that is sideway shunted by a series of periodically placed Helmholtz resonators

(HRs). Instead of utilizing combinations of several materials, this metamaterial

system seeks to produce modulus-type response by shaping the geometry that

confines fluid in which sound propagates [28]. Several derivative works also exist

on structures that display negative EBM, e.g., HRs in air that are operative in the

kHz frequency regime [29, 30], and flute-like structures [31].
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HR is a well-known acoustic resonance structure that can be analyzed with a

spring-and-mass model. An HR is basically a bottle with a large belly and a small

opening orifice, connected by a narrow neck. Since the volume of the neck is much

smaller than that of the belly, it is a good approximation to consider the fluid in the

neck to be incompressible. The fluid in the belly, however, is compressed when

the fluid in the neck section moves inward. Once compressed, the fluid pressure in

the belly naturally increases, thereby providing a restoring force. Since the wave-

length of the sound is generally much larger than the dimension of the entire

resonator, the pressure gradient within the cavity can be neglected. From this

description of the HR, fluid in the neck serves as the mass and the belly plays the

role of a spring. Using this analogy, we obtain the resonance frequency of an HR as

o2
0 ¼ k=m ¼ ðdF=dxÞ=m ¼ S2ðdP=dVÞ=m , with k denoting the spring constant,

which can be expressed as the force (F) derivative with respect to displacement

(x), and that in turn can be expressed as the pressure (P) derivative with respect to

volume (V) times the square of the cross-sectional area S of the neck. By writing

m ¼ rSL, where r denotes fluid density and L the length of the neck, we obtain

o0 ¼ v
ffiffiffiffiffiffiffiffiffiffiffi
S=VL

p
; (5.9)

where v ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðvðdP=dvÞ=rÞp
is the speed of sound in the fluid and V is the volume of

the resonator chamber (the belly) (Fig. 5.18).

The HRs in [27] were arranged orthogonal to the propagation direction of the

sound in the waveguide (Fig. 5.19a). A sound wave can trigger fluid motion in the

neck of an HR, and when the excitation frequency approaches the vicinity of the HR

eigenfrequency, the EBM response is excited, with a typical frequency dependence

of 1=ðo2
0 � o2Þ. We therefore expect a sign change in the EBM response, arising

from the fact that the motion of the fluid column in the neck switches from in-phase

to out-of-phase with respect to the external pressure field.

Negative bulk modulus has a similar effect on acoustic wave propagation as the

negative mass density—both cause the acoustic waves to be evanescent in character.

Fig. 5.18 A typical

Helmholtz resonator
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Accordingly, bandgap was experimentally observed close to the resonant frequency

of the metamaterial (Fig. 5.20).

5.4.2 Acoustic Double Negativity

The successful demonstrations of acoustic metamaterials with negative effective

parameters naturally lead to the possibility of simultaneous double negativity in the

same frequency regime. Early theoretical prediction [25] suggested that monopolar

Fig. 5.19 Experimental layout (a) and measured results (b), (c). Negative transit time in (b)

indicates negative group velocity, as seen in the band structure in (c). Figures adapted from [27]

Fig. 5.20 Transmission spectra. A forbidden band is clearly seen around 32 kHz, owing to the HR

resonance. The asymmetric peak (red arrow) is caused by Fano-like resonance, which is the

consequence of interference between continuum channel and resonant channel [27, 32].

Figure adapted from [27]
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and dipolar resonances of the local scatterers are key to negative EBM and negative

effective (dynamic) mass density, respectively. Recipes were conceived for their

simultaneous realization [25, 26, 33, 34]. Similar to the electromagnetic case, doubly

negative bulk modulus and (dynamic) mass density can lead to negative dispersion,

i.e., the so-called left-handed acoustic materials. However, it was not until 2010 that

the first success in experimental realization of acoustic double negativity [35] was

demonstrated. In their 1D design, periodically arranged elastic membranes were

deployed to tune the dipolar resonance [21], with side-opening orifices providing

monopolar response [31]. Double-negative transmission band was found in the low-

frequency limit. The same group later utilized the same design to demonstrate a

reversed Doppler shift of sound within the double-negative band [36].

5.4.3 Focusing and Imaging

With the advent of acoustic metamaterials, a new horizon of possibilities for

acoustic wave manipulation has emerged. During the past few years, there has

been a proliferation of theoretical/numerical predictions [37–41] for achieving

acoustic focusing and superlensing by using acoustic metamaterials. Shu Zhang

et al. expanded such concept by building an interconnecting fluid network. Shunted
by cavities of different volumes, each unit in the network resembles a Helmholtz

resonator. It was experimentally shown that such a network is capable of achieving

in-device focusing of ultrasound [42]. Lucian Zigoneanu et al. designed and

fabricated flat lens with gradient index of refraction, bringing kHz airborne sound

into out-of-device focus [43].

Highly dispersive materials can attain almost flat equi-frequency contours within

a certain regime, thereby “canalizes” the propagation of wave [44, 45], achieving

imaging effect. Such concept can be adapted to acoustic waves. By arranging

locally resonant units in a square lattice, a low-frequency bandgap can emerge,

with almost-flat lower band edge. It was numerically shown that the equi-frequency

contour is square-like near the band edge and is capable of canalizing even

evanescent acoustic wave into propagating modes [46, 47]. X. Ao and C. T. Chan

took a step further [47] by incorporating rectangular lattice to introduce anisotropy.

And by laying out the lattice in half-cylindrical geometry, a magnifying effect

analogous to optical hyperlens [48, 49] was numerically demonstrated.

Anisotropy is at the core of the hyperlens idea. From multipole expansion, waves

scattered/emanated from an object can be represented by superposition of modes

with different angular momenta. Geometric details of the scatterers are carried in

modes with high angular momenta that do not propagate (i.e., evanescent in charac-

ter). However, for anisotropic materials in which the dielectric constant along one

direction is negative, it becomes possible to have hyper-resolution. This is easy to

see for a 2D circular geometry in which we have anisotropic dielectric constantsey,er
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with the condition that eyer < 0. Then from the dispersion relation ðk2y=erÞ þ ðk2r =eyÞ
¼ ðo2=v2Þ, it is easy to see that both ky and kr can take on very large values,

implying high resolution, without violating the dispersion relation. Such a

material is denoted a hyperlens [48, 50], which is able to convert evanescent

waves with high angular momenta into propagating modes. An acoustic

magnifying “hyperlens” was subsequently realized by Jensen Li et al. [51],

based not on the negative dielectric constant but rather on the large effective

density and the relatively weak bulk modulus, realized by a fan-like structure

with alternating fins of brass and air ducts, so that the effective wave speed is

low and thereby the relevant wavelength is small. The lens has clearly

demonstrated resolution that is less than half of the wavelength (with magnifi-

cation) in a spatial region that is out of the device.

In the absence of viscous effect, a longitudinal acoustic wave can propagate

in ducts (i.e., waveguides) of very small cross section, without the constraint of

a cutoff frequency. By exploiting this fact, and with the aid of Fabry–Perot

resonances, it was shown theoretically [52] that an “acoustic endoscope” can

enhance evanescent waves, therefore open the possibility for sub-diffraction imag-

ining. This idea was subsequently realized [53] with an array of waveguides with

deep-subwavelength transverse-scale size.

Besides the approaches discussed above, C. Daraio’s group took a different path

toward acoustic focusing—nonlinearity in granular materials [54]. They constructed

a nonlinear lens by patching granular chains tightly together. Such granular chains

can transform an acoustic pulse into solitary waves, whose phase velocity depends

on the amplitude. By adjusting the pre-applied static force exerted on each indi-

vidual chain, the lens was found able to focus sonic pulse into very high intensity.

5.4.4 Cloaking

Acoustic cloaking has attracted theoretical attention in the past few years [55–67].

In particular, researchers have conceived devices by using “transformation acous-

tics” as a tool. Schemes for the cloaking of acoustic surface waves [68], bending

waves on thin plates [69–71] and even fluid flow [72], have been proposed theoreti-

cally and studied by numerical simulations.

The experimental breakthrough came from Fang’s group [73]. By making

analogy between the acoustic wave equation and the telegrapher’s equation, they

explored the idea of using fluid networks as a platform for realizing acoustic

cloaking. The effective mass density and bulk modulus were designed to follow a

gradient in the radial direction, such that the ultrasonic wave is bent around the

central domain, thereby minimizing the scattering of the object placed inside the

domain so as to render it “invisible” to external observers. Experimental demon-

stration has clearly shown the reduced shadowing effect of the scattering object in
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the presence of the cloak. Impedance mismatch and the inevitable dissipative loss

accounted for the less-than-perfect cloaking effect. Recently, the method of trans-

formation acoustics showed its power in the design and experimental realization of

an acoustics “carpet cloak” in air [74].

5.4.5 Acoustic Rectification

Time-reversal symmetry and spatial inversion symmetry are intrinsic to linear

acoustic wave equation. Hence, nonreciprocal transmission of wave requires certain

extra conditions to break these symmetries. By introducing second harmonics

(nonlinear effect) into the wave equation and thereby breaking its time-reversal

symmetry, an acoustic one-way mirror was proposed [75]. This was subsequently

realized in the ultrasonic regime [76]. More recently, C. Daraio’s group used 1D,

strongly nonlinear (force-loaded) artificial granular medium to achieve rectification

of acoustic waves and proposed prototypes of mechanical logic gates [77]. On the

other hand, acoustic “one-way mirror” was also realized using simple 2D phononic

crystals with incomplete bandgap [78]. Li et al. incorporated diffraction structures

on one end of the phononic crystal to induce spatial modes with different k-vectors,
thereby mimicking the condition of oblique incidence to result in transmission for

part of the acoustic energy.

5.4.6 Hybrid Elastic Solids

Negativity in the effective mass density and the EBM is a direct outcome of dipolar

and monopolar resonances, respectively. A natural question is whether it is possible

to have a solid with a unit cell that can display monopole, dipole, and quadrupole

resonances [6]. If so, what kind of behavior would such a solid exhibit? A recent

publication [79] has proposed a unit cell design that can realize all three resonances,

with overlapping resonance frequency regimes. Finite-element calculations found

this unique design to simultaneously support dipolar and monopolar/quadrupolar

resonances. As a result, two doubly negative bands exist. In one band, with

overlapping dipolar and monopolar resonances, only pressure waves can propagate

(with negative dispersion) while the shear waves are evanescent. This in effect

resembles the acoustic property of a fluid. In the other band, “super-anisotropic

behavior” is exhibited—i.e., pressure and shear waves are allowed to propagate

only along mutually perpendicular directions. Hence within the frequency range of

this band, the material appears to be a rigid solid in one direction but appears fluid-

like in the other (Table 5.1).
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5.5 Dynamic Mass Density at the Low-Frequency Limit

It is well known that for a time-harmonic wave, the elastic wave equation may be

written as

r � m½ru
* þ ðru

*ÞT� þ rðlr � u*Þ þ Do2u
* ¼ 0; (5.10)

whereD is the mass density, l and m are the (spatially varying) Lamé constants, u
*
is

the displacement vector, and ðru
*ÞT denotes the transpose of the tensorial quantity

ru
*
. Static effective elastic moduli and mass density are usually defined in the zero-

frequency limit, where the limito ! 0 is usually taken first, so that the mass density

term drops out. Thus, the static effective moduli are obtained by the homogeniza-

tion of r � ðmrÞ and rðlr�Þ operators. In contrast, to obtain the dynamic mass

density expression, we have to solve the wave equation (5.10) so as to get the low-

frequency wave solution and its relevant dispersion relation oðk*Þ. The fact that for
the fluid–solid composites the two limits are not necessarily the same has already

been explained in the introductory Sect. 5.1. Thus the dynamic mass density is

obtained from the slope of oðk*Þ, i.e., the wave velocity. However, to separate out

the elastic constant and mass density information from a single wave speed requires

an additional criterion, which turns out to be the different angular momentum

channels, as shown below. But at this point, we must first briefly introduce the

MST, since our approach in obtaining theo ! 0 dynamic mass density is simply to

examine the low-frequency limit of the MST.

Table 5.1 Properties of the hybrid elastic solids [79]

Direction

Wave type

GX GM

P-wave S-wave P-wave S-wave

Wave velocities
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
keff þ meff

reff

r ffiffiffiffiffiffiffi
ceff44

reff

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
keff þ ceff44

reff

s ffiffiffiffiffiffiffi
meff
reff

r

Lower band

keff > 0;reff < 0

meff � 0; ceff44 > 0

Propagation

allowed, double

negative in reff
and meff

Evanescent,

negative reff
Evanescent,

negative reff
Propagation

allowed, double

negative in reff
and meff

Higher band

keff < 0;reff < 0

meff > 0; ceff44 > 0

Propagation

allowed, double

negative in reff
and keff

Evanescent,

negative reff
Propagation

allowed, double

negative in reff
and keff

Evanescent,

negative reff
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5.5.1 Multiple-Scattering Theory

MST represents a solution of the elastic wave equation (5.10) for a periodic

composite that accounts fully for all the multiple scattering effects between any
two scatterers, shown schematically in Fig. 5.21, as well as for the inherent vector

character of elastic waves [2, 80, 81]. In what follows, we shall attempt to illustrate

the basic ideas of the MST by using diagrammatic illustrations. A more detailed

mathematical description can be found in Chap. 10.

We shall focus on the case of 2D periodic composites with a fluid matrix,

in which MST has a rather simple form, as shown in Fig. 5.22, where u
*in

i ðr*iÞ ¼P
n
ainJ

*i

nðr*iÞ and u*sc
i ðr*iÞ ¼

P
n
binH

* i

nðr*iÞ are the waves incident on, and scattered by

the scatterer i, respectively, with a1 ¼ o
ffiffiffiffiffiffiffiffiffiffiffiffiffi
D1 B1=

p
being the wave vector in the

fluid matrix. Here D1 and B1 denote the mass density and bulk modulus of the

matrix, respectively, r* ¼ ðr; ’Þ is the polar coordinates, and JnðxÞ and HnðxÞ
denote the nth Bessel function and Hankel function of the first kind, respectively.

Since the incident wave on scatterer i comprises the external incident wave

u
*inð0Þ
i ðr*iÞ plus the scattered waves by all the other scatterers except i (as shown in

Fig. 5.21), we have

u
*in

i ðr*iÞ ¼ u
*inð0Þ
i ðr*iÞ þ

X
j 6¼i

X
n00

bjn00H
* j

n00 ðr*jÞ; (5.11)

where r*i and r*j refer to the position of the same spatial point measured from

scatterers i and j, respectively.
In Fig. 5.22, the expansion coefficients fang and fbng are not independent

but are in fact related by the so-called T matrix. This is shown in Fig. 5.23, where

T ¼ fTnn0 g is the elastic Mie scattering matrix determined by matching the normal

displacement and normal stress component at the fluid–solid interface.

Fig. 5.21 A schematic diagram illustrating the basic idea of the multiple-scattering theory (MST),

in which the scattered outgoing wave from any one particular scatterer constitutes part of the

incident wave to any other scatterer
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Fig. 5.23 T matrix and the boundary conditions. Region 1 denotes the matrix materials and region

2 denotes the solid scatterer

Fig. 5.22 General solution of the acoustic wave equation for 2D phononic crystals with a fluid

matrix. Here Jn denotes the Bessel function of nth order and Hn denotes the nth-order Hankel
function of the first kind

5 Dynamic Mass Density and Acoustic Metamaterials 187



With the help of addition theorem, it can be proved that

H
* j
n00 ðr*jÞ ¼ H

* j
n00 r*i � ðR*j � R

*

iÞ
� �

¼
X
n

Gij
n00nJ

*i

nðr*iÞ; (5.12)

where the G matrix Gij
n00n ¼ Gn00nðR

*

j � R
*

iÞ denotes the translation coefficients as

shown in Fig. 5.24, with f ¼ arg ðR*j � R
*

iÞ, R
*

iðjÞ being the position of scatterer iðjÞ.
This translation means that the wave scattered by the scatterer jmay be expressed in

terms of Bessel functions centered at scatterer i. And since the coefficients fang and
fbng at scatterer i are related by the T matrix, one can therefore obtain a single

matrix equation with fang being the variables. Of course, in such a derivation, it is

assumed that in a periodic composite every scatterer is the same.

For the purpose of calculating the dispersion relation, we do not need an

externally incident wave u
*inð0Þ
i ðr*iÞ in (5.2), thus we have

u
*in
i ðr*iÞ ¼

X
j 6¼i

X
n00

b j
n00H

* j
n00 ðr*jÞ: (5.13)

After substituting the expressions for the T matrix and G matrix into this

equation and Fourier-transforming the coefficients of fang, as shown in Fig. 5.25,

we arrive at the following secular equation:

det T�1
nn0 � Gnn0 ðk

*Þ
��� ��� ¼ 0: (5.14)

Equation (5.14) is equivalent to (85) in Chap. 10. Written in this particular form,

(5.14) is particularly suitable for the low-frequency expansion, as seen below.

Fig. 5.24 G matrix and its evaluation method
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5.5.2 Dynamic Mass Density at the v ! 0 Limit

Equation (5.14) is the secular equation for determining the band structure of a

periodic composite. Here we want only the branch at theo ! 0 limit, i.e., by letting

a1 ! 0 and retaining the leading-order terms of the secular equation. This is

illustrated in Fig. 5.26.

By taking the low-frequency limit and retaining terms to the order of o�2, both

the T�1 matrix and the G matrix can be simplified to 3 � 3 matrices [4, 5].

Therefore, the secular equation in the low-frequency limit is given by

det

D1 þ D2

D1 � D2

þ x2f

1� x2
ixf

1� x2
� f

1� x2

� ixf

1� x2
B2

B2 � B1

þ x2f

1� x2
ixf

1� x2

� f

1� x2
� ixf

1� x2
D1 þ D2

D1 � D2

þ x2f

1� x2

������������

������������
¼ 0; (5.15)

in which f ¼ pr20 A= is the filling ratio of the solid inclusions, B1 ¼ l1 and B2 ¼
l2 þ m2 are the bulk moduli of the fluid matrix and solid inclusions, respectively,

and x ¼ Veff V1= is the variable to be solved in the determinant equation (5.15).

By discarding the trivial root, we obtain the effective sound velocity of the

composite as

Fig. 5.25 Secular determinant equation of the MST, for the determination of band structures for

periodic composites
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Veff ¼
ffiffiffiffiffiffiffiffi
Beff

Deff

r
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2

B2 þ ðB1 � B2Þf B1

ðD2 þ D1Þ þ ðD2 � D1Þf
ðD2 þ D1Þ � ðD2 � D1Þf D1

vuuuuut : (5.16)

It is well known that according to the effective medium theory [82], the EBM

Beff of the fluid–solid composite is given by

1

Beff

¼ 1� f

B1

þ f

B2

(5.17)

or

Beff ¼ B2

B2 þ ðB1 � B2Þf B1: (5.18)

Fig. 5.26 The T�1 matrix and G matrix in the low-frequency limit, where r0 and A are the radius

of solid inclusions and area of unit cell, respectively. l1, l2, and m2 are the Lamé constants, and

g0 � 0:5772 is the Euler’s constant. y0 Is the polar angle of wave vector k
*

, which vanishes in the

determinant evaluation of T�1 � G
�� ��. The variable x ¼ Veff V1= is the quantity to be evaluated
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It can also be seen from Eq. (5.15) and Fig. 5.26 that the expression for Beff ,

(5.18), arises from the n ¼ 0 angular scattering channel.

By using (5.16) and the effective medium expression for Beff [i.e., (5.18)], we

arrive at precisely the Berryman effective mass density in 2D [83, 84]:

Deff ¼ ðD2 þ D1Þ þ ðD2 � D1Þf
ðD2 þ D1Þ � ðD2 � D1Þf D1: (5.19)

In contrast to the Beff expression, the effective mass density Deff is completely

determined by the n ¼ 1 angular channel. As pointed out previously, the effective

mass density and the EBM represent separate but parallel wave scattering channels.
Equation (5.19) is valid for both the square and the hexagonal lattices when the

filling fraction of the solid inclusions is not very high. At this leading order of

density expansion, both Beff and Deff are noted to be independent of the lattice

structure. In particular, they are both relatively accurate for random fluid–solid

composites as long as the density is not close to the tight-packing limit, and the

viscous boundary layer thickness is smaller than the fluid channel width. When the

concentration of scatterers becomes larger and larger, it is expected that higher-

order angular momentum channels in T�1 and G matrices should be included. The

effective sound speeds would then be different for the square and the hexagonal

lattices, but isotropy still holds.

It is instructive to carry the effective dynamic mass density evaluation to a

higher concentration level, by retaining more angular momentum channels in the

T�1 and G matrices. Through a lengthy derivation, the dynamic mass density is

found to be in the form [84–86]

Deff ¼ ðD2 þ D1Þ þ ðD2 � D1Þð f � gÞ
ðD2 þ D1Þ � ðD2 � D1Þð f þ gÞD1; (5.20)

where [87]

g ¼ 768
M4

p

	 
2

f 4 � 0:3058f 4 (5.21)

for the square lattice, and

g ¼ 1; 620
M6

p2

	 
2

f 6 � 0:0754f 6 (5.22)

for the hexagonal lattice. Here the lattice sums

M4 ¼
X
h 6¼0

J4 Khað Þ
Khað Þ2 e4iyh (5.23)
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and

M6 ¼
X
h 6¼0

J6 Khað Þ
Khað Þ e6iyh (5.24)

are defined in the reciprocal spaces of the square and hexagonal lattices, respec-

tively, withK
*

h ¼ Kh; yhð Þ denoting the reciprocal lattice vector in polar coordinates
and abeing the lattice constant. In contrast, the EBM is still given by (5.18), i.e., the

Wood’s formula.

Comparing (5.20) with (5.19), we notice that the effective mass density is

modified by a correction term, g. When the filling fraction of the inclusions is not

very high, g is very small so that it can be safely neglected. When this happens,

(5.20) reduces to (5.19), i.e., the dipole solution. However, in case of high concen-

tration of inclusions, Berryman’s expression, i.e., (5.19), should be modified to

incorporate the influence of higher-order scattering coefficients.

It is worth noting that the correction term g is proportional to f 4 for the square
lattice and to f 6 for the hexagonal lattice. Common sense tells us that the correc-

tion term should be quadratic in f, but here the correction term g is obviously

determined by the symmetry of the square and hexagonal lattices. This point can be

easily understood since the coefficients in front of f 4 (square lattice) and f 6

(hexagonal lattice) are respectively the lattice sums M4 and M6 defined by (5.23)

and (5.24), and they are clearly determined by the lattice symmetry.

If the matrix is made of solid instead of liquid, we can also take the low-

frequency limit on the MST in a similar way. But a different effective medium

formula for the mass density may be expected since in a solid matrix not only the

longitudinal wave but also the transverse waves can propagate. It is well known

that in 2D phononic crystals, when the wave vector is confined in the 2D plane (i.e.,

the x–y plane) perpendicular to the cylinder axis direction (i.e., the z-direction), the
elastic waves can be decoupled into an out-of-plane transverse z mode and an

in-plane mixed xy mode.

For the transverse zmode, the displacement is perpendicular to the x–y plane and
thus easier to deal with. By taking the low-frequency limit and retaining the

dominant terms, the T�1 � G matrix can also be simplified to a 3 � 3 matrix [5]:

T�1 �G¼ 4i

pr2
1

b21

m2 þ m1
m2 � m1

þ f
x2

1� x2
ixf

1� x2
e�iy0 � f

1� x2
e�2iy0

� ixf

1� x2
eiy0

D1

D1 �D2

þ f
x2

1� x2
ixf

1� x2
e�iy0

� f

1� x2
e2iy0 � ixf

1� x2
eiy0

m2 þ m1
m2 � m1

þ f
x2

1� x2

2
66666664

3
77777775
;

(5.25)
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in which x ¼ Veff=V1 is the quantity to be evaluated. By solving (5.25), we obtain

the effective transverse wave velocity of the composite as

Veff ¼
ffiffiffiffiffiffiffiffi
meff
Deff

r
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm2 þ m1Þ þ ðm2 � m1Þf
ðm2 þ m1Þ � ðm2 � m1Þf

m1

ð1� f ÞD1 þ fD2

vuuut
: (5.26)

It can be recognized from (5.26) that the effective shear modulusmeff, determined

by the n ¼ 1 angular channel [see (5.25)], is given by

meff ¼
ðm2 þ m1Þ þ ðm2 � m1Þf
ðm2 þ m1Þ � ðm2 � m1Þf

m1: (5.27)

It is interesting to point out that (5.27) has the same form as (5.19), and this

similarity is due to the fact that both meff and Deff arise from the n ¼ 1 angular

channel scattering.

According to (5.26) and the effective shear modulus expression for meff , i.e.,
(5.27), we arrive at the volume-averaged mass density expression for the transverse

z mode:

Deff ¼ reff ¼ ð1� f ÞD1 þ fD2; (5.28)

which is distinct from the fluid-matrix case. Here the effective mass density for the

solid-matrix composite is determined by the n ¼ 0 angular channel. Equation (5.28)

for the solid matrix case is noted to be identical to that found by Berryman [83]

through a different approach.

If we let m1 ! 0, then according to (5.27), we have meff ! 0. That is, when the

solid matrix is gradually reduced to the limit of zero shear modulus, the whole

composite would also act like a zero-shear modulus system, i.e., the composite

behaves like a fluid. However, it is important to note that even in this limit, the

volume-averaged density formula, i.e., (5.28), still holds. Therefore, by first taking

the o ! 0 limit and then the m1 ! 0 limit, we arrive at the volume-averaged mass

density expression. However, reversing the order of taking the two limits leads to

the expression given by (5.19). Therefore, the order of taking the two limits cannot
be interchanged, as explained in the introductory Sect. 5.1.

5.5.3 Comparison with Experimental Data

Cervera et al. have measured the sound velocity in a 2D phononic crystal composed

of hexagonal array of aluminum cylinders in air [86]. Here the frequency of sound

is 600 Hz, and the wavelength of sound in air, 57 cm, is much larger than either the

cylinder diameter or the lattice constant. The wavelengths of sound in Al, for both
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longitudinal and transverse waves, are even larger. The use of effective medium

theory is thus justified. The viscosity and mass density of air at normal temperature

are 1:827� 10�5Pa s and 1.292 kg/m3, respectively. At the experimental frequency

of ~600 Hz, the viscous boundary layer thickness ‘vis ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� rairo=

p ¼ 6:12� 10�3

cm is much smaller than either the cylinder diameter, the lattice constant, or the

fluid channel width ‘. Thus the condition ‘ � ‘vis is valid.
In the experiment, the maximum filling ratio of Al cylinders is about 0.36, shown

as open triangles in Fig. 5.27, where it can be seen that there is nearly an order of

magnitude discrepancy between the experimentally measured velocity with that

predicted by using the volume-averaged mass density and the EBM Beff given by

(5.18). In contrast, when the dynamic effective mass density, (5.19), is used,

excellent agreement is seen.

For higher filling ratio of Al cylinders, we have used COMSOL Multiphysics, a

finite-element solver, to perform a band-structure calculation for the same periodic

system. From the band structure, i.e., the dispersion relation, one can compute the

effective wave speed by using c ¼ o=k in the low-frequency limit. The

corresponding results are plotted in Fig. 5.27 in green circles. They are seen to be

in excellent agreement with (5.20), as shown with red solid curve, where the

correction term g is included.

In Fig. 5.28a, we show the numerically calculated displacement field intensities

for the relevant experiment. It can be seen that the displacement field is nearly zero

inside the cylinders, hence it is almost impossible to have the condition for the

validity of volume-averaged density formula. However, when the impedance mis-

match is relatively moderate, e.g., when the mass density contrast is small, then the

effective dynamic mass density reduces the volume-averaged mass density, which

means that the static mass density is a special case of the dynamic mass density. For

comparison with Fig. 5.28a, we have also plotted the displacement field intensities

for the poly(methyl methacrylate) (PMMA)–water system in Fig. 5.28b, in which

the wavefield homogeneity is very evident. As our derivation of the dynamic mass

density is obtained by taking the long wavelength limit of the scattering wave field

solutions, it is not surprising that such formula inherently accounts for the wavefield

inhomogeneities as they exist in reality. As explained in Sect. 5.1, the relative
motion between the components of a composite is the basic reason leading to the

difference between the static and dynamic mass densities, and such relative motion

is evident when the impedance mismatch is large and ‘>>‘vis.
In a solid-matrix composite, the presence of a nonzero shear modulus for the

matrix component means that in the long wavelength limit, uniform motion of the

matrix and the inclusions is guaranteed. As a result, the dynamic mass density for

the solid-matrix composites is always the volume-averaged value. When one

further takes the limit of m1 ! 0 in that case, only the relative ratio of the

longitudinal wavelength to the transverse (shear) wavelength is altered, which is

the reason that the effective mass density expression still remains the same as the

static mass density.
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5.6 Concluding Remarks

Acoustics has been one of the oldest topics of scientific investigation. Its robust

revival during the past two decades has been a most gratifying experience for many

researchers in this area. The purpose of this chapter is to give a vignette on some of

Fig. 5.28 (a) MST-calculated displacement field intensities in a 2D hexagonal lattice of Al

cylinders in air, with the relevant experimental parameter values as stated in the text. Blue
indicates low field intensity, and yellow indicates high field intensity. The wave vector is along

the y-direction, with a being the lattice constant. It is seen that the wave amplitude is nearly zero

inside the Al cylinders. Decreasing the frequency further does not alter this fact. (b) The same for

PMMA cylinders in water. Wave field is seen to be much more homogeneous than that in (a).

Figure adapted from [4]

Fig. 5.27 The effective sound velocities calculated with the effective bulk modulus given by

Wood’s formula with volume-averaged mass density (solid squares) and with the mass density

given by (5.19) (solid triangle). Experimentally measured effective sound velocity is shown as

open triangles. While the volume-averaged mass density gives results very far removed from the

experiment, the mass density given by (5.19) is shown to yield almost perfect agreement with

measured results when the filling ratio of the Al cylinders is not very high. When the filling ratio is

larger than 0.6, however, the correction term g should be included [see (5.20)], with the prediction
shown by the red solid curve. It can be seen that the prediction of (5.20) agrees very well with the
finite-element simulation results, shown as green dots, even when the filling ratio is close to the

tight-packing limit
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the more recent developments. In particular, we present an overview on the

different ramifications of the dynamic mass density issue that includes both

the acoustic metamaterials manifestations and the effective mass density of

fluid–solid composite in the zero frequency limit. The connection with the anti-

resonance behavior is emphasized and clarified, especially with respect to the

membrane-type acoustic metamaterials. A brief review of other types of acoustic

metamaterials is also included.

In contrast to electromagnetic metamaterials, the role of dissipation is minimal

for acoustic metamaterials—at least in the low-frequency limit. However, since the

presence of dissipation is inevitable, its consideration, while still in the incipient

stage at present, may become more important in the future. Another issue is the role

of evanescent waves, which can be expected to play an increasingly important part

in transformational acoustics, just as in the case of electromagnetic metamaterials.

However, unlike the electromagnetic case, the elasticity of solid composites has

more parameters and therefore can be expected to display a much richer variety of

behaviors. An example along this direction is the recent work on hybrid elastic

solids [79].

Potential applications of acoustic metamaterials would undoubtedly be a con-

sideration for the future developments in this area. Pursuit of such a worthy goal

may not only open up new topics for basic research, but can also impact those

disciplines that are traditionally related to acoustics—such as architecture, noise

pollution, medical ultrasound, acoustic imaging, etc. Cross-disciplinary pollination

can imply exciting potential possibilities.
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