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A simple effective-medium theory is presented, which is shown to reproduce sedimentary rocks’
striking microstructural feature of bicontinuity for the fluid and solid phases at any finite porosity.
The effective medium involves three components—fluid, solid, and cement material —whose ma-
terial properties are related to those of the composite through a differential effective-medium
scheme. The theory provides a unified explanation for the observed correlations in both the electri-

cal and elastic characteristics of sedimentary rocks.

I. INTRODUCTION

As one of nature’s most abundant forms of matter,
rocks are known to display a rich variety of physical
characteristics. In particular, the diversity in their pore
geometries is easily evident in any cursory inspection of
rock sample pictures. It may seem surprising, therefore,
that the electrical and elastic properties of sedimentary
rocks would display the approximate correlations with
porosity ¢ that have come to be known, respectively, as
the Archie’s law' and the Wyllie equation.? Besides their
importance in geophysical exploration, these correlations
suggest that in spite of the apparent disorder, rock struc-
tures nonetheless possess some unifying statistical charac-
ters. For example, Archie’s law states that the electrical
conductivity o of a fluid-filled sandstone may be ex-
pressed as 0 =0 ; ¢, where o is the fluid conductivity,
and m =2. Viewed in the framework of the percolation
theory, Archie’s law implies that sandstones are inhomo-
geneous composites with a structure that insures the per-
sistence of its pore connectivity to very low porosities.
The nonlinear exponent value of m ~2 is also suggestive
that only a subset of the pore space actually contributes
to conduction.

In 1981, Sen, Scala, and Cohen® pointed out that the
characteristics of the Archie’s law may be captured by a
differential effective-medium (DEM) theory, originally
proposed by Bruggeman. However, while the DEM
theory and its generalization to the elastic case’ are suc-
cessful in explaining some aspects of the observed rock
properties, yet they suffer from the crucial drawback that
the theory pertains only to a microstructure whose solid
component is disjoint.® The DEM theory therefore can-
not account for many of the elastic characteristics of a
consolidated rock. In fact, no known effective-medium
theory is able to reproduce sedimentary rock’s striking
microstructural feature of bicontinuity for both the fluid
and solid phases at any finite porosity.’

In this work, I present a three-component DEM theory
in which solid grains are consolidated through the pres-
ence of a third component—cement material. By also
preserving the connectivity of pore space (fluid com-
ponent), the theory is thus capable of modeling the elec-
trical and elastic properties of sedimentary rocks within a
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unified framework. Besides offering a consistent basis for
cross correlating electrical and elastic characteristics, the
theory gives an excellent account of the measured corre-
lations between the shear wave and sonic wave velocities
and predicts corrections to the Wyllie equation that are
consistent with observed deviations. In addition, while
cement is treated as the third component mathematically,
this theory can easily model a two-component composite
by setting the physical properties of the cement com-
ponent as equal to that of the solid. The bicontinuity of
the fluid and solid phases would still be preserved in that
case. In what ensues, description of the model in Sec. II
is followed by a discussion in Sec. III of the microstruc-
ture implied by the model. The calculations of the elec-
trical and elastic properties of the model are presented in
Secs. IV and V, respectively.

II. MODEL DESCRIPTION

In the context of dielectric properties, the differential
effective-medium theory was first introduced by Brugge-
man* to calculate the conductivity of a two-component
composite whose structure is formed by successive itera-
tions that may be described as follows. If we have an
effective-medium theory, say for the dielectric property of
a two-component medium, it can always be expressed as

F(1—4,%,,1,3,,3)=0, )

where 1 is the volume fraction and X, the complex con-
ductivity of the second component, 1—1 and X, denote
the similar quantities of the first component, and 2 is the
effective conductivity of the composite. Here X=¢
—iwk /4w, where o is the conductivity, «k the dielectric
constant, and @ denotes the angular frequency. Starting
with a homogeneous component one, we want to replace
a fraction Ay by component two. The change in the
effective 2 from 2=3, at y=0to =, +AZ at y=Ay may
be expressed as

(OF /0v) =

(3F /3%),— AYy=g(2,2,)A¢ . (2)
To carry out further iterations, we simply replace =, by
2 of the new homogenized composite medium, and
remember that now Ay stands for the amount of the
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composite replaced by component one, in which only an
amount A, .. Oof component two, where Ay, )
=[1=Yctuan]A¥, is actually added. Therefore, we
should replace Ay by Ay /(1—14). The final mathemati-
cal equation is therefore

de _ _dy
g(3,2) 1—¢’

(3)

which is to be integrated to the desired ¥ value with the
initial condition of 2=3, at ¥=0.

Whereas in the two-component DEM theory the com-
ponent one is identified as the fluid and the component
two the solid, in the new three-component DEM theory I
propose that the component one, the starting phase, be
composed of a mixture of fluid and cement material. In
mathematical terms, the conductivity =, is now the solu-
tion of the effective-medium equation

F(l_f’zcyfazf’zl)zoa (4)

where 2, and 2, denote the cement and the fluid con-
ductivities, respectively, and 1—f and f their respective
volume fractions in component one. The fluid volume as
a fraction of the total volume, or the porosity ¢, is there-
fore given by ¢=f(1—1). It should be noted here that
while the cement material is treated as a third component
mathematically, physically the theory can easily model a
bicontinuous two-component composite if one sets
3. =3,

For the effective-medium theories in which the parti-
cles of the two components are spherical in shape and are
treated symmetrically, i.e., with respect to the inter-
change of the two components and their volume frac-
tions, a f, (1—f) mixture implies a bicontinuous struc-
ture in which both components form interpenetrating
infinite networks if 0.4<f<0.6% For the three-
component DEM theory, this property is especially im-
portant because on the one hand, starting with a solidlike
phase and replacing it with solid grains would insure the
resulting medium to be solidlike at all concentrations.
On the other hand, due to the special property of the
DEM theory—that the starting component always
remains percolating—the connected state of the fluid
phase (pore space) in the starting medium is preserved by
the DEM substitutional process. Thus the resulting com-
posite is always biconnected at all finite porosities with
the solid phase consolidated by the presence of cement
material. The constraint of 0.4<f <0.6 does mean,
however, that ¢ <0.6. This may even be realistic, since it
is indeed rare to have consolidated rocks with ¢ greater
than 60%.

III. MICROSTRUCTURE IMPLIED BY THE MODEL

The function of an effective-medium theory is to de-
scribe the macroscopically averaged properties of an in-
homogeneous medium. As such, its equations cannot be
expected to yield an explicit description of the micro-
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structure for the medium. Nevertheless, one can deduce,
from the derivation of the effective-medium theory, a
consistent physical picture of the microstructure in-
volved. Of course, such a picture cannot be proved to be
unique, nor can quantitative measures about the implied
microstructures be deduced. Yet such qualitative
descriptions of the implied microstructure would still be
valuable because they define the types of microstructures
to which a particular effective-medium theory is applic-
able. It is in this spirit that I wish to discuss the implied
differential effective microstructure and compare it to
that of sedimentary rocks.

In the mathematical description of DEM a crucial as-
sumption is that of medium homogeneity at every substi-
tutional step. This assumption may be realized physically
if the solid grains are successively larger in size at every
replacement step so that the smaller-sized inhomo-
geneities of the medium would appear homogeneous on
the scale of the (larger) replacing grains.®> However, in re-
lating this picture of the two-component DEM micro-
structure to the actual rock structures one recognizes
that the extremely large range of grain sizes implied by
the DEM is usually not observed.

The introduction of cement material as the third com-
ponent, which is a physically identifiable component in
rocks, is seen to resolve this issue. Since the solid grains
are now fused by cement, they can no longer be regarded
as separately identifiable particles. Instead, a physical
“grain” may mean a cluster of consolidated solid parti-
cles broken from the solid matrix at points of weakest
connections. Since the smaller solid particles now serve
as surface features on much larger particles, the diversity
in the grain sizes as implied by the microstructure of the
two-component DEM directly translates into a diversity
of pore surface features, which have actually been ob-
served in careful experiments.”'® The elimination of the
smaller-size scales in what may be counted as a “‘grain”
also narrows the observable grain size distribution.

It should be pointed out that this effective-medium for-
mulation does pose an unrealistic implication. That is,
whereas in real rocks such as sandstones the cement is ex-
pected to be concentrated in the solid-grain-solid-grain
contact region and the fluid is expected to be concentrat-
ed in the pore region, in this theory the fluid and cement
are intimately mixed. However, as shown in the follow-
ing sections, this aspect of the model apparently does not
affect significantly the realism of the macroscopic behav-
iors when compared with those of sedimentary rocks.

IV. ELECTRICAL PROPERTIES —
GENERALIZED ARCHIE’S LAW

To calculate the electrical properties for the new
effective medium, we start by writing down the effective
medium (EM) theory for a two-component compos-
ite.'"12 The component particles are taken to be
spheroidal in shape with depolarization -coefficients
L,=L and L,=L;=(1—L)/2. The EM theory then
predicts X in terms of 2, 2,, and the volume fraction ¢
of component two, where X solves the following equa-
tion:
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In accordance with the procedures for constructing the
DEM as outlined earlier, the differential equation to be
integrated for the value of X is given by Eq. (3), where
g(Z,3,) can be obtained by differentiating F as given by

Eq. (2). Integration of Eq. (3) with the initial condition
3(p=0)=2X, yields
b Z,+y2 -3
o _ |~ 1TY2, 2 ©6)
f 3z >+v3, 3,—-3,
where
a=3L(1—-L)/(3L +1),

b=2(3L —1)*/[(5—3L)(1+3L)],
and

y=(1+3L)/(5—3L) .
Now in the three-component DEM X, is obtained by the

solution of Eq. (5) with L =1. That means
3= [N +(N?*+82,3,)' 7], (7a)
N=Q2-3/)Z2,—(1-3/)2, . (7b)

Equations (6) and (7) constitute the general equations for
the calculation of complex conductivity = in the three-
component DEM model.

If we specify that solid and cement are insulating and
only fluid has finite conductivity o £ then at w—0 we
have £,=0,,3 =Z2,=0. Combining Egs. (6) and (7) in
that limit gives

o=kos¢", (8a)
=(5—3L)/[3(1—L?], (8b)
k=03f—1)/2f". (8c)

Equation (8a) is recognized to be in the form of general-
ized Archie’s law.!®> The two constants of the theory, L
and f, are noted to be uniquely fixed by the two parame-
ters m and k. Requiring m to be in agreement with the
Archie’s value of 2 yields L =0.73, which in turn gives
a=0.186, b=0.314, and y=1.132. This value of
L ~0.73 implies that the solid grains are oblate spheroids
with an aspect ratio of approximately 4.5. For m =2, the
additional requirement that 0.4<f <0.6 means that
2 <k <L, with f =0.5 at k =1. It should be noted that,
since Eq. (8) is obtained by setting £, =3,=0, i.e., the ce-
ment material is identical to that of the solid, the
Archie’s law does not require a distinct third component
for its validity. This explains the observation of Archie
behavior in fused glass beads system'* where there is no
distinct “‘cement” material.

At finite frequencies one has to solve Egs. (7) and (8)
with the values of a, b, and y specified by Archie’s ex-
ponent. Since physically 2. may be due to the clay con-
tent, 2. itself can be a functlon of o, and ®. The com-
plex behavior that results may be shown!® to mimic the
surface conductivity'® and multiple relaxation times.

JZ+L3,

[

The Archie’s law may be understood physically as a
statement that only a subset of all the pore volume is
effective in electrical conduction, e.g., at ¢=0.1 only
10% of the pore volume is effective. The ineffective
volume can come about in two ways. In the picture of
the percolation theory, the explanation involves the glo-
bal connectivity of the pores. The ineffective volume in
this case is caused by dead ends. However, this percola-
tion explanation has two potential problems. The first
one is the existence of a finite percolation threshold. This
problem may be overcome by assuming the pore space to
have the shape of infinite tube or sheets. The second
problem, which I regard as the main drawback, is the
narrow range of the porosity values (around the percola-
tion threshold) in which the power m can deviate from 1.
For ¢ values that are removed from the threshold by a
few percent the exponent m quickly reverts to 1. This
certainly does not agree with Archie’s law. In contrast,
the DEM theory offers a “local” explanation for the
ineffective volume, which arises from the local geometry
in which the diameters of the pores are larger than the
connecting throats. Since only the throats are effective in
conduction, much of the pore volume is thereby wasted.
This explanation has the advantage of naturally yielding
no percolation threshold as well as a wide range of poros-
ity values for the nonlinear o —¢ relation. In the context
of the fused-grain model, Roberts and Schwartz!” have
proposed this local mechanism as a possible explanation
for Archie’s law. However, in that model there is always
a percolation threshold at a few percent porosity, which
does not agree with Archie’s law.

V. ELASTIC PROPERTIES

For the elastic properties of the effective medium, three
parameters are needed for their description in an isotro-
pic solid: the density p, the sonic wave modulus 3, and
the shear wave modulus u. The sound wave, or p wave,
speed is then given by V,= \/B/p, and the shear wave, or
s wave, speed is glven by V.= \/p, /p. The effective-
medium theory for predicting the effective B,u,p in terms
of By, Ba, 11, 12, P15 P2, and ¢ has been derived by Berry-
man, ° and the equations can be written as a pair of cou-
pled equations

G(1_¢’31,#1,¢,BZ,H2,B,M)=0 ’ (9a)
(l_lﬁ,B],,ﬂl,"ﬁ,Bz,ﬂz,B,/L):O ’ (9b)

plus p=(1—14)p, +vyp,. The explicit forms of the func-
tions G and H, which depend on L, are given in Ref. 18.
To get the DEM equations from the effective-medium
theory, we follow the same procedure as that for the elec-
trical case. Namely, dB/dvy and du/dy are solved in
terms of the partial derivatives of G and H (with re-
spect to i, B, and u) evaluated at y=0. Schematically,
we may write, dB=gB(Bl,‘u1,Bz,y2)d¢ and
du=g"(B,p,B:1,)d . By replacing B,,u; by B,u and
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dy by dy/(1—1), one gets a pair of coupled differential
equations:

~ 2k ) B el By (10a)
(1—¢)§%=g“(b’,uﬁz,u2> (10b)

In general, the form g?* can be written as

4 B !

S (A2fu,+BUfB,) =

n,1=0 ,Uz u
ght=p— - (100)

B

",;:0( Crity+D, 13y :5; m

where the values of the coefficients are dependent on L.
For L =0.73 these values are tabulated in Table I. Equa-
tions (10a) and (10b) are to be integrated with the condi-
tions of B=pf,, u=pu, at Yy=0. For the three-component
DEM, fB,,uu, are identified with those of the solid, and
By, p, are the solutions of Eqgs. (9a) and (9b) with L =1:

Br ' = =B+ 4y —p )]
+fB+ 4=l (11a)
(+) ' =0=fNp,+D 7"+ f(u,+D)7",  (11b)

where
J :#1(9[31_4#1 )/(

Equation (10) is noted to depend only on the properties of
the solid, denoted as component two. The values of u,
and f3; as given by Eq. (11) enter only as the initial values
for the integration of Eq. (10). However, mathematically,

68, +4u,)

PING SHENG 41

there is nothing sacred about ¥=0 as the starting point
of integration for Eq. (10). In fact, if u, and B, are
known, sometimes it would be more convenient to use the
measured pu and B values at a particular porosity as the
starting point of integration. In that case one would be
integrating backwards in 9 to y=0. The u, and 3, values
can then be viewed as directly determined by one data
point. From the knowledge of i, and 3, one can easily
solve Eq. (11) backwards to get . and .. This is the ap-
proach I will use in the following to fit the elastic data.

In Fig. 1 I show the data by Pickett'® on the interval
travel times ¥, ' and V"' for sandstones and dolomites.
In order to carry out the calculations so as to compare
with the data, I first choose the values of 3, and pu, for
the sandstone solid grains as those for the a quartz,zo i.e.,
a V,/V; ratio of 1.5, dens1ty P2=Psotia=2-65 g/cm?, and
yZ:O 45x10" dynes/cm These translate into a
B,=1X10"? dynes/cm?. Instead of starting at =0
(¢=0.5), the integration of the coupled differential Eqgs.
(10a) and (10b) is begun at a measured data point of
Vp_l=58.2 usec/ft and V. '=92 usec/ft. The porosity
of that initial data point is treated as a slightly adjustable
parameter so as to put the calculated porosity range in
the middle of those measured samples. The resulting cal-
culated ¥, ! versus V"' curve is noted to be insensitive
to the exact value of the initial ¢ value. In this case we
let the starting porosity ¢ =8% since the porosity of the
measured samples ranges from 5% to 30%."° The solid
line that goes through the sandstone data represents the
result of our numerical calculations, where

Vv, '={[¢+2.65(1—¢)]/B}'"*,
Vi '={le+2.65(1—=¢)1/n}' 7,

TABLE 1. Coefficients in Eq. (10c) evaluated at the value of L=0.73. Within each group the coefficients are arranged in the fol-
lowing order: top line— 4%, B%; middle line— A4*, B; bottom line—C, D.

I}
n 0 1

2 3 4

0.671, —0.503 2.864, —2.148 3.154, —2.365 0.46, —0.345 0, 0

0 0.395, —0.296 1.561, —1.170 1.436, —1.077 0, 0, 0, 0
0.057, —0.043 0.357, —0.267 0.718, —0.539 0.46, —0.345 0, 0

—2.683, 1.509 —3.961, 0.502 4.803, —6.530 3.319, —2.137 0.345, O

1 —1.579, 0.888 —2.53, 0.425 1.052, —2.619 0, 0 0, 0
—0.229, 0.129 —0.398, —0.018 1.232, —1.702 1.999, —2.137 0, 0

4.024, —1.509 —5.298, 5.44 —11.390 2.623 4910, —3.541 2137, 0

2 2.368, —0.888 —1.774, 2.661 —4.22, 0.969 0, 0 0, 0
0.344, —0.129 —0.946, 0.838 —3.044, 0.546 0.535, —3.541 0, 0

—2.683, 0.503 11.025, —3.794 —4.245 6.272 —4.084, —1.477 3541 O

3 —1.579, 0.296 4.895 —1916 —0.461 2.727 0, 0 0, 0
—0.229, 0.043 1.659, —0.553 —0.479 1.695 —1.966, —1.477 0, 0

0.671, 0 —4.63, 0 7.678 0 —4.605, 0 1477, O

4 0.395, 0 —2.152, 0 2.193, 0 0, 0 0, 0
0.057, 0 —0.672, 0 1.573, 0 —1.028, 0 0, 0
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FIG. 1. Comparison between the Vp’l vs ¥, ! data on sand-
stones and dolomites (Ref. 19) with theory, indicated by solid
lines. Here the open squares denote the sandstone data, and
solid circles denote the dolomite data.

and we have assumed p,=p;4- The agreement with
data is striking since our result is almost indistinguish-
able with the curve that gives the best least-squares fit to
the measured points, and we have used only one data
point as the initial condition in the calculation. At
V,” =140 usec/ft, our porosity is 21%, well within the
measured upper limit of 30%. A similar procedure for
the dolomites yields equally good agreement. In that case
I have used

Psolia =P =2.85 g/cm’ ,
B,=1.55X10"? dynes/cm?
and

1,=0.46X10'? dynes/cm?

for the dolomite matrix.”® The beginning porosity value
used is 10%, and ¢$=20% at V,”'=140 usec/ft. This
again is within the range of $=9-25 % for the dolomite
samples. In both cases the integration can be carried to
¢=50% (¢y=0), and by solving Eq. (11) in reverse for the
cement properties, given

Bip(=B,u at $=0.5) ,
By=2.61X 10" dynes /cm?, pr=0,
and assuming f =0.5 as required by Archie’s law, we get
B.=1.24X 10" dynes/cm? ,
u, =0.23X 10" dynes/cm?
for sandstones, and
B.=1.23X10'? dynes/cm? ,
p.=0.32X10'2 dynes/cm?

for dolomites. Since the two internal parameters of the
theory, L and f, are both fixed by the electrical behavior
(k and m of Archie’s law), the agreement with elastic
characteristics may be viewed as a convincing consisten-
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FIG. 2. Theoretically calculated porosity vs interval travel

time curves for both the p wave and the s wave. (a) Sandstones,
(b) dolomites.

cy check for the theory. It should be noted, however,
that there is significant scatter in the data. This reflects
the fact that while porosity and microstructure are the
dominant factors affecting V, and V, they are by no
means the only ones. Degree of compaction, clay con-
tent, gas saturation, etc., are all possible sources for devi-
ations.

In Figs. 2(a) and 2(b) I show the calculated interval
travel time variations with the porosity ¢. In the figures,
the dashed lines denote the Wyllie equation, ¥,
=(1=¢)V i + 6V aly, where the fluid velocity is taken
to be 5300 ft/sec. It is seen that the Wyllie equation con-
sistently predicts a higher porosity. This type of devia-
tion has been summarized in the Schlumberger logging
manual®!' by an empirical correction factor that tends to
lower the predicted porosity from a given V;l. The
present theoretical results are consistent with these
empirical observations. Also, instead of calculating
fluid-saturated moduli one can calculate the empty-frame
moduli. Here the Wyllie equation completely breaks
down because V,=0 would imply V=0. In this
effective-medium theory, however, the p-wave velocity is
calculated to be only 5-15% lower than those of the
fluid-saturated case. This is again in good agreement
with experimental results.?

In summary, a simple three-component DEM theory is
formulated and shown to yield a number of electrical and
elastic behaviors that are characteristic of sedimentary
rocks, thus pointing out their common microstructural
origin. Further implications of the theory are presently
under contemplation.
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