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Abstract

Electrorheological (ER) fluids, consisting of solid particles dispersed in an
insulating liquid, display the special characteristic of electric-field-induced
rheological variations. Nearly six decades after their discovery, ER fluids
have emerged as materials of increasing scientific fascination and practical
importance. This review traces the mechanisms responsible for these fluids’
ER response and their attendant theoretical underpinnings. In particular,
ER fluids are divided into two different types, dielectric electrorheologi-
cal (DER) and giant electrorheological (GER), which reflect the underlying
electric susceptibility arising from the induced dielectric polarization and
the orientational polarization of molecular dipoles, respectively. The for-
mulation of a continuum ER hydrodynamics is described in some detail. As
an electric-mechanical interface, ER fluids have broad application potential
in electrifying the control of mechanical devices. This review focuses on
their applications in microfluidic chips, in which GER fluids have enabled a
variety of digitally controlled functionalities.
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1. INTRODUCTION

Electrorheological (ER) fluids are a type of colloid whose rheological characteristics can be altered
upon the application of an electric field. Such rheological variation is generally reversible and
occurs within 10 ms. ER fluids can serve as an electric-mechanical interface, and when they are
coupled with sensors (as triggers to activate the electric field), many mechanical devices such
as clutches, valves, and dampers may be converted into active mechanical elements capable of
responding to environmental variations. Hence ER fluids are sometimes denoted as a type of smart
fluid. The diverse application potential has made ER fluids a persistent topic of study ever since
their discovery over six decades ago by Winslow (1949). Initially treated as a subject of scientific
curiosity, the ER effect and the attendant search for better ER materials attracted serious research
efforts beginning in the late 1980s, fueled undoubtedly in part by their envisioned applications
(Klingenberg et al. 1989; Chen et al. 1991, 1992; Tao & Sun 1991; Davis 1992a,b; Halsey 1992;
Bullough 1996). In particular, there has been extensive research into the basic mechanisms of the
ER effect (Chen & Conrad 1994, Ma et al. 1996, Tam et al. 1997, Wen et al. 1999, Choi et al. 2001).
The more recent discovery of the giant electrorheological (GER) effect (Wen et al. 2003, 2004;
Huang et al. 2006), together with its appeal in the basic science of nanoparticles and their dynamics,
has provided a new direction in this area. The strong electrical response of GER fluids has been
particularly useful in a diverse array of functionalities in microfluidic chips (Nakano et al. 2002;
Yoshida et al. 2002; Liu et al. 2006a,b; Niu et al. 2005, 2006a,b, 2007, 2009; Wang et al. 2010).

1.1. Heuristic Understanding of the Electrorheological Effect

Let us consider a dispersion of particles in a fluid medium. Both the particles and the fluid are
electrically nonconducting or only slightly conducting, so as to avoid electrical breakdown under
a moderate electrical field. When an electric field �E is applied to such a colloidal dispersion, the
particles will be electrically polarized, owing to the difference in the dielectric constant of the solid
and that of the fluid. If εs denotes the complex dielectric constant of the solid particles and ε� that
of the liquid, then for a sphere with radius R, the induced dipole moment may be expressed as

�p = εs − ε�

εs + 2ε�

R3 �El = β R3 �El . (1)

Here β is the Claussius-Mossotti (CM) factor, and �El should be understood as the field at the
location of the particle, i.e., the local field. The resulting (induced) dipole-dipole interaction
between the particles implies that the random dispersion is not the lowest energy state of the
system, and particles would tend to aggregate and form chains/columns along the applied field
direction (Figure 1). The formation of chains/columns is the reason why such colloids exhibit
an increased viscosity or even solid-like behavior when sheared in a direction perpendicular to
the electric field. However, the formation of chains/columns is governed by the competition
between electrical energy and the Brownian motion of the particles, manifest in the value of
the dimensionless parameter γ = �p · �E/kB T , where kB is the Boltzmann constant and T is the
temperature. For room temperature and �p given by Equation 1, γ > 1 defines the ER regime.
Thus for β1/3 R ∼ 100 nm, the field should be larger than 2 kV cm−1 for the system to be in the
ER regime.

1.2. Two Types of Electrorheological Fluids

Electric polarization of a collection of atoms/molecules can arise in two ways from an applied
electric field. One is the induced polarization process that underlies the traditional ER effect,
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a b c

E

Figure 1
The structural evolution of dielectric microspheres under an increasing electric field, from (a) no field, to
(b) a moderate field of 500 V mm−1, to (c) a strong field of 900 V mm−1. Here the electrorheological fluid
consists of 1.5-μm glass spheres suspended in silicone oil. Figure adapted from Wen et al. (2007).

Breakdown field: the
value of the electric
field at which an
electrical breakdown
would occur

described heuristically above. We denote this type as the dielectric electrorheological (DER)
effect. The other is by aligning the initially randomly oriented molecular dipoles. This second
process is responsible for the GER effect. It is informative to compare the salient features of these
two types of polarization mechanisms and their implications on the ER effect.

An important common characteristic of ER fluids is the yield stress, i.e., the shear stress beyond
which a solidified ER fluid breaks and starts to behave like a fluid. A non-Newtonian fluid that
exhibits such behavior is generally denoted as a Bingham fluid in which the stress-shear rate
relationship is given by τ = τY + ηγ̇ , where τ denotes the shear stress, τY the yield stress, η

the viscosity, and γ̇ the shear rate. From dimensional analysis, τY must be proportional to the
(electric) polarization energy density |− �P · �E|, where �P = N�p is the polarization density, with N
the number density of the solid particles.

For induced polarization, �P = χ �E, where χ = Nα is the dimensionless electric susceptibility.
Hence |− �P · �E| = χ E2; i.e., yield stress varies quadratically with the electric field. Also, because
there is a maximum value of polarizability α = R3, reached at the limit of εs /ε� → ∞, it follows that
there is a maximum value for the dimensionless electric susceptibility χ = Nα � R3/(4π R3/3) ∼
0.24. This maximum value foreshadows the upper bound for the yield stress, 1.38

√
R/δ(ε� E2/8π ),

where δ denotes the separation between the particles. Because the applied electric field is always
limited by the breakdown field, on the order of 5 kV mm−1, the yield stress achievable by most of
the traditional ER effect is usually on the order of a few kilopascals.

For molecular dipoles, the polarization is the result of competition between the alignment
energy − �po · �E = −p0 E cos θ and thermal Brownian motion, where θ denotes the angle between
the electric field and the molecular dipole moment p0. The thermally averaged dipole moment
〈p〉 is given by the Langevin function 〈p〉 = po (coth x − x−1), where x = p0 E/kB T . For x 
1, we
have 〈 �p〉 = po x/3 = [p2

o /(3kB T )] �E, or αp = p2
o /3kB T . It follows that the electric susceptibility

at room temperature has a value χp ∼ Nαp ≈ 4–50, depending on the (maximum) number density
used. Regardless, χp � χ by one to two orders of magnitude, which implies that there is the
potential to break the yield stress upper bound imposed by the induced polarization mechanism,
provided the molecular dipoles can be harnessed to an advantage. However, such expectation must
be tempered by the fact that the electrical manifestations of molecular dipoles are usually masked
either by random orientations, as in the liquid state, or by quadrupolar pairings, as in the case of
solid configurations.

An important development in the study of ER fluids is the discovery of the GER effect in the
dispersion of nanoparticles, comprising barium titanate oxalate [BaTiO(C2O4)2] coated with a
nanoscale layer of urea molecules, in silicone oil (Wen et al. 2003). The GER fluid can exceed
by one to two orders of magnitude the theoretical upper bound on the yield stress imposed by
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the induced polarization mechanism, as well as exhibit a linear dependency of the yield stress
on the electric field that is distinct from that in conventional DER fluids. Below we discuss the
mechanism with which the molecular dipoles of the urea molecules, each with a dipole moment
of 4.6 debyes, are harnessed in achieving the GER effect.

1.3. Outline of This Review

In what follows, Section 2 briefly reviews the DER mechanism and the conceptual advance that
made its quantitative modeling possible. In particular, the variational effective dielectric constant
formulation and the attendant implementation using Bergman-Milton representation theory are
described, together with some comparisons with experiments. The GER effect and its theoretical
underpinnings, both phenomenological and microscopic, are presented in Section 3. Section 4
addresses ER fluid dynamics from the continuum hydrodynamic point of view and presents results
of a numerical implementation with predictions regarding the various aspects of Bingham fluid
behavior. Section 5 briefly reviews the present status of the use of GER fluids to achieve digitally
controlled functionalities in microfluidic chips.

2. MECHANISM OF THE DIELECTRIC
ELECTRORHEOLOGICAL EFFECT

By using the model of induced dipole-dipole interactions, one can demonstrate that for a system
of identical dielectric microspheres dispersed in insulating fluid, the lowest energy state is for
the microspheres to aggregate and form columns along the applied field direction, with a mi-
crostructure inside the columns predictable from the dipole-dipole interaction (Tao & Sun 1991).
However, such a simple picture leaves many questions unanswered. In particular, as the parti-
cles aggregate and touch, multipole interactions (those beyond the dipole interaction) necessarily
become dominant, and the local field effect must also be taken into account. Conductivity and
relaxational effects, appearing as the imaginary part of the particle or fluid dielectric constants,
may also contribute to the DER effect. These complications make the theory of the DER effect
quite complex, and hence most initial work in this area proceeded by direct simulations. Based on a
theory incorporating the dynamics of both fluid and solid particles, Bonnecaze & Brady (1992a,b)
performed simulations on systems comprising 25 or 49 particles, in two spatial dimensions.
Klingenberg and colleagues (1989, 1991a,b, 1993; Klingenberg 1993) carried out simulations
based on the interaction of point dipoles (subsequently also extended to beyond the point dipole
limit) with hard core repulsion, coupled with Stokes hydrodynamic drag on the particles, aimed
at understanding the rheology and kinetics of structure formation in DER fluids. Hass (1993)
performed simulations excluding the Brownian force and analyzed the structure formation from
his data. Similar studies were also performed by Tao’s group (Tao & Jiang 1994, Gulley & Tao
1997). Wang et al. (1996, 2000) considered the many-body effect (e.g., as in the local field effect)
and simulated structure formation and transition in ER fluids. Hu et al. (1994) conducted simula-
tions by considering the torque on solid particles under an AC applied electric field and, based on
a simple model, partly included two-body hydrodynamic interactions. Davis (1992a,b) carried out
finite-element calculations to analyze the force arising from the polarization or conductivity of
the particles. Conrad and coworkers (Chen et al. 1991, Chen & Conrad 1994, Conrad & Sprecher
1994, Shih et al. 1994, Tang et al. 1995a,b) have developed model theories, including the effects
of the conductivity, along with experimental studies.

More recently, Yethiraj & van Blaaderen (2003) used confocal microscopy to experimentally
explore the phase behavior of a colloidal system with a tunable interparticle interaction (from
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hard sphere to soft) under an external electric field. Hynninen & Dijkstra (2005) calculated the
Helmholtz free energy of similar systems using simulations and obtained a full phase diagram that
agreed well with Yethiraj & van Blaaderen’s experimental results. Bossis et al. (2007) developed a
model that reproduced the experimentally measured size distribution of chains and their formation
kinetics in DER fluids. Using confocal microscopy, Agarwal & Yethiraj (2009) found a novel
cellular network phase in a low-density colloidal suspension on the application of a uniform AC
field. Sun & Yu (2003) studied the ground state of DER fluids comprising particles with different
dielectric constants, whereas Shen et al. (2006) investigated the microstructure of polydisperse
DER fluids from an energetics point of view by using the finite-element method. Ivlev et al.
(2008) reported the first observation of the DER effect in complex plasmas by performing a
microgravity experiment as well as a molecular dynamics simulation. It should also be noted that
Choi and coworkers (Cho et al. 2004, Choi & Jhon 2009) have devoted efforts to the fabrication
of polymeric ER materials.

While much can be learned from simulations and experiments about the rheology and hydro-
dynamics of DER fluids, they nevertheless cannot lead to an overview of the DER mechanism that
may allow, e.g., quantitative predictions on the DER rheological effect, resolution on the issue of
the contribution from (or the lack of ) the conductivity of the solid particles and the fluid, and the
theoretical formulation for obtaining an upper bound on the DER effect. In particular, the upper
bound can be useful in providing a picture of the characteristics of the optimal DER particles,
as well as the necessary guidelines for engineering designs involving the use of DER fluids. The
following section proposes a variational theory that can address all these relevant issues.

2.1. Variational Effective Dielectric Function Formulation

The microstructural variation accompanying the field-induced rheological characteristics should
also have electrical manifestations. In particular, because the solid-fluid composite becomes
anisotropic under the application of an electric field, such anisotropy must be reflected in the
effective dielectric constant of the system. Here the effective dielectric constant is defined by

〈 �D〉 = ε̃eff 〈 �E〉, (2a)

ε̃eff =

⎛
⎜⎝ε̄xx ε̄xy ε̄xz

ε̄yx ε̄yy ε̄yz

ε̄zx ε̄zy ε̄zz

⎞
⎟⎠ , (2b)

where 〈 �D〉 denotes the spatially averaged displacement field, 〈 �E〉 is the spatially averaged electric
field (assumed to be along the z direction), and the matrix elements of ε̃eff are complex in general
[in the form of κ + i (4πσ/ω), with σ the conductivity and ω the angular frequency of the applied
electric field].

The concept of the effective dielectric constant is based on the nature of the electromagnetic
wave interaction with inhomogeneous materials. When the wavelength is much larger than the
scale of the heterogeneities, the microstructure can no longer be resolved, and the composite
appears homogeneous to the probing wave. In that limit, the electromagnetic response of the
composite is fully captured by the effective dielectric constant tensor (Bergman & Stroud 1992).

The effective dielectric constant–tensor elements are dependent on the relative volume frac-
tion(s) of the constituents and their respective dielectric constants, as well as the anisotropy and the
microstructure of their arrangement. In particular, differences in the close-packed microstructures
ought to be reflected in the effective dielectric constant–tensor elements, provided the theory for
their evaluations is sufficiently accurate.
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The dielectric constant tensor directly participates in the Gibbs free energy density expression
f of the fluid-solid composite:

f = − 1
8π

�E · Re(ε̃eff ) · �E − TS = − 1
8π

Re(ε̄zz)E2 − TS, (3)

where S denotes entropy, and Re( ) means that we take the real part of the quantity in the
parenthesis. As the stated focus of this review is the ER effect, we may treat the entropy term
as small when compared to the electrical part of the energy. A variational formulation of the
DER problem may then be obtained by requiring the minimization of f through the maximization
of Re(ε̄zz) with respect to the microstructure of the solid particles (Ma et al. 1996). A successful
program in carrying out this maximization would not only obtain the DER ground-state structure,
but also lay the basis for the quantitative evaluation of the rheological characteristics that can arise
from the distortion of such a structure (Ma et al. 1996, Tam et al. 1997).

The variational effective dielectric constant approach solves, in one step, all the difficulties
posed above. In particular, the local field effect and the multipole interactions are all accounted for,
provided the effective dielectric constant can be evaluated accurately. In addition, the contribution
of the imaginary part of the dielectric constant may also be incorporated through the imaginary
parts of the components’ dielectric constants.

2.2. Effective Dielectric Constant: The Bergman-Milton
Spectral Representation

To evaluate ε̄zz, we find that the Bergman-Milton spectral function representation (Bergman
1978a,b, 1985; Milton 1979, 1981a,b, 2002; Bergman & Stroud 1992) of the effective dielectric
constant provides the best approach for our purposes. The starting point of our considerations is
the Laplace equation

∇ · [ε(�r)∇ϕ(�r)] = 0. (4)

Here ϕ is the electrical potential, i.e., �E = −∇ϕ, and ε(�r) is the local dielectric constant, given by

ε(�r) = ε�

[
1 − 1

s
ϑ(�r)

]
, (5a)

where

s = ε�

ε� − εs
, (5b)

ε� denotes the liquid dielectric constant, and εs is the solid dielectric constant. Here ϑ is the
characteristic function, defined to be 1 inside the solid particles and zero elsewhere. The micro-
geometric information of the system is captured by ϑ . In contrast, the parameter s (which can be
complex) contains the material characteristics. For later developments, it is important to note that
if the dielectric constants are real, then the value of s is either greater than 1 or less than zero. In
other words, a real s cannot take any value between zero and 1. Equation 4 is to be solved with the
boundary conditions ϕ(x, y, z = 0) = 0 and ϕ(x, y, z = L) = L (i.e., average Ez = −1). As ε̄zz is
defined by

ε̄zz = 1
V

∫
dV {ε�[1 − ϑ(�r)] + εs ϑ(�r)}∂ϕ(�r)

∂z
, (6)

it is not difficult to show that (see below) it can be expressed in the spectral representation

ε̄zz = ε�

(
1 − 1

V

∑
u

|〈z|ϕu〉|2
s − su

)
, (7)
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where ϕu and su are respectively the eigenfunctions and their associated eigenvalues of the integral
(Hermitian) operator �̂, defined as

�̂ =
∫

dV ′
ϑ(�r ′)∇′G(�r, �r ′) · ∇′. (8)

Here G(�r, �r ′) = 1/4π |�r−�r ′| is the Green function, and �̂ is Hermitian with the following definition
of the inner product:

〈ψ |ϕ〉 =
∫

dVϑ(�r)∇ψ∗(�r) · ∇ϕ(�r). (9)

Equation 7 can be derived by first noting that Equation 6 can be expressed in the inner product
form as

ε̄zz = ε�

(
1 − s −1

V
〈z|ϕ〉

)
.

A formal solution of the potential may be obtained by rewriting Equation 4 as a Poisson equation:

∇2ϕ = 1
s
∇ · [ϑ(�r)∇ϕ].

Solving this equation by integrating the inhomogeneous source term on the right-hand side with
the Green function yields

ϕ = z + 1
s

�

�ϕ,

where z represents the homogeneous part of the solution, given by the applied electric field
Ez = −1. A formal solution of the potential is then obtained as

ϕ =
(

1 − 1
s

�

�

)−1

z.

This formal solution can be expanded in terms of the
�

� operator’s eigenfunctions as

|ϕ〉 =
∑

u

(
1 − 1

s
�

�

)−1

|ϕu〉〈ϕu|z〉 =
∑

u

|ϕu〉 s
s − su

〈ϕu|z〉.

Substitution of this formal solution into the inner product form of ε̄zz leads to Equation 7.
The integral operator �̂ is noted to be a projection operator, as can be seen from

Equation 8, because the Green function may be regarded as the inverse of the Laplacian op-
erator (two successive gradient operators). Hence the eigenvalues of �̂ lie between zero and 1.

In Equation 7, V is the sample volume, a normalization factor. The most remarkable feature of
this equation, which is exact, is that the material properties, given by s, are completely separated
from the geometric information (contained in ϕu and su) as filtered by the Laplacian. Because
both the solid and liquid dielectric constants can be complex, s is a complex number in general.
At the same time, it is clear that if s is real, then its value as given by Equation 5b should be
either less than zero or greater than 1, as noted above. Because both |〈z|ϕu〉|2 and su are real, with
the additional constraint that 0 < su < 1 as already stated, it follows that s − su can approach
zero only in limiting cases, i.e., at zero and 1, and these cases define the upper bounds for the
shear modulus and yield stress, described below. Equation 7 also makes clear that the imaginary
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Table 1 Comparison of the effective ε̄zz for various lattice structures

Structure

εs/ε� BCT FCC HCP BCC SC Diamond
10 Exact 2.167 2.156 2.156 2.043 1.911 1.627

Dipole 2.031 1.994 1.995 1.905 1.734 1.601

800 Exact 5.173 5.129 5.129 4.205 3.518 1.976

Dipole 3.376 3.188 3.194 2.798 2.230 1.897

Abbreviations: BCT, body centered tetragonal; FCC, face centered cubic; HCP, hexagonal closed packed; BCC, body
centered cubic; SC, simple cubic.

parts of the dielectric constants can indeed contribute to Re(ε̄zz) (through the complex material
parameter s) and hence the DER effect.

2.3. Predictions of the Variational Formulation
and Comparisons with Experiments

By using the spectral representation and the effective dielectric constant formulation, quantitative
predictions become possible for a DER fluid comprising uniform-sized microspheres dispersed in
an insulating liquid.

2.3.1. Ground-state microstructure. For uniform-sized microspheres, the lowest energy state
should correspond with a periodic microstructure that maximizes Re(ε̄zz). The computational
formalism for the numerical evaluation of Equation 7 has been detailed elsewhere (Ma et al.
2003, Sheng & Wen 2010). The calculated values of ε̄zz for the various structures are shown in
Table 1, at two ratios of εs /ε� = 10 and 800. In the calculations, the separation between the
spheres is 5 × 10−3 in units of R, and the volume fraction of solid particles is 0.2. For comparison,
results using just the dipole approximation are also shown. In Table 1, for the effective dielectric
constant values inside the close-packed columns, the face centered cubic value is in fact slightly
larger than that for the body centered tetragonal (BCT) value, owing to the higher packing density.
However, when averaged over the whole sample, the BCT value always wins slightly, regardless
of the values of the material constants or solid volume fractions.

Experimentally, Wen et al. (1999) multiply coated microspheres with a glassy core diameter
of 34 ± 2 μm with a 2-μm layer of Ni, a 1.5-μm layer of lead zirconate titanate (PZT), another
1-μm layer of Ni, and finally a 1-μm layer of TiO2. The overall diameter of the microspheres
is thus 45 ± 2 μm. The ground-state microstructure under an electric field of 2 kV mm−1 was
studied by dispersing the microspheres in epoxy. After solidifying the epoxy matrix, the authors cut
the sample along the (001) and (110) planes and visualized it with scanning electron micrographs
(Figure 2). The square lattice in Figure 2a, along the (001) plane, and the tight packing lattice
in Figure 2b, along the (110) plane, uniquely determine the crystal structure to be BCT, thus
verifying the theoretical prediction. Another approach, using laser diffraction, was adopted by
Chen et al. (1992) to verify the ground-state structure. The same result, the BCT structure, was
obtained.

2.3.2. Shear modulus and yield stress. The rheological characteristics can be calculated by first
defining the relevant distortion. For the shear modulus and yield stress, the distortion is shown
in the inset of Figure 3, in which θ , the angle of distortion relative to the external E field, is the

150 Sheng ·Wen

A
nn

u.
 R

ev
. F

lu
id

 M
ec

h.
 2

01
2.

44
:1

43
-1

74
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.a
nn

ua
lr

ev
ie

w
s.

or
g

by
 H

on
g 

K
on

g 
U

ni
ve

rs
ity

 o
f 

Sc
ie

nc
e 

&
 T

ec
hn

ol
og

y 
on

 0
1/

15
/1

2.
 F

or
 p

er
so

na
l u

se
 o

nl
y.



FL44CH07-Sheng ARI 18 November 2011 11:21

a b

(001) (110)E

Figure 2
Body centered tetragonal structure formed by multiply coated microspheres under an electric field
(2 kV mm−1). The structure is frozen in epoxy and visualized through cross-sectional scanning electron
micrographs. In panel a, the cut was along the (001) plane, and in panel b, the cut was along the (110) plane.
Figure adapted from Wen et al. (1999).

strain variable. For the BCT lattice, shearing in the direction perpendicular to the z axis creates
not only a tilt away from the electric-field direction by an angle θ , but also a distortion in the
lattice constants c and a given by c/R = 2/cosθ , a/R = [8 − (c2/2R2)]1/2. Thus under shear, the
volume fraction of solid spheres in the BCT structure is also dependent on θ . For small θ , ε̄zz(θ )
may be expanded about its optimal value as

Re
[

ε̄zz(θ )
ε�

]
= Re

[
ε̄zz(0)

ε�

]
− 1

2
μθ2 + − − −, (10)

where μ denotes the shear modulus (Ma et al. 1996). Again by using the spectral representation
approach to calculate the electrical energy, we show a numerically evaluated stress versus strain
curve in Figure 3. By definition, the stress is given by d E(θ )/dθ . At small strain, the slope of
the linear variation is the shear modulus. The peak of the stress-strain curve corresponds to the
yield stress beyond which the system becomes unstable. Experimental consistency with theory
prediction may be obtained together with the optimal particle structure, shown below.

0
0

10.0 20.0 30.0

0.5

1.0

1.5

S
tr

e
ss

 (
P

a
)

Strain θ (degree)

θ

Yield point

Figure 3
Calculated stress plotted as a function of strain, i.e., the tilt angle θ as defined in the inset. The dashed line
indicates the unstable regime. The maximum stress is defined as the static yield stress. Here the curve is
calculated with εl = 2.7, εs = 8.4 + 0.43i, the volume fraction of the spheres is 22%, and the applied field is
1.3 kV mm−1. Figure adapted from Ma et al. (1996).
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2.3.3. Upper bounds and optimal particle structure. The upper bounds (Ma et al. 2003) to the
shear modulus and yield stress are directly related to the potential for the divergence of ε̄zz shown
in the spectral representation. From Equation 7, this can only happen when the denominator on
the right-hand side vanishes, i.e., when both s and su approach either zero or 1. Here we present
the case of the zero limit. To obtain the physical upper bounds, we let εs → ∞ so that s → 0. We
also note that su would approach zero only when the spheres touch. Hence a (small) separation
δ between the surfaces of the neighboring spheres is specified, and the shear modulus and yield
stress are evaluated as a function of the ratio δ/R. The upper bounds thus obtained are 1.9(R/δ)
for the shear modulus and 1.38

√
R/δ for the static yield stress, both in units of the energy density

ε� E2/8π . For δ = 1 Å (atomic separation) and R = 20 μm, we get 15,120(ε� E2) for the maximum
shear modulus and 617(ε� E2) for the maximum yield stress. If ε� = 2.5 and E = 1 kV mm−1,
these expressions translate into 4 MPa and 8 kPa, respectively.

To verify the particle size R and separation δ dependencies of the yield stress upper bound,
researchers fabricated doubly coated microspheres with uniform-sized glassy cores and Ni and
TiO2 outer coatings, using the electroless plating (for the Ni coating) and sol-gel (for the TiO2

coating) methods sequentially. Two different sizes of the core glass microspheres were used (1.5 μm
and 50 μm in diameter). Here the Ni coating makes the microspheres polarizable enough so that
we can take s to be nearly zero, and the TiO2 coating sets a value for δ.

Figure 4 compares the measured yield stress values with those calculated from the effective
dielectric constant formulation (Tam et al. 1997). The increased size of the particles clearly in-
creases the yield stress, in approximately the square-root ratio as predicted by the upper-bound
expression. In addition, the absolute values of the measured yield stress are well accounted for by
the calculations using approximate values of the TiO2-coating thicknesses. For comparison, we
have also measured and calculated the yield stresses for pure glass spheres, and those with just
TiO2 coatings. Both are orders of magnitude smaller. The calculated value for pure TiO2 spheres
of similar size is also much smaller. The simple physical picture that emerges from these results is
that (a) the DER yield stress is closely related to the electrostatic energy of the system, and (b) for

a b
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Figure 4
The measured (blue symbols) and calculated (blue lines) static yield stresses of an electrorheological fluid using
(a) 1.5-μm doubly coated particles and (b) 50-μm doubly coated particles. From the vertical scales, it is seen
that the larger particles exhibit a larger yield stress in roughly the square root of the size ratio. For
comparison, the figure also shows the calculated yield stress for solid TiO2 particles of the same size ( green
dashed lines), the measured yield stress for pure glass spheres (barely seen as the open red squares on the
horizontal axis of panel b) of the same size, and the measured yield stress for glass spheres coated just with
TiO2 ( filled red diamonds on the horizontal axis shown in panel a), without Ni, of the same size. Figure
adapted from Tam et al. (1997).
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LCR meter:
meter that measures
electrical inductance,
capacitance, and
resistance

a given applied electric field, the electrostatic energy can be maximized by the field distribution
and dielectric constant of the materials. The metallic coating of the doubly coated microspheres
limits the field distribution to the dielectric areas occupied by the TiO2 coating and the silicone
oil. The thin TiO2 coatings ensure small separations, thus producing high internal fields. The
enhanced ER effect is the result (Tam et al. 1997).

The doubly coated glassy microspheres are in a sense ideal for the DER effect. However, the
requirement of large sphere size is not optimal from an application point of view because large
microspheres also tend to sediment, unless the density can be matched with that of the fluid.

2.3.4. Anisotropy and nonlinearity of the effective dielectric constant. As the variational
approach is based on the optimization of the effective dielectric constant, it is important to check
experimentally if the dielectric constant indeed increases and displays anisotropy under the appli-
cation of an electric field. However, when the applied field is fairly large, it is difficult to determine
the dielectric constant along the electric-field direction. To overcome this difficulty, investigators
have utilized the similarity in the microstructure under an electric field with that under a magnetic
field.

Special particles were prepared as silica spheres 35 ± 3 μm in diameter coated with an inner
Ni layer and an outer dielectric layer, such as PZT and TiO2, formed by using electroless plating
and sol-gel processes, respectively. These particles respond to both the electric field and the
magnetic field. The dielectric constants along the z (magnetic-field direction) and x directions
(ε̄zz and ε̄xx), measured by an LCR meter, are shown in Figure 5 (Ma et al. 2003). Whereas ε̄zz

displays an increasing trend with the magnetic field, as expected, the ε̄xx component displays a
slight decrease. These trends are independent of whether the outer coating is PZT or TiO2. The
theory predictions of the asymptotic dielectric constant values, obtained by using the spectral
function approach, are shown in Table 2. Here the inputs to the calculations are determined by
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Figure 5
Dependences of the (a) real (Re) and (b) imaginary (Im) parts of the dielectric constant on the applied magnetic-field strength. Here the
volume fraction is 0.27, and the frequency of the LCR meter is fixed at 1 kHz. Figure adapted from Ma et al. (2003).
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Table 2 Theory-experiment comparison for the zz and xx components of the effective dielectric
constants

Theory Experiment

Structure Re(ε̄) Im(ε̄) Re(ε̄) Im(ε̄)
Random Fitted Fitted 4.95 0.13
PZT coating zz 5.67 0.23 5.29 0.14

xx 4.75 0.11 4.94 0.12

Random Fitted Fitted 4.26 0.26

TiO2 coating zz 4.56 0.37 4.44 0.28

xx 4.15 0.23 4.25 0.25

the values of the real and imaginary parts of the effective dielectric constants when the system is
isotropic (H = 0). It is seen that reasonably good agreement is obtained.

3. MECHANISM OF THE GIANT ELECTRORHEOLOGICAL EFFECT

Since its discovery (Wen et al. 2003), the GER mechanism has been a topic of interest. Huang
et al. (2006) have presented a phenomenological model. Tan et al. (2009) calculated local electric
fields between two particles using the finite-element approach and concluded that the local field
can cause a saturation polarization of the coated polar molecules. Shen et al. (2009) proposed a
model based on the interaction between polar molecules and the induced charge on the particles
to explain the alignment of molecular dipoles. In terms of materials fabrication, Cheng et al.
(2009, 2010), Lu et al. (2009), Shen et al. (2009), Yin & Zhao (2004), and Wang et al. (2007)
have synthesized different types of inorganic materials that exhibit the GER effect. Below we base
the exposition of the GER effect on the material system of urea-coated nanoparticles of barium
titanate oxalate (Wen et al. 2003).

3.1. Characteristics of Giant Electrorheological Fluids

Figure 6a shows the structure of GER particles, comprising a ∼50-nm core of barium titanate
oxalate, with a 5-nm coating of urea (Wen et al. 2003). Figure 6b shows the column formation

b c a 

E 

20 nm0.1 mm20 nm

Urea 

BaTiO(C2O4)2

E 

Figure 6
Images of nanoparticles in giant electrorheological suspensions. (a) Transmission electron micrograph of
coated nanoparticles. The urea coatings, ∼5 nm in thickness, are clearly seen. (b) Optical microscope image
of a sample prepared in epoxy, solidified under an applied field E of 2 kV mm−1. Columns aligned along the
field direction are visible. (c) Transmission electron micrograph of a section of the column shown in panel b.
The arrows indicate one of the flattened interfaces. Figure adapted from Wen et al. (2003).
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Figure 7
Static yield stress plotted as a function of the applied electric field for two solid concentrations. The symbols
denote experiment, and the solid lines are theory. (Inset) Logarithm of the current density J plotted as a
function of

√
E. The dashed straight lines serve to delineate the relationship �nJ ∼ √

E, indicating the
mechanism of activation over the Coulomb barrier (the Poole-Frenkel effect). At the very moderate field of
1 kV mm−1, the linear behavior of the yield stress is already established, indicating that a saturated
polarization layer contributes to the giant electrorheological effect. Figure adapted from Wen et al. (2003).

when an electric field was applied. Figure 6c illustrates that under an electric field, the coatings
of the nanoparticles are significantly deformed, indicating a degree of softness in the coating.

Figure 7 plots the measured yield stress and current density (shown in the inset) as a function of
the applied electric field. A prominent feature is the near-linear dependency of the yield stress on
the electric field. This is only possible if the yield stress arises not from induced polarization, but
rather from the saturation polarization of permanent molecular dipoles so that in the expression
− �Po · �E, the polarization density is a constant, and the resulting yield stress is therefore linear in
the applied field, with a magnitude that can break the theoretical upper bound for the induced
polarization mechanism.

It should be noted that GER fluids are very oil sensitive. By using silicone oil, one can obtain
the effect shown in Figure 7, but with the same particles dispersed in pure decane, the GER
effect can disappear completely (Gong et al. 2008). Such a large contrast implies that oil plays a
synergistic role in the GER effect. An important clue to this oil sensitivity is the consistency of
the mixture one can obtain by using two different oils, e.g., silicone oil and decane. For silicone
oil, the consistency is like that of light yogurt, but for decane the consistency is like that of mud.
Therefore, the particles can be better dispersed in silicone oil than in decane; i.e., there is a wetting
effect between silicone oil and GER particles.

Another qualitative difference between GER and DER fluids lies in the yield stress scaling
with respect to the particle size. For DER fluids, we demonstrate above that the yield stress varies
roughly as

√
R; i.e., larger particles imply a larger ER effect. However, in GER fluids, the yield
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Figure 8
Illustration of the phenomenological model of the giant electrorheological effect with calculated results. (a) Shown in the upper left is a
schematic picture of our model, consisting of two coated spheres, each with a 50-nm-diameter core and a 5-nm coating (both with ε =
60). The gap, with width w, has ε = 2 (for silicone oil). The solid curve shows the calculated interaction energy divided by p2

0 between
two pairs of nearest-neighbor surface dipoles, each with p0 = 4.6 debyes and separated laterally by 4.5 Å (ε = 1 between the dipoles),
when w increases from 2 Å. (b) The stress numerically calculated from the finite-element method, at an electric field of 2 kV mm−1, is
plotted as a function of the strain. The yield stress point corresponds to the point of separation between the two spheres. Figure
adapted from Wen et al. (2003).

stress varies as 1/R (Wen et al. 2004), implying that the GER effect is interfacial in character so
that smaller particles would display a larger effect.

3.2. A Phenomenological Model of the Giant Electrorheological Effect

A phenomenological model was formulated to explain the GER effect (Huang et al. 2006). It is
based on the following elements.

The foremost assumption of the phenomenological model is that the molecular dipoles of urea
can form aligned dipolar layers in the contact region between two coated nanoparticles, under
a moderate applied electric field. This is the source of the strong adhesion responsible for the
GER effect and is shown schematically in Figure 8a. At distances larger than 10 nm, i.e., in the
noncontact state, the application of an electric field will induce some orientational polarization
(as described by the Langevin function) in the molecular dipoles, and the approach to contact will
follow the DER mechanism described above.

The equilibrium contact state is represented by the balance of the (attractive) electrostatic
force with the (repulsive) elastic force, with the elastic deformation of the two coated spheres in
contact given by the Hertzian solution (Huang et al. 2006). Mathematical details of the model
are presented in Supplemental Appendix A (follow the Supplemental Material link from the
Annual Reviews home page at http://www.annualreviews.org).

The predictions of the model are in good agreement with measured results, as seen in
Figure 7. In particular, the linear dependency on the applied electric field and the magnitude
of the GER effect is a direct reflection of the surface saturation polarization. Another prediction
of the model is that because the effect owes its origin to interfacial saturation polarization, more
surface area (hence smaller particles) would enhance the GER effect. This turns out to be the
case (Wen et al. 2004).
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2.9 nm Silicone oil chains

Urea molecules

Water molecules

Figure 9
Molecular model of the contact area between two spherical nanoparticles. Here green, red, and yellow in the
middle of the right panel denote the silicone oil chains. The urea molecules (with dark blue denoting
nitrogen) are located on the two sides of the silicone oil film, and the water molecules are located on the top
and bottom sides.

However, the phenomenological model does not address the issues related to the energetics
inside the aligned dipolar layer and the observed synergism with silicone oil. Below we give a
microscopic understanding of how the saturation polarization arises in the contact region of two
solid particles.

3.3. Microscopic Mechanism of the Giant Electrorheological Effect

We used the molecular dynamics code GROMACS (Alejandre et al. 1995, Sides et al. 2002,
Mountain & Thirumalai 2004, Lee & van der Vegt 2006, van der Vegt et al. 2006), which can
account for molecular interactions at the atomic/molecular level by using empirically derived
parameter values, to simulate a urea–silicone oil mixture trapped in a nanocontact between two
polarizable particles. This is shown schematically in Figure 9.

Figure 10a shows what happens when a 0.2-V nm−1 electric field is applied across the gap
(Chen et al. 2010). Three urea molecular filaments are clearly seen snaking through the porous

a b

Urea
molecular
filaments

Silicone
oil layer

Confinement
cage

Figure 10
(a) Urea molecular filaments across a silicone oil layer under a 0.2-V nm−1 electric field and (b) in an ∼1-nm
cylindrical confinement cage under a 0.1-V nm−1 electric field. Figure adapted from Chen et al. (2010).
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oil chains to bridge the two surfaces. Inside each filament, the dipoles are predominantly aligned.
In contrast, we have also conducted a simulation in which the gap region is occupied completely
by the liquid-like urea molecules (but with the same bounding surfaces with the water molecules).
We found that at least 0.6 V nm−1 of electric field is required to partially align the urea molecules;
i.e., there is a lowering of the required electric field for dipole alignment by a factor of two to
three. The two simulation cases considered, with and without the silicone oil chains, are meant
to correspond to the wetting and nonwetting cases, respectively, because only if the silicone oil
wets the particles would it be situated inside a nanoscale gap; otherwise a nonwetting oil would
be excluded, and a gap full of urea molecules is a more likely scenario.

To confirm that the confinement effect of the silicone oil chains is playing a major role, we have
artificially constructed a cylindrical confinement cage by using positionally fixed Lennard-Jones
particles with the same force-field parameters as the methyl group, and the result obtained at
0.1 V nm−1 is shown in Figure 10b, in which a filament of aligned molecular dipoles is clearly
seen. As the cage does not undergo thermal Brownian motion, the cage’s confinement effect is
shown to be much more effective, evidenced by the formation of a filament at a field nearly one
order of magnitude smaller than that required for liquid-state urea.

A simple explanation of this phenomenon is that the one-dimensional (1D) confinement de-
creases the orientational entropic phase space of the urea dipoles and thereby significantly increases
the urea dipoles’ sensitivity to the applied field (Chen et al. 2010). This effect may be mathemat-
ically formulated: Whereas for the 3D case we have 〈p〉3D/p0 = coth(p0 E/kB T ) − (kB T /p0 E),
where p0 = 4.6 debyes for urea molecules, in the 1D case, it is given by 〈p〉1D/p0 =
tanh(p0 E/kB T ). At any given E, �p = 〈p〉1D − 〈p〉3D is always positive (e.g., at 0.3 V nm−1

the difference is 2.12 debyes); therefore, −�p · E provides a driving energy/force for the urea
molecules to develop a more diffuse interface with the oil film, in the form of 1D filaments pen-
etrating the oil film (under an electric field), which is porous on the molecular scale. This is
especially the case as the number of hydrogen bonds per urea molecules is nearly the same in
either the 3D amorphous state or the 1D filaments. Also, in the limit in which p0 E/kB T 
 1, it
is easy to see that in one dimension, αm = p2

o /kB T , which is exactly a factor of three larger than
that in three dimensions.

It should be noted that there are hydrogen-bonding interactions in the system. But the number
of hydrogen bonds in the 1D filament configuration is well balanced against that in the 3D
dispersion; hence the 3D-to-1D crossover in the urea molecules’ microgeometry emerges as the
dominant factor. Moreover, as E → ∞, we have �p → kB T /E, which implies that −�p · E
approaches a constant value, −kB T , independent of E. This is consistent with the simulation
results showing that as E → ∞, there is a saturation behavior for the maximum gap width
(∼9 nm) beyond which no filament formation was observed. This behavior is consistent with the
surface scaling aspect of the GER effect (Wen et al. 2004, Chen et al. 2010). �p · E → kB T is
noted to arise from the difference of two degrees of freedom between the 3D and 1D case; hence
two times (1/2)kB T (the equipartition energy) is exactly kB T .

GROMACS simulations also confirm the synergism with silicone oil (Gong et al. 2008) because
it is polar (having oxygen atoms in its chains) and thus more permeable to urea. It also wets the
urea-coated nanoparticles.

The formation of aligned dipolar filaments provides a ready explanation for the observed yield
stress versus electric-field behavior, as the yield stress is directly proportional to the electrical
energy density. This can be seen as follows. For a linear stress-strain (τ−ε) relationship τ = aε,
the yield stress is given by τY = aεo , with εo the critical strain. Because the energy density is
given by (1/2)aε2, we thus have τY = 2Wo /εo , where Wo = (1/2)aε2

o . That is, the yield stress is
proportional to the energy density as deduced above from dimensional analysis. If the stress-strain
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Figure 11
Electrical energy density plotted as a function of the electric field in the nanogap (red curve). Scaled data
from three sets of experiments are superposed on the curve. The electric field E is obtained from the
measured field Em by E = αEm, where α is the field enhancement factor. The measured yield stress Y is
related to the electrical energy density �W by �W = βY /10, where β is the volume dilution factor. The
values of (α,β) for sample 1 (Wen et al. 2003), sample 2 (Wen et al. 2004), and sample 3 (Gong et al. 2008)
are (281.2, 7,590), (100, 974), and (100, 1,010), respectively. Figure adapted from Chen et al. (2010).

relationship is not strictly linear, the constant a can be adjusted to account for its effect on the
energy density.

We have calculated the total potential energy density of the simulation box at different fields,
with the zero-field total potential energy density subtracted off. The resulting difference �W is
negative, indicating a large attraction between the two bounding surfaces. Plotted in Figure 11
is the variation of |�W | as a function of the electric field. To compare with experimental data,
one must scale this energy density by a volume dilution factor β for the energy density of the
GER fluid because the nanoscale gap considered here constitutes the region of closest approach
between two nanoparticles. Hence the gap electrical energy should be averaged over a volume on
the order of d 3, with d the nanoparticle diameter. For d ∼ 50–100 nm and our sample volume of
190 nm3, β ∼ 1,000–10,000. Also, as noted above, the field in the contact region is enhanced by a
factor γ ∼ 100–300 when compared with the externally applied field. All three data sets shown in
Figure 11 agree well with the curve obtained from the MD simulations, and the values of α and
β fall within the physically reasonable range.

4. ELECTRORHEOLOGICAL FLUID DYNAMICS

It is desirable to have a continuum hydrodynamic theory for ER fluids because discrete particle
simulations, even at the level of point dipole interactions only, simply cannot routinely handle
the large systems that are necessary for comparison with experiments. The Onsager variational
principle offers a systematic approach to derive the equations of motion by accounting for two
important elements in our complex system: dissipation and free energy. A description of the
Onsager principle, together with the derivation of the ER hydrodynamic equations of motion and
their numerical implementation, is given in Supplemental Appendix B. Here we present the
model, the relevant continuum hydrodynamic equations of motion, and simulation results (Zhang
et al. 2008a). For simplicity, we consider only DER fluids in the limit of dipole interactions.
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4.1. Two-Phase Model of Dielectric Electrorheological Fluids

Under an electric field, the DER fluid phase separates into a dense phase, comprising a fluid-solid
mixture in which the particles are arranged in either chains or columns with some structure inside
(denoted as the s phase) and a liquid phase (denoted as the � phase). This is clearly seen in Figure 1.
Accordingly, for the s phase we treat the solid particles, consisting of identical microspheres with
radius R, collectively by regarding their density n(�x) = fs (�x)(4π R3/3)−1 as a field variable, where
fs (�x) denotes the dimensionless, local volume fraction of solid microspheres. One can write down
the total energy for the s component under an externally applied electric field �Eext , including the
interaction between the particles and between the particles and the external field, as a functional
of n(�x):

F [n(�x)] = 1
2

∫
Gi j (�x, �y)pi (�x)n(�x)p j (�y)n(�y)d �xd �y

−
∫

�Eext(�x) · �p(�x)n(�x)d �x + ε0

2

∫ (
R

|�x − �y |
)12

n(�x)n(�y)d �xd �y,

(11)

where Gi j (�x, �y) = �∇i �∇ j |�x − �y |−1 is the dipole interaction operator, and ε0(R/|�x − �y |)12 is the
repulsive interaction between the particles (Klingenberg 1991a) introduced to avoid singularities in
the calculations, with ε0 a suitable energy scale. In Equation 11, the Einstein summation convention
is followed, in which the repeated indices imply summation. A variation of F with respect to n
leads to δF = ∫

μ(n)δnd �x, where

μ[n(�x)] = − �Eext(�x) · �p(�x) +
∫

Gi j (�x, �y)pi (�x)p j (�y)n(�y)d �y + ε0

∫ (
R

|�x − �y |
)12

n(�y)d �y (12a)

is the chemical potential for the s component. The first two terms on the right-hand side of
Equation 12a may be interpreted as the product of the local electric field �El with the (induced)
dipole moment, − �El · �p , where

[ �El (�x)]i = [ �Eext(�x)]i −
∫

Gi j (�x, �y)p j (�y)n(�y)d �y . (12b)

From the local electric field, the induced dipole moment �p(�x) is obtained from Equation 1 in which
the CM factor β is replaced by fs (�x)β. This is because in the CM factor εs should be replaced by
the effective dielectric constant ε̄s (�x) within the s phase, and from the Maxwell-Garnett equation
we have

ε̄s (�x) − ε�

ε̄s (�x) + 2ε�

= fs (�x)β. (13)

The equations of motion (for their derivation, see Supplemental Appendix B) are given by

∂n
∂t

+ Vs · ∇n = 1
γ

∇ · n∇μ, (14)

ρs

(
∂ �Vs

∂t
+ �Vs · ∇ �Vs

)
= −∇ ps + ∇ · τ s

vi s c + n∇μ + K ( �V� − �Vs ), (15)

ρ�

(
∂ �V�

∂t
+ �V� · ∇ �V�

)
= −∇ p� + ∇ · τ �

vi s c + K ( �Vs − �V�), (16)

where Vs and V� are the s phase and � phase velocities, respectively; ps ,� is the s (�) phase pressure;
τ

s ,�
vi s c = ηs ,�(∇ �Vs ,�+∇T �Vs ,�)/2 is the viscous stress tensor in the respective phase, with ηs ,� denoting

its viscosity; and ρ�,ρs = nm + (1 − fs )ρ� are the mass densities, with m the mass of the solid
particle. We note that ηs is implicitly a function of fs with a dependency shown in Supplemental
Figure 1, and K = 9 fs η�/2R2 and γ = 6πηs R are the two constants. The equations of motion
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are supplemented by the subsidiary (incompressibility) conditions ∇ · �Vs ,� = 0, together with the
boundary conditions of normal components of ∇μ, with �Vs ,� zero at the solid boundary, and no
tangential slip for �Vs ,�.

Equation 14 is in the form of a continuity equation for the number density n. The right-
hand side is the divergence of a current density derived from the Onsager principle. In ac-
cordance with the linear response framework, this current density is proportional to the gra-
dient of a potential—the chemical potential in the present case. Because in the linear re-
sponse framework the current density and the force density are linearly related, here by the
coefficient γ , we find that the force density n∇μ also appears on the right-hand side of
Equation 15. Through the chemical potential, this term contains all the electrical effects, such as
the dipole-dipole interaction. The last terms on the right-hand sides of Equations 15 and 16 rep-
resent the relative friction between the two phases; hence they have opposite signs. The first two
terms on the right-hand sides of Equations 15 and 16 are standard in the Navier-Stokes equation.
However, the viscosity for the s phase, whose behavior is given in Supplemental Figure 1, is
noted to be the Newtonian component of the colloidal viscosity, applicable only at low shearing
rates. At moderate to high shearing rates, the effective viscosity can be lower than that indicated in
Supplemental Figure 1, but that will not materially affect the predicted behaviors shown below.

4.2. Predictions and Experimental Verification

We present theory predictions on two Bingham fluid characteristics: the yield stress, which can
have either a static or a dynamic value, and the Poiseuille flow profile. Another type of prediction
is on the electrode configuration dependency of the shear stress, which is beyond the Bingham
fluid model.

4.2.1. Bingham fluid characteristics. A Bingham fluid is defined by its yield stress beyond which
a DER fluid behaves as a Newtonian fluid (with a linear dependency of the shear stress versus shear
rate). Experimentally, one can always obtain two yield stress values—the static and the dynamic—
and they are usually different. To theoretically calculate the static yield stress, we put a layer of
DER fluid between two parallel plates and moved the top plate relative to the bottom plate, as
shown in the inset of Figure 12a. The curve connecting the data points shows the calculated result
for an applied field of 2 kV mm−1. The stress and strain relation displays a maximum beyond which
the stress decreases with increasing strain, implying instability. Hence the maximum point is the
static yield stress, 374 Pa. For the results shown in Figure 12b, the top plate moves at a constant
speed relative to the bottom plate, and the calculated shear stress displays fluctuations as a function
of time (inset of Figure 12b) that is commonly observed experimentally, a consequence of the
breaking and reconnecting of the columns. The figure displays the averaged value as a function of
shear rate. Extrapolation to zero shear rate yields the dynamic yield stress, 278 Pa, much smaller
than the static value under the same applied field, which is usually the case.

In another comparison with a Bingham fluid, we show the Poiseuille flow profile between two
parallel plates. In Figure 13, the velocity profile is that of a DER fluid with the same parameter
values as those shown in Figure 12, under an electric field of 4 kV mm−1. The similarity with a
Bingham fluid is clearly seen, although there exists some quantitative difference.

4.2.2. Electrode configuration dependency of the shear stress–shear rate relationship.
Under flow, the shear stress–shear rate relationship for an ER fluid can be sensitive to the manner
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Figure 12
(a) Calculated shear stress plotted as a function of strain (the angle θ ) under an electric field of 2 kV mm−1. The cell is 650 μm by
650 μm by 2R ( y direction), with a periodic boundary condition along the shearing direction x. To facilitate the formation of columns
under an electric field, the initial density is given by no + δn·cos(kx). The red arrow denotes the static yield stress (374 Pa). (Inset) The
breaking of the columns around the yield stress point. Here red indicates a high value of n and blue a low value. (b) Calculated
(averaged) dynamic shear stress under the Couette flow condition for the same cell as in panel a. By extrapolating to zero shear rate, the
dynamic yield stress is found to be 278 Pa. (Inset) The stress fluctuations at a shear rate of 100 s−1. Here R = 5 μm, m = 1.2 ×
10−9 g, εs = 10, εl = 2, ηl = 10 cP, ρl = 0.96 g cc−1, and overall fs = 30%. Figure adapted from Zhang et al. (2008a).

under which the electric field is applied. Such an effect is beyond the Bingham fluid description
of ER fluids. We compare our results directly with experiments.

The conventional manner is to apply an electric field perpendicular to the flow direction.
This is shown in the inset of Figure 14, which plots the pressure drop across a Poiseuille
flow, representative of the averaged shear stress, against the averaged shear rate, which can be

Bingham fluid

Velocity profile at E = 4 kV mm–1

Present model

0 0.80.60.40.2 1.0

Z/Z0

0

0.006

0.004

0.002

0.008

V 
(m

 s
–

1
)

Figure 13
Poiseuille flow profile between two parallel planes denoted z/z0 = 0, 1 (z0 = 650 μm). The simulation
parameter values are the same as those shown in Figure 12. The yield stress and viscosity values for the
Bingham fluid are the dynamic yield stress evaluated from the present model and the colloidal viscosity at
30% solid particle concentration (see Supplemental Figure 1).
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Figure 14
The (time-averaged) pressure difference due to the electrorheological (ER) effect, plotted as a function of
shear rate for the electrode configuration (with a gap of 1 mm) shown in the inset. The solid lines are the
continuum calculations from our theoretical results, and the symbols represent data from a Poiseuille flow
experiment. The applied electric field is 1 ( gray), 2 (red ), 3 (orange), and 4 (blue) kV mm−1. At 1 kV mm−1,
the pressure difference is very small at low shear rates. Here, R = 2.5 μm, m = 1.2 × 10−12 g, εs = 2.9,
εf = 2, ηf = 50 cP, ρf = 0.96 g cm−3, and overall fs = 11.5%. Figure adapted from Zhang et al. (2008a).

evaluated from the volume flow rate with the relevant simulated flow profile (such as that seen in
Figure 13). There is a maximum beyond which the apparent viscosity of the ER fluid decreases;
i.e., there is a shear-thinning effect.

Heuristically, it is easy to understand this shear-thinning effect because the strength of the
columns is always along the applied electric field. Hence, when the columns are tilted significantly
away from the perpendicular field direction, the resistance to shear is decreased.

Figure 15 shows an alternative electrode configuration in which one uses comb-type interdig-
itated fingers lying in the bounding planes (illustrated in the inset). In this configuration, there is a
significant component of the electric field that lies parallel to the flow direction. Indeed, both the-
ory and experiment show no shear-thinning effect as in the conventional electrode configuration.

5. GIANT ELECTRORHEOLOGICAL FLUID–BASED MICROFLUIDICS

The field of microfluidics deals with the behavior, precise control, and manipulation of fluids
that are geometrically restricted to small, typically submillimeter scales. Since the field’s origin
approximately two decades ago, many studies and investigations have been conducted (Manz et al.
1990). Its impact spans across engineering, physics, chemistry, microtechnology, and biotechnol-
ogy. There are generally two types of microfluidic approaches: continuous flow and droplet flow.
The latter is more challenging owing to its complex operations. The special utility of droplet-
based microfluidic systems lies in the formation of uniform droplets and therefore, intrinsic to
such systems, and of utmost importance, the precise control of the droplets’ size, shape, and
monodispersity. There are many different approaches to microdroplet generation, such as inte-
grated flow-focusing geometry onto a microfluidic device. This microfluidic flow-focusing method
is often used in droplet/bubble formation ( Jensen & Lee 2004, Garstecki et al. 2005), whereas
another geometry-based generation method uses a T junction, by which two immiscible fluids are
brought together. For droplet manipulation, many methods have been reported to date, such as
geometry-based pressure control for droplet mixing (Liau et al. 2005), merging (Liu et al. 2007,
Tan et al. 2007), and sorting (Link et al. 2006, Tan et al. 2008). Many active control methods have
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Figure 15
The pressure difference due to the electrorheological (ER) effect plotted as a function of shear rate for the
planar, alternate electrode configuration. The symbols and lines represent the experimental and our
theoretical results, respectively. The electric field is equal to 1 (red ), 1.5 (orange), and 2 (blue) kV mm−1.
Here, R = 2.5 μm, m = 1.2 × 10−12 g, εs = 2.9, εf = 2, ηf = 50 cP, ρf = 0.96 g cm−3, and overall
fs = 11.5%. Figure adapted from Zhang et al. (2008a).

also been realized recently, such as hydrostatic pressure (Luo et al. 2007), temperature gradient
(Mazouchi & Homsy 2001), thermal expansion (Zhu et al. 2005), optical approaches (Baroud et al.
2007, Jeffries et al. 2007), magnetic field (Psaltis et al. 2006), and electrical control ( Joung et al.
2000, Ahn et al. 2006, Priest et al. 2006, Chabert & Viovy 2008), including electrostatic (Link et al.
2006), electrokinetic effect (Indeikina & Chang 2002), dielectrophoresis (Schwartz et al. 2004),
and electrowetting (Pollack et al. 2002, Ren et al. 2003, Paik et al. 2003).

Recent experiments have shown that GER fluids can be used as highly effective smart mediums
to develop different types of microfluidic components, owing to their strong ER response. Below
we present droplet manipulation and microfluidic logic gates based on the use of GER fluid
droplets. Successful implementations of GER fluid–based valves, pumps, and microfluidic mixers
are presented in Supplemental Appendix C.

5.1. Microfluidic Droplet Manipulation

Droplet microfluidics has attracted increasing attention from diverse fields because it requires
only a small amount of materials and less time, produces less waste, and has the potential of highly
integrated and computer-controlled reaction processes for chemistry and biology. In previous
work, we employed a microfluidic flow-focusing approach together with a digital control system
to generate GER droplets with which some applications have been realized (Zhang et al. 2008b,
2009; Niu et al. 2007, 2009). In the following, we review some recent results of GER fluid–based
microfluidic droplet generation and manipulation as well as the pertinent achievements.

GER droplets can be generated by a flow-focusing approach shown in Figure 16a, in which
a continuous-phase GER fluid (nanoparticles mixed with sunflower oil) and two streams of pure
silicone oil were injected into the main channel through a center inlet and two side inlets, re-
spectively. By properly controlling the flow rates of both the GER fluid and silicone oil, one can
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Figure 16
(a,c) Schematic view of giant electrorheological (GER)- and water-droplet generation with the flow-focusing approach. (b,d ) Optical
images of the generated (b) GER and (d ) water droplets. Figure taken from Niu et al. (2009).

generate GER droplets in a passive manner. However, when an electric field (with a trigger signal
∼2 kV mm−1) is applied to the upstream electrode, the flow behavior of the GER fluid changes
from fluid to solid-like, and the GER fluid flow can be fully stopped, leaving only silicone oil
being injected into the main channel. When the electric field is lower than a critical value, the
GER flow resumes. Thus the flow of the GER droplets can be tuned actively through the signal
modes. Figure 16b shows that there can be a clear correlation between the length of the electrical
pulse and the length of the droplets. With the same device, water or gas bubbles can be generated
digitally by the ER fluid (Figure 16c). Whereas the water/gas is injected into the main channel
directly, the GER fluid is injected through the two side channels. The optical images, for the case
of water, can be seen in Figure 16d (Niu et al. 2007).

To manipulate the status of the GER droplet in the microfluidic channel, one must have the
detection and feedback capabilities. We use two parallel electrodes on the side channel walls to
function as a capacitor that is connected to an external inductance. An LCR resonator is formed
as shown in Figure 17a. Owing to the dielectric contrast between the carrier fluid (oil) and the
GER droplet, the resonance frequency can be chosen such that when a GER droplet fills in the
space between the electrodes, the detected signal amplitude is the highest (Figure 17b). Minimum
signal output occurs when the space between the electrodes is filled with oil. For a GER fluid,
water and the carrier fluid (oil) have different dielectric constants, so the relevant capacitances and
resonances reflecting different droplet compositions can give rise to significantly different signal
amplitudes (Zhang et al. 2009). Such detection is in situ and in real time, as well as sensitive,
accurate, and fast (>1100 Hz). It requires no special sample preparation.
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Figure 17
Schematics of giant electrorheological (GER) droplet detection via the capacitance approach. The output
detected signal is shown schematically in panel b. Figure adapted from Niu et al (2007).

A GER fluid, together with a detection circuit, is useful in achieving accurate droplet control.
Although GER fluid droplets can themselves be manipulated through the applied electric field
(Zhang et al. 2008b), they can also be used to deliver a package containing a certain number
of other passive droplets to the targeted destination. One such example, shown in Figure 18,
demonstrates how water droplets can be delivered in varying amounts to the desired location
on a chip, required in many chemical reactions and bioprocessings. By injecting GER droplets
among the water-droplet trains, one can form packages of any desired number of water droplets
sandwiched between two GER droplets. Figure 18b,c shows the schematics for one part of such a
chip and some snapshots of the experimental results. By controlling the GER droplets, which can
be digitally programmed, one can direct, sort, and deliver the train of water droplets to targeted
destinations at which mixing, heating, or other processing may be carried out.

5.2. Giant Electrorheological Fluid–Based Microfluidic Logic Gate

Electronic devices have evolved from the vacuum tube—the first electronic logic gate. The logic
function of this near-legendary component has been successfully mimicked by fluidic diodes,
microelectrochemical logic (Zhan & Crook 2003). In the microfluidic domain, researchers have
scrutinized both kinetic fluid regulation (Groisman et al. 2003, Rhee & Burns 2009) and static
geographical stream manipulation (Cheow et al. 2007, Prakash & Gershenfeld 2007, Mosadegh
et al. 2010, Weaver et al. 2010) as possible fluidic analogs. Simple logic devices such as the
AND/OR gate, the static fluid transistor, and the oscillator are among the list of the achievements.
They are limited, however, in that they either entail bulky peripheral equipment for round-trip
manipulation or have complicated 3D microstructures.

The basic schematics of a GER fluid logic-gate design are illustrated in Figure 19, in which
two parallel channels separated by a conducting gap are used to pass the GER fluid and the signal
fluid. Two electrodes, a and b, are formed on the walls of two respective channels, while another
conducting gap c that interconnects both the GER fluid channel and the signal fluid channel serves
as another electrode. Because the carrier fluid is an oil with very low conductivity, the application
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Figure 18
(a) A microchip generating giant electrorheological (GER) and water microfluidic droplets. (b) Schematic of the detection and sorting
of GER and water droplets. (c) A map and optical microscopic images of GER droplets controlling the water droplets. Figure adapted
from Zhang et al. (2009).

of high voltage across electrodes a and b has no effect on the conducting gap c. However, when
a signal droplet moves into the regions denoted as electrodes b and c, a positive potential will be
transmitted to the conducting gap through the signal droplet (as it is usually more conducting than
the carrier oil), and thus the high voltage would be applied to the GER fluid, thereby solidifying
it. That is, the variable gap voltage leads to a voltage differential VG across the GER channel. VG

could be either off, wherein the voltage is not above the threshold required to completely solidify
GER, or on, causing the GER fluid to solidify and stop flowing in the GER channel. From this
design, the GER flow status thus can be tuned by the signal droplet.

The above basic design can be easily expanded into the OR and AND gate designs. When
the fundamental structure is repeated in series like those shown in Figure 20a, the GER flow
depends independently on the presence of droplets in channels 1 and 2. Thus a solidification in
either one will stop the overall flow of the GER fluid, making this structure an OR gate. An AND
gate design is presented in Figure 20b, in which voltage is shared evenly across the three channels,
and only if water droplets are present in both control channels simultaneously would the GER
flow be stopped. Because the GER flow is solidified only when both channels contain a droplet,
the structure is a logical AND gate.
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+–

GER fluid

Signal droplet

Conducting
gap
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Electrode

GER fluid
channel 

Control
channel 

g p

Figure 19
The fundamental logic-gate operation with a giant electrorheological (GER) fluid.

A microfluidic inverter (Wang et al. 2010) is illustrated in Figure 21a. To achieve this NOT
function, signal electrodes and output electrodes (electrodes on the GER fluid channel) are joined
in series, while the input voltage is applied across electrodes 1 and 2. In this case, the signal fluid
is a high-conductivity solution, which can be modeled as a conductor, and the carrier fluid is an
insulating oil. When the carrier oil flows between the signal electrodes, the circuit can be viewed
as open, and the GER fluid continues its flow (output = 1). When the signal droplet is present
between the signal electrodes, the circuit closes and a voltage is thus applied onto the output
electrodes to stop the GER fluid flow (output = 0). Figure 21b,c presents the images for the ON
and OFF operations’ outputs, respectively. In this manner, the generated GER droplets are com-
plementary to the signal droplets; hence a NOT operation, or a phase inversion, is achieved. With
the same design but different operation coding arrangement, the universal logic gate has been
achieved.

GER fluid
channel

GER fluid
channel

Control
channel 1

V 0

V 0

V0 Control
channel 2

Control
channel 2

Control
channel 1

a b

Figure 20
(a) An OR gate created by placing two giant electrorheological (GER) switches in series. For the GER fluid
to stop flowing, either channel 1 or channel 2 must be filled with a droplet. (b) A simplified structure of an
AND gate created by the mirroring of a single logic gate across the GER channel.

168 Sheng ·Wen

A
nn

u.
 R

ev
. F

lu
id

 M
ec

h.
 2

01
2.

44
:1

43
-1

74
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.a
nn

ua
lr

ev
ie

w
s.

or
g

by
 H

on
g 

K
on

g 
U

ni
ve

rs
ity

 o
f 

Sc
ie

nc
e 

&
 T

ec
hn

ol
og

y 
on

 0
1/

15
/1

2.
 F

or
 p

er
so

na
l u

se
 o

nl
y.



FL44CH07-Sheng ARI 18 November 2011 11:21

Phase inverter/NOT operation
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+ –1 2
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GER fluid 

AgPDMS  

Carrier flow 

01 01

C1

b

c

On state

Off state

Channel 1 Channel 2

Figure 21
(a) Basic working principle of the logic gate, illustrated by a microfluidic inverter. The presence of the signal
droplet between the signal electrodes will solidify the giant electrorheological (GER) fluid, while the
presence of the carrier oil releases the GER fluid. (b) When the carrier oil flows between signal electrodes, the
GER fluid flows continuously in the flow-focusing configuration. (c) When a signal droplet passes through
the signal electrodes, the GER fluid is solidified. In this manner, the GER fluid is stopped so only the carrier
oil flows. That is, the GER fluid is cut into droplets with phases complementary to that of the signal droplet.
Hence this represents a phase inverter, or a NOT operation. Figure adapted from Wang et al. (2010).

SUMMARY POINTS

1. The DER effect is based on induced dipoles arising from the dielectric constant contrast
between the solid particles and the fluid. DER fluids’ ground-state structure, shear mod-
ulus, yield stress, and its upper bound can be obtained variationally from the effective
dielectric constant formulation, by using the Bergman-Milton spectral representation
for ε̄zz.

2. The GER effect is based on the formation of molecular dipole filaments bridging the
surfaces of two solid nanoparticles when they come into contact. It exhibits an orders-
of-magnitude-larger ER effect as well as qualitatively different behaviors than those of
DER fluids.

3. A continuum formulation of DER fluid dynamics can be obtained by using the Onsager
variational principle. It is based on a two-phase description of DER fluids.

4. Theoretical predictions regarding the DER’s ground-state structure, yield stress, and
dielectric constant nonlinearity have found good experimental support.

5. The application of GER fluids to microfluidic chips has enabled the design and imple-
mentation of digitally controlled GER pumps, actuators, and individual droplet sensing
and routing. In particular, through the use of GER fluid droplets, the microfluidic logic
gates have been realized.
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FUTURE ISSUES

1. Molecular dipole manipulation at the nanoscale presents a broad horizon for further
exploration. In particular, the formation of molecular dipole filaments as a spontaneous
fluctuation effect as well as the possibility of having molecular dipole filaments of macro-
scopic length are exciting topics for both theoretical and experimental studies.

2. GER microfluidic logic gates open the possibility for integrated complex microfluidic
circuitries to perform high-level smart functionalities.

3. An ideal GER fluid, with low zero field viscosity, yielding stresses in the range of
100 kPa, and showing no particle aggregation or sedimentation effect under long-term
use, is still a challenge to be urgently addressed. Reaching such a goal can broaden GER
fluids’ application to actively controllable mechanical devices such as dampers, clutches,
brakes, and locks.
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SUPPLEMENTAL APPENDIX A:  

Phenomenological Model for the Giant Electrorheological Effect 

Total energy in the contact region of two microspheres is given by 

es elasW W W= + , in which the electrostatic component can be written as 

 
0

1 1
( )

4 8S O

E

es V V
W D E dE dV D EdV

π π
= − ⋅ − ⋅⎡ ⎤

⎣ ⎦∫ ∫ ∫ , (A1) 

where SV  denotes the volume of the contact region (in which D can be a nonlinear 

function of E, hence the special manner of expressing the energy), and oV  denotes the 

volume for the rest of the sample in which linear electrostatics holds.   The elastic 

energy is given by the Hertzian solution of two elastic spheres in contact: 

 5/ 2 2
/ 2

5
elas

W h R
D

= , (A2) 

where h denotes the distance of approach between two spheres caused by elastic 

deformation, and D  is the deformation modulus.  In Equation. A1, SV  is implicitly a 

function of h.  By assuming that within SV , D is a linear function of E up until E = 

Esat (the saturation field), and then D = Esat afterward, the equilibrium contact 

configuration is obtained by minimizing W with respect to h (at every E).  Here Esat is 

given in terms of plausible material parameters.  

Owing to the large dielectric constant of the particle (on the order of 60–100), 

the electric field is enhanced (over the applied electric field) at the contact region 

between two spheres, with an enhancement factor of ~102 [estimated numerically by 

using the finite-element method (Huang et al. 2006)] in comparison with the applied 

electric field.  To evaluate the shear stress, one simply first calculates W as a function 

of the distortion strain θ  (shown schematically in the inset of Figure 8b).  Then the 

shear stress is defined as the derivative of the total energy with respect to θ . The area 

of the contact region is noted to decrease under shear distortion, and the yield stress is 

given by the stress value at the point of separation (zero contact area) (Figure 8b).   In 

the phenomenological model, there is only one adjustable parameter, given by the 
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deformation modulus D of the coating.  It turns out that the value obtained from 

fitting is ~0.1 GPa, similar to that for a liquid, and agrees with the TEM observation 

that the coatings seem to be soft. 

SUPPLEMENTAL APPENDIX B: 

Derivation and Numerical Implementation of the                                        

Electrorheological Fluid Dynamics Equations 

In this appendix, we derive the continuum hydrodynamic equations of motion 

for the ER fluid and detail their numerical implementation (Zhang et al. 2008).  We 

also show some results from the implementation of the continuum equations of 

motion on the commercial code COMSOL Multiphysics.  

For simplicity, we shall only a DER fluid in the limit of dipole interactions. 

The Onsager variational principle is used as a systematic approach to derive the 

relevant equations of motion. The Onsager principle of minimum energy dissipation 

(Onsager 1931a,b; Onsager & Machlup 1953) is about the rules governing the optimal 

paths of deviation and restoration to equilibrium. Similar variational principles were 

used or developed by Helmholtz (Batchelor 1963), Rayleigh (1873), Edward & Freed 

(1974), and Doi (1983).   

 

B.1.  The Onsager Variational Principle 

The Onsager variational principle offers a systematic approach to derive the 

equations of motion by accounting for the two important elements of our complex 

system: dissipation and free energy.  In its simplest one-variable version, the Onsager 

variational action is given by 

 21

2

F
A ηα α

α

∂
= +

∂
& & , (B1) 

where α  represents a deviation from equilibrium and α&  its rate.  The action A is to 

be minimized with respect to α& . The definition of A can be made plausible by noting 
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that after minimization, the equation /Fηα α= −∂ ∂&  represents the balance of 

dissipative force with the conservative force.  The Onsager variational action can also 

be derived from the Fokker-Planck equation by maximizing the transition probability 

(Qian 2006, Sheng 2010).  In that case there is an added significance that the force 

balance also implies the most probable course of a dissipative process.  In its 

multivariable version in which the parameters can also be a function of the spatial 

variable xr , then  

 1
1

, 1

( , , )1
[ ( ), , ( )] ( ) ( )

2

n
n

n ij i j i
i j i i

F
A x x x x dx

δ α α
α α η α α α

δα=

⋅ ⋅ ⋅⋅
⋅ ⋅ ⋅⋅ = +

⎡ ⎤
⎢ ⎥
⎣ ⎦
∑ ∑∫

r r r r r
& & &  . (B2) 

Here the dissipation coefficient matrix [ ]ijη  is required to be symmetric, as shown by 

Onsager (1931a,b). 

 

 

B.2. Derivation of the Equations of Motion 

For the s phase, we treat the solid particles, consisting of identical 

microspheres with radius R, collectively by regarding their density 
3 1( ) ( )(4 / 3)sn x f x Rπ −=

r r  as a field variable, where ( )sf xr  denotes the dimensionless, 

local volume fraction of solid microspheres. One can write down the total energy for 

the s component under an externally applied electric field extE
r

, including the 

interaction between the particles and between the particles and the external field, as a 

functional of ( )n xr : 

 12

0

1[ ( )] = ( , ) ( ) ( ) ( ) ( )
2

( ) ( ) ( ) ( ) ( ) ,
2 | |

ij i j

ext

F n x G x y p x n x p y n y dxdy

RE x p x n x dx n x n y dxdy
x y

ε ⎛ ⎞
− ⋅ + ⎜ ⎟−⎝ ⎠

∫

∫ ∫

r r r r r r r r r

r r r r r r r r r r
r r

  (B3) 
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where 
1( , ) = | |

ij i j
G x y x y −∇ ∇ −

r rr r r r
 is the dipole interaction operator, and 

( )12

0 / | |R x yε −
r r  is the repulsive interaction between the particles (Klingenberg 1991a) 

introduced to avoid singularities in the calculations, with 0ε  a suitable energy scale.  

In Equation B3, the Einstein summation convention is followed, in which the repeated 

indices imply summation.  A variation of F with respect to n leads to 

= ( )F n ndxδ μ δ∫
r , where  

 
12

0
[ ( )] = ( ) ( ) ( , ) ( ) ( ) ( ) ( )

| |ext ij i j

R
n x E x p x G x y p x p y n y dy n y dy

x y
μ ε− ⋅ + +

−

⎛ ⎞
⎜ ⎟
⎝ ⎠

∫ ∫
rr r r r r r r r r r r r

r r  (B4) 

 

is the chemical potential for the s component.  The first two terms on the right-hand 

side of Equation B4 may be interpreted as the product of the local electric field lE
r

 

with the (induced) dipole moment, 
l

E p− ⋅
r r , where 

 [ ( )] = [ ( )] ( , ) ( ) ( )
l i ext i ij j

E x E x G x y p y n y dy− ∫
r rr r r r r r r . (B5) 

From the local electric field, the induced dipole moment ( )p xr r
 is obtained from 

Equation 1 in which the CM factorβ  is replaced by ( )sf xr β . This is because in the 

CM factor sε  should be replaced by the effective dielectric constant ( )s xε r
 within the 

s phase, and from the Maxwell-Garnett equation we have 

 
( )

= ( )
( ) 2 s
s

s

x
f x

x
ε ε

β
ε ε

−

+
l

l

r
r

r . (B6) 

As n  is a locally conserved variable, there is a continuity equation for n , given by 

 0s
nn J V n J
t

∂
+∇ ⋅ = + ⋅∇ +∇⋅ =

∂

r r
& , (B7) 

where Vs  is the s-phase velocity, and J
r

 is a convective-diffusive current density, to 

be determined variationally.   

  Because ( , )A J V Fs = +Φ
r r

& , we have        
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( )

( ) ( ) ,

n
F dx n V n dxst

J V n dx J n V dxs s

μ μ

μ μ μ

∂
= = − ⋅∇∫ ∫

∂
= − ∇ ⋅ + ⋅∇ = ∇ ⋅ + ∇ ⋅∫ ∫

rr r& &

r r r rr r
 (B8) 

and Φ is a quadratic function of rates, given as one-half the energy dissipation rate, 

i.e., 

 2 2 21 1
[ ( ) ( ) ] ( )

4 2 2s i s j j s i s
V V J K V V

n
dxγ

η ∂ + ∂ + + −⎛ ⎞Φ ⎜ ⎟
⎝ ⎠

= ∫ l

r r r r r
, (B9) 

together with the constraint of 0Vs∇ ⋅ =
r

, which can be implemented by using a 

Lagrange multiplier λ at every spatial point.  In Equation B8 we use the integration by 

parts as well as the incompressibility condition to reach the final desired form.  In 

Equation B9, γ is a frictional coefficient related to the convective-diffusive current’s 

dissipation.  The form of the convective-diffusive dissipation can be simply obtained 

by realizing that dJ nV=
r r

, where dV
r

 denotes the drift velocity.  The dissipative force 

acting on a single microsphere is dVγ
r

.  Hence the force density is given by dn Vγ
r

, and 

the energy dissipation rate per unit volume is 2 2 /dn V J nγ γ= , taking into account the 

factor of one-half leads directly to the expression shown in Equation B9.  The other 

two terms of Φ are simply the well-known viscous dissipation and the dissipation 

caused by the  relative drag force density between the s and l  components in the 

linear approximation. If we consider only the Stokes drag of the s phase by the fluid,  

then 2= 9 / 2sK f Rη
l

. 

  Minimization of the variational functional with respect to the rates ( , )J Vs
r r

 

leads to the desired expression for J
r

 and the Stokes equation for the s component.  

That is, 

 
n

J μ
γ

= − ∇
r

, (B10) 

and 

 0 ( )s
s visc sp n K V Vτ μ= −∇ +∇⋅ + ∇ + −l

r r
, (B11) 
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where = ( ) / 2s T
visc s s sV Vτ η ∇ +∇

r r
 is the viscous stress tensor of the s component, 

6 s Rγ πη=  is the Stokes drag for a sphere of radius R, and / 2sp λ= − . A point that 

needs to be emphasized is that sη  is the effective viscosity of  colloid, which is a 

(solid particle) concentration-dependent quantity.  This effective viscosity has been a 

topic of extensive study both theoretically and experimentally.  When the solid 

particle density is lower than fs ≤ 0.55, Pade approximants (Verberg et al. 1997) can 

be used to represent the viscosity variation with fs. In the lowest order, the viscosity 

can be written as ( )25
/ 1

2s s sf fη η = + +Ο
l

. For fs near the random close pack fraction 

max 0.698sf = , experimental results (Cheng et al. 2002) show an exponential 

divergence: ( )max/ exp 0.6 /s s sf fη η ∝ −⎡ ⎤⎣ ⎦l
.  By using Pade approximants, one can 

match the two limits with a smooth variation in between (Supplemental Figure 1).. 

 For the liquid component, similar derivation yields 

 0 = ( )visc sp K V Vτ−∇ +∇ ⋅ + −l

l l

r r
, (B12) 

where = ( ) / 2T
visc V Vτ η ∇ +∇l

l l l

r r
 denotes the liquid viscous stress tensor.  Equation 

B12 is supplemented by the incompressibility condition 0V∇ ⋅ =
l

r
. 

 Equations B11 and B12 are essentially a statement of force balance F = 0. For 

problems involving the motion of ER fluids, it is important to incorporate momentum 

balance as well, i.e., to have F = (mass) × (acceleration).  That directly yields 

Equations 15 and 16.  By substituting Equation B10 into B7, we obtain Equation 14.  

This completes the derivation. 

B.3. Numerical Implementation   

To solve the coupled equationsm we first obtain extE φ= −∇
r

, with φ  the 

solution of the Laplace equation ( ) = 0xε φ∇ ∇
r , and the local effective dielectric 

constant ε  obtained from Equation 18c.  The consistency between the local electric 

field [ ( )] = [ ( )] ( , ) ( ) ( )l i ext i ij jE x E x G x y p y n y dy− ∫
r rr r r r r r r  and 3( ) ( )

l
p x f x R Eβ=

rr r r  can be obtained 



Supplemental Material: Annu. Rev. Fluid Mech. 2012. 44:143-174 
doi: 10.1146/annurev-fluid-120710-101024 
Electrorheological Fluids: Mechanisms, Dynamics, and Microfluidics Applications 
Sheng and Wen 
 

 7

through a few iterations in which an initial configuration of ( )n xr  [or ( )f xs
r ] needs to 

be specified to start the solution process.   

 Numerically, we solve the 2D problem (variations only along the x and z 

directions) by using finite difference with spectral differentiation along the x 

direction, and explicit in time.  Starting from a random initial configuration of ( )n xr  

(with a small amplitude component of periodic undulations along the x direction as 

seeding), we first apply the external potential to the problem, and with the local field 

[and thus ( )p xr r  through Equation B6] obtained as described above, ( )n xr  is updated 

through Equations B7 and B10.  The updated ( )n xr  [and thus fs( xr )] is used to 

calculated ( )s xε r  through Equation B6, and the process is iterated until consistency is 

reached. Thus starting from a random configuration, it is easy to see the formation of 

chain-like columns in the s component when the external field is applied.  This is the 

intuitively desired consequence of an external field, as required by energetics. The 

boundary condition of a moving upper plate (or the incremental displacement) is then 

applied, and the coupled hydrodynamic equations (Equations 15 and 16), together 

with the convective-diffusion equation (Equation 14), are solved with the 

incompressibility conditions by using the finite-difference scheme, with the pressure-

Poisson scheme that is relatively standard.  By time-stepping forward the solution, at 

each time step iterating the electrical solution to insure that consistency is achieved in 

( )n xr , we obtain the time evolution of the DER fluid dynamics.   

 The full 3D version of the continuum formulation has been solved by using 

the commercial finite-difference code COMSOL MULTIPHYSICS.  Some of the 

results are shown below. 

B.4. Finite-Element Implementation of the Continuum Code 

Recently, the full 3D version of the continuum simulation code has been 

successfully implemented by using the commercial finite-element code COMSOL 

Multiphysics (Liu et al. 2011).  By using such a simulation tool, one can compare the 

dynamic density pattern generated by a Couette flow in a rotating parallel plate 

configuration with the field applied perpendicular to the flow direction.  A snapshot of 

the pattern, taken as an optical image, and its continuum simulation result are shown 
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in Supplemental Figure 2.  The qualitative similarity of the pattern shows that the 

continuum formulation of the ER fluid dynamics has enabled macroscopic 

simulations. 

SUPPLEMENTAL APPENDIX C: 

 Giant Electrorheological Fluid–Based Valves, Pumps, and Microfluidic Mixers 

 In this appendix we present the successful implementations of microfluidic 

components by using GER fluids.  This is possible because the strong and quick 

electrical response of GER fluids has enabled their use as effective electrical-

mechanical interfaces. 

C.1. Microfluidic Valves and Pumps 

A microvalve is a critical microfluidic component for both one-step fluid 

actuation and multistep precise fluid controls (Zeng et al. 2009, Hosokawa & Maeda 

2000, Hosokawa et al. 1999, Groisman et al. 2003). Researchers have never stopped 

pursuing an effective, simply structured and easy-to-fabricate microvalve. From the 

first thin membrane valve proposed by Unger et al. (2000) to hydrogel valves (Yu et 

al. 2001, Beebe et al. 2000), heat-control valves (Pal et al. 2004), and screw-

pneumatic valves (Hulme et al. 2009, Zheng et al. 2009, Weibel et al. 2005), this 

effort has retained its significance through the decades. The first-generation 

polydimethylsiloxane (PDMS)-based microfluidic valves comprised two cross-

channels separated by a thin PDMS membrane, whereby air pressure coming from the 

lower channel deflects the thin membrane, which then closes the upper channel, 

thereby blocking the flow in the upper channel (Unger et al. 2000). Yoshida et al. 

(2002) and Nakano et al. (2002) tested ER effects in SU-8 channels with indium tin 

oxide electrodes for self-control of ER fluids in hard substrates.  Supplemental Figure 

3 shows the flow status of an ER fluid through a microfluidic channel. The size of the 

microchannel used for the GER fluid is more than 70 μm so as not to block the 

channel if/when the aggregation of GER nanoparticles occurs. A pair of electrodes 

integrated into the channel walls is used to control the flow of GER fluid. From 

Supplemental Figure 3a, the GER fluid can flow freely through the microchannel 

without the application of an electric field, while the GER fluid stops between the 
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electrodes when an electric field is applied so that the GER fluid solidifies 

(Supplemental Figure 3b). In this case, the yield stress of the relevant GER fluid must 

be high enough to overcome the resulting pressure gradient. Tests have shown that 

only GER fluids satisfy this criterion.  Thus the flow status of the GER fluid can be 

actively controlled by external electric signals. 

 Based on the above mechanism, a GER fluid valve can be designed and 

fabricated as shown in Supplemental Figure 4 (Niu et al. 2005). The working 

principle of a GER fluid–controlled microvalve is simply described as follows. The 

basic actuation function of a GER valve is a push-and-pull mechanism caused by a 

flexible PDMS membrane sandwiched between a GER channel and a microfluid 

channel. As shown in Supplemental Figure 4a, the GER fluid is circulated by a high-

pressure source connected to the inlet of the GER channel in order to push the GER 

fluid, together with a vacuum source connected to the outlet in order to pull the GER 

fluid. Two pairs of parallel electrodes are arranged along the GER fluid channel, 

forming an upstream and a downstream valve. When an electric field (usually a few 

hundred of voltages per millimeter) is applied to any pair of electrodes, the GER fluid 

flow can be slowed or fully stopped due to the GER effect described in Supplemental 

Figure 3. As shown in Supplemental Figure 4b, when the electric field is applied to 

the right pair of electrodes, the GER fluid is stopped by the downstream valve; thus 

the GER fluid accumulates in the upstream channel to push the membrane upward. 

Thereby the fluid flow in the upper microfluidic channel is slowed or stopped. The 

membrane moves downward to open the upper channel when the applied electric field 

is switched to the upstream valve, as seen in Supplemental Figure 4c. The up-down 

movement of a flexible membrane is easily controlled by an external signal, and the 

response time is measured to be less than 1 ms, which is faster than the mechanical 

valve. An image of the open-close status of a GER valve controlled by an external 

signal is shown in Supplemental Figure 5.   

By employing GER fluid valves, we are able to design GER micropumps with 

high pumping efficiency (Liu et al. 2006a). A microfluidic pump consists of a 

multilayered structure fabricated with PDMS by conventional soft-lithographic 

methodology in which the upper channel is used for pumping fluid flow while three 

lower independent channels are used to manipulate the GER fluid flows. Three 
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membranes are sandwiched between the upper and lower channels. Within this zone, 

the GER fluid underneath can affect the flow of the pumping fluid via the pull-push 

movement of the three membranes. The cooperative movements of the membranes, 

actuated by the GER fluid valves, are the direct driving mechanism for the pumping 

action. An actual design of a GER microfluidic pump is shown in Supplemental 

Figure 6a. The GER microfluidic pump exhibits good performance at high pumping 

frequencies and uniform liquid flow characteristics. It can be easily integrated with 

other microfluidic components. Programmable control also gives the device 

flexibility in its operations. Other GER fluid–based microfluidic devices, like a 

microdamping platform (Liu et al. 2006b) and micromixer (Niu et al. 2006a,b), can 

also be realized by incorporating microvalve and digital control systems, as seen in 

Supplemental Figure 6b,c. A more complex GER fluid–based microfluidic device is 

the so-called all-in-one PCR device, a highly integrated microfluidic chip with the 

function of DNA amplification (Liu et al. 2008). As seen in Supplemental Figure 6d, 

the integrated PCR chip combines GER-fluid actuated microvalves, a micromixer, 

and micropumps as well as microheater arrays. Internal functional components are 

based on PDMS and silver/carbon black-PDMS conducting composites. The system 

has the advantages of small size with a high degree of integration, high PCR 

efficiency, digital control, and simple fabrication at low cost.                     

C.2. Microfluidic Active Mixer 

It is well-known that mixing two or more streams of fluids is an important 

issue in various microfluidic devices. The mixing process is not trivial on the 

microscale, owing to the dominance of the viscous effect, and hence laminar flow 

usually occurs. Two types micromixers—passive and active—have been intensively 

investigated.  Passive mixers are designed to induce 3D helical fluid motions from 

patterned structural asymmetries that can fold the streams into highly nested thin 

slices, so as to facilitate local molecular interdiffusion.  The active approach employs 

dynamic control to help achieve chaotic mixing by external actuations.  

A PDMS-based GER fluid–driven cross-stream active mixer was successfully 

implemented recently, shown in Supplemental Figure 6c. Such a micromixer consists 

of a main flow channel and six pairs of orthogonal side channels (Niu et al. 2006a,b). 

Operation of the mixer chip relies on the perturbation of the main x-directional 
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channel flow by the y-directional cross-stream side-channel flows. The side-channel 

flows are perturbed by pressure changes through thin membranes affected by GER 

fluid microvalves, controlled digitally through external electric signals. The mixing 

characteristics of two micromixers can be seen in Supplemental Figure 7. Whereas 

the upper panel of Supplemental Figure 7a shows the laminar flow of two streams 

without mixing, the lower panel shows full mixing of two microfluidic streams when 

the GER fluid is activated. Supplemental Figure 7b shows the mixing results of two 

streams with a hybrid micromixer (with added baffles) under different control 

parameters.   The hybrid modes have been shown to decrease the required mixing 

length/time to achieve homogeneity (Niu et al. 2006b). 
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FIGURE LEGENDS FOR THE SUPPLEMENTAL APPENDICES 

Supplemental Figure 1: Ratio of the s component’s viscosity to that of the liquid 

component, plotted as a function of the solid volume fraction. Figure taken from 

Sheng & Wen (2010). 

Supplemental Figure 2: (a) Experimental image and (b) the finite-element simulation 

result using COMSOL showing the particle rings (shown as the darker colors) of ER 

fluids near the bottom steady electrodes, when E = 1 kV mm−1 and the rotation speed 

of the upper electrode is 300 rpm.  Both the upper and lower plates are transparent for 

the ease of microscopic visualization. The numbers denote the x-y coordinates in 

meters. A qualitative similarity in the patterns was observed between the experiment 

and simulation results.  Figure courtesy of L.W. Zhou. Figure taken from Liu et al. 

(2010). 

Supplemental Figure 3: The status of a GER fluid in the microfluidic channel. (a) The 

GER fluid flows freely without the application of an electric field on the electrodes. 

(b) The GER flow stops when an external electric field is applied. 

Supplemental Figure 4: Working principle of the GER valve. 

Supplemental Figure 5: Optical images of GER fluid valve when it opens and closes 

as a result of the deflected membrane. Figure taken from Niu et al. (2005). 
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Supplemental Figure 6:  Schematic designs of GER microfluidic devices: the 

structures of a GER (a) micropump, (b) microdamper, (c) micromixer, and (d) GER 

fluid–based PCR. Figure taken from Liu et al. (2006a,b, 2008) and Niu et al. (2006b). 

Supplemental Figure 7: Images of mixing characteristics of GER micromixers. (a) 

The images without mixing and with mixing of the two streams. (b) Micrographs of 

mixing along the baffled main channel at a fixed flow speed of U = 0.2 mm s−1, with 

a side channel oscillatory flow frequency ω = 20 radian per second and maximum 

side channel flow velocity vp = 0, 0.1, and 0.8 mm s−1, corresponding to Ap = vp/U = 

0. 0.5 and 4.0.  All channels in both panels have a width of 200 μm with a depth of 40 

μm. Figure taken from Niu et al. (2006b). 
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