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Hybrid elastic solids
Yun Lai1,2, Ying Wu1,3, Ping Sheng1 and Zhao-Qing Zhang1*

Metamaterials can exhibit electromagnetic and elastic characteristics beyond those found in nature. In this work, we present
a design of elastic metamaterial that exhibits multiple resonances in its building blocks. Band structure calculations show two
negative dispersion bands, of which one supports only compressional waves and thereby blurs the distinction between a fluid
and a solid over a finite frequency regime, whereas the other displays ‘super anisotropy’ in which compressional waves and
shear waves can propagate only along different directions. Such unusual characteristics, well explained by the effective medium
theory, have no comparable analogue in conventional solids and may lead to novel applications.

Double-negative electromagnetic materials denote those
artificial structures in which both the dielectric constant ε
and magnetic permeability µ are simultaneously negative

within a certain frequency regime. The initial proposal1 and its
more recent realizations2–8 permit the index of refraction to take
negative values, with broad scientific and practical implications9–16.
The ability of double-negative metamaterials to possess unusual
electromagnetic responses is bestowed by the special resonances
provided by its unit structure. This principle is equally valid for
acoustic and elastic materials. An acousticmetamaterial comprising
locally resonant units17 was shown to exhibit negative mass
density18,19; and negative bulk modulus was demonstrated in a
system of Helmholtz resonators20. By combining the two, various
schemes have been proposed and implemented to realize a double-
negative characteristic for the compressional wave21–25, in analogy
with the double-negative electromagneticmaterials.

The ability to withstand shear is a trait that distinguishes a solid
from a liquid. In an elastic solid, the increased number of relevant
material parameters, when combined with the possibility of double
negativity, can yield characteristics that are much more complex
than those seen in electromagnetic and acoustic metamaterials,
some of which, as we show here, can blur the delineating feature
between a solid and a liquidwithin a certain frequency regime.

For a solid in a periodic structure, the dispersion is in general
anisotropic. Even in the simplest case of a square lattice, one must
take into consideration the realization of negative values for not
only mass density ρ, but also three elastic moduli26, namely c11,
c12 and c44, as well as the various possible interactions between
these parameters. Intriguing possibilities arise. For example, if
both mass density and compressional wave moduli are negative
within a certain frequency regime, then one may have only a
negative band propagating compressional waves (and evanescent
shear waves), which makes a solid ‘fluid-like’. Another possibility is
to have negative dispersions for the compressional wave and shear
wave along distinct directions. The potential realization of such
possibilities, or even a subset, would open new horizons in solid
wave mechanics. Here we would like to mention that anisotropy in
semiconductor superlattices can also give rise to some interesting
phenomenon. It was shown that hybridization of longitudinal
acoustic phonons and folded slow-transverse phonons can create
a band gap inside the Brillouin zone in addition to those at the zone
boundary and the zone centre27.
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Figure 1 | Physical model and a practical design. a, The physical model of a
type of multi-mass resonating unit cell that can support monopolar, dipolar
and quadrupolar resonances, and lead to novel elastic properties. b, A
realistic elastic metamaterial unit that is designed according to the physical
model in a.

A unit cell with multiple resonances
We propose a type of two-dimensional elastic metamaterial with
its unit cell comprising a multi-mass locally resonant inclusion that
can generate resonances with monopolar, dipolar and quadrupolar
characteristics. The proposed unit cell is shown to lead to negative
values, not only for mass density, but also for certain elastic
moduli. With physically realizable material parameters, we use
finite element simulations to demonstrate that when these unit
cells are arranged in a simple square lattice, there can be two
hybridized bands with novel characteristics. One of the hybridized
band lies in the double-negative frequency regime for mass density
and compressional wave moduli, so that only longitudinal pressure
waves can propagate (with negative dispersion), whereas transverse
shear waves decay exponentially. In the other band it is found
that along distinct directions only longitudinal pressure waves
or transverse waves are allowed, both with negative dispersions.
These phenomena, absent in nature, are denoted as ‘fluid-like’ and
‘super-anisotropic’, respectively.

A schematic figure of the physical model of the unit cell is
shown in Fig. 1a. The model is a mass–spring system composed
of four masses connected to each other and to the host by
springs. Collective motion of the four masses can enhance the
dipolar resonance (for negative mass density), whereas their
relative motions can enhance the quadrupolar and monopolar
resonances (for negative moduli). A practical realization of the
model in Fig. 1a is illustrated in Fig. 1b. The resonant inclusions
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Figure 2 | Band structure and effective medium parameters. a, The band
structure of the elastic metamaterial. Two distinct negative bands are
marked by red and blue dots, respectively. The crosses indicate the
dispersions obtained by using the effective medium theory. b, The κeff for
the higher frequency negative band, exhibiting large negative values at the
upper band edge, that is, close to the 0 point. c, The µeff for the lower
frequency negative band, exhibiting large negative values at the upper band
edge, that is, close to the 0 point.

are composed of a soft silicone rubber rod embedded with a
hard silicone rubber rod, surrounded by four rectangular steel
rods. The matrix material is chosen to be a foam that has a
light mass density as well as low moduli. The square lattice
has a lattice constant of 10 cm; the radii of the soft and hard
silicone rubber rods are 4 cm and 1 cm, respectively; the rectangular
steel rods are 1.6 cm× 2.4 cm in size, located at a distance of
2.4 cm from the centre. The material parameters are taken to be
ρ = 115 kgm−3, λ= 6×106 Nm−2, µ= 3×106 Nm−2 for foam28;
ρ= 1.3×103 kgm−3, λ= 6×105 Nm−2, µ= 4×104 Nm−2 for soft
silicone rubber17; ρ = 1.415× 103 kgm−3, λ = 1.27× 109 Nm−2,
µ= 1.78× 106 Nm−2 for hard silicone rubber (J. Page, personal
communication); ρ = 7.9 × 103 kgm−3, λ = 1.11 × 1011 Nm−2,
µ = 8.28× 1010 Nm−2 for steel. At certain frequencies, the four
rectangular steel rods serve as the four masses, while the silicone
rubber rods serve as the springs in Fig. 1a. The insertion of the
hard silicone rubber is for the purpose of adjusting the spring
constants between the masses.

Band structure and eigenstates
The band structure of the elastic composite in Fig. 1b was calculated
by using a finite element solver (COMSOL Multiphysics) and is
shown in Fig. 2a. There are two bands (red and blue dots) with
negative curvatures. The lower frequency negative dispersion band
(red dots) has a bandwidth of about 18Hz. A small complete
gap (178Hz–198Hz) separates it from a higher frequency negative
dispersion band (blue dots) which has a bandwidth of about
18Hz along the 0M direction but only 10Hz in the 0X direction.
There is also a complete gap above the higher negative band
(216Hz–255Hz). We note that, around 200Hz, the transverse and
longitudinal wavelengths in the foam host are, respectively, about
80 cm and 160 cm; much larger than the lattice constant of 10 cm.
Thus, these negative bands are not induced by Bragg scattering but
are rather the results of hybridization between different types of
resonances within the unit cell.

An investigation of the eigenstates in the bands gives us a clear
picture of the physical origin of the bands. The eigenstates in the
low-frequency bands, delineated in Fig. 2a by dark yellow, red and
blue dots, have their kinetic energy (both vibrational and rotational)
mostly concentrated in the steel rods. In contrast, for eigenstates in
the high-frequency bands, delineated in Fig. 2a by black dots, the
energy is mostly concentrated inside the soft silicone rubber. The
origin of the band gaps shown in Fig. 2a is the collective motions
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Figure 3 | Field distributions of some specific eigenstates. a,b, The
eigenstates (f= 178.5 Hz and 216.8 Hz) at the 0 point in the lower and
upper negative bands, respectively. Here, arrows indicate displacements
and colour indicates amplitude (red for large and blue for small). c,d, The
displacements of the quadrupolar and monopolar resonances that
correspond to a and b, respectively. e, The eigenstate (f= 169.4 Hz) at the
midpoint between the 0 and M points in the lower negative band (marked
by A in Fig. 2a). f, The eigenstate (f= 210.3 Hz) at the midpoint between
the 0 and X points in the upper negative band (marked by B in Fig. 2a).
g,h, The states in e and f are shown to arise as hybridizations,
(quadrupole+dipole) and (monopole+dipole), respectively.

of steel rods that enhance dipolar resonances and thus produces a
negativemass density within the frequency range of 160Hz–255Hz,
in a manner similar to single-mass resonator metamaterials17.
However, as well as the dipolar resonance, the relative motions of
steel rods can support two other important resonances, namely,
the monopolar and quadrupolar resonances, which are found to be
responsible for the two negative bands (blue and red dots) inside
the range of negative mass density. In Fig. 3a and b, we plot the two
eigenstates in the lower and upper negative bands (f = 178.5Hz
and 216.8Hz) at the 0 point, respectively. Here, the colour
represents the amplitude of displacement (blue/red for small/large
values) and the arrows show the displacement vectors directly. The
eigenstate in Fig. 3a is clearly a quadrupolar resonance, whereas the
eigenstate in Fig. 3b is a monopolar resonance. Schematics of the
two resonances are shown by the blue thick arrows in Fig. 3c and
d, respectively, which indicate the displacements in the positions
of the steel rods and exhibit clear quadrupolar and monopolar
signatures. Thus, we can view the two negative bands as being
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Figure 4 | Transmission through a finite sample. a, The numerical set-up for transmission computations. b,c, Transmission along the 0M direction for
transverse input excitations (b) and longitudinal input excitations (c). Transmission along the 0X direction for transverse input excitations (d) and
longitudinal input excitations (e). In the upper frequency negative dispersion band, indicated by the blue dashed lines, it is seen that whereas longitudinal
excitations can lead to large transmissions along both the 0M and 0X directions (c,e), strong attenuation is seen for transverse input excitations (b,d). For
the lower frequency negative dispersion band, indicated by the red dashed lines, large transmissions are seen in b and e, in exact agreement with the
effective medium predictions.

induced by quadrupolar andmonopolar resonances inside the band
gap created by the dipolar resonance. This may be viewed as the
hybridization effect of the quadrupolar/monopolar resonance with
the dipolar resonance.

To directly see the hybridization effect, we plot in Fig. 3e and
f the state at the midpoint between the 0 and M points in the
lower negative band (marked by the symbol ‘A’ with f = 169.4Hz)
and the state at the midpoint between the 0 and X points in the
upper negative band (marked by the symbol ‘B’ with f = 210.3Hz),
respectively. It is seen that away from the 0 point, the pure
quadrupolar or monopolar states turn into hybrid states that can be
regarded as combinations of a monopolar or quadrupolar state and
a dipolar state. These are illustrated in Fig. 3g and h, respectively.
These hybrid states have negative non-zero group velocities and
thus can transmit energy.

Effective medium description
The formation of negative bands can be understood from an
effective medium point of view. It is known that dipolar reso-
nances can lead to negative mass density17–19, whereas monopolar
and quadrupolar resonances are associated with certain elastic
moduli28,29. From the theory of linear elasticity, the three elastic
moduli for a solidwith a square lattice are c11, c12 and c44. The disper-
sions and the associated modes can be obtained from the Christof-
fel’s equation26. Along the 0X direction, compressional wave and

shear wave velocities are given by
√
c11/ρ and

√
c44/ρ, respectively;

whereas along the 0M direction the compressional and shear wave
velocities are

√
(c11+ c12+2c44)/(2ρ) and

√
(c11− c12)/(2ρ), re-

spectively. Thus, we can predict the transport properties of this hy-
brid elastic solid if we can obtain the effective medium parameters.
Owing to the strongly anisotropic nature of the relativemotions that
are possible within our unit cell, an effective medium theory that
relies on the surface motion/response to external stimuli (in con-
trast to volume average), is shown to bemore generally applicable to
calculate the effective parameters along both0Xand0Mdirections.

Along the 0X and 0Mdirections, we find that it is convenient to
introduce κeff= (c eff11 + c

eff
12 )/2 andµ

eff
= (c eff11 − c

eff
12 )/2 as the effective

elastic bulk modulus and shear modulus that correspond with
the monopolar and quadrupolar resonances, respectively. Whereas
ρeff
= −F eff

x /ω
2ueffx a2, where both the effective force F eff

x on the
unit cell and its effective displacement ueffx may be obtained from
surface integration of the stresses (along the x direction) and the
displacements over the unit cell, the effective moduli are evaluated
from the effective stress and strain relations: T eff

xx = c eff11 S
eff
xx + c eff12 S

eff
yy ,

T eff
yy = c eff12 S

eff
xx + c eff11 S

eff
yy , and T eff

xy = 2c eff44 S
eff
xy , where both the effective

stresses and the effective strains are evaluated on the unit cell
boundary.Details can be found in the Supplementary Information.

In the lower negative band, the µeff evaluated from the relevant
eigenstates is negative and diverges (in the negative direction) at
the 0 point owing to the quadrupolar resonance, whereas κeff is
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positive and finite. In the higher negative band, κeff is negative
and diverges (in the negative direction) at the 0 point owing to
the monopolar resonance, whereas µeff is positive and finite. The
compressional wave and shear wave velocities along the 0X (0M)
direction can be obtained by

√
(κeff+µeff)/ρeff (

√
(κeff+ c eff44 )/ρeff)

and
√
c eff44 /ρ

eff (
√
µeff/ρeff), respectively. From these formulas, it

can be clearly seen that in the higher frequency negative dispersion
band, the fact that κeff� 0, ρeff < 0, µeff > 0 and c eff44 > 0 implies
only the longitudinal wave can propagate along the 0X and 0M
directions. For the lower frequency negative dispersion band we
have µeff

� 0, ρeff < 0 and other parameters positive, therefore
only the longitudinal (transverse) wave can propagate along the 0X
(0M) direction. The resulting effective medium predictions of the
dispersion relations are shown as crosses in Fig. 2a. The agreement
is excellent. It should be noted, however, that owing to the nature
of quadrupolar excitation, c eff44 for the lower negative band cannot
be obtained from the effective medium theory. Thus the condition
c eff44 >0 is inferred by consistency with the band structures.

Discussion of novel characteristics
The above effective medium analysis predicts that this solid
metamaterial has very unusual acoustic properties, beyond those of
normal solids. In the higher frequency negative dispersion band,
the elastic metamaterial can only transport pressure waves and
thus turns ‘fluid-like’. Therefore, its impedance can be perfectly
matched to a fluid host or soft tissues where pressure waves
dominate. In the lower frequency negative dispersion band, the
metamaterial turns into a very unique anisotropic solid that is
‘fluid-like’ in certain directions and ‘incompressible-solid-like’
(that is, allowing only shear waves) in certain other directions, a
property which is denoted ‘super-anisotropic’. In the following, we
perform transmission calculations by using COMSOLMultiphysics
to illustrate the transmission properties of the hybrid bands. A
schematic for the numerical set-up in COMSOL is shown in Fig. 4a.
For a slab ofmetamaterial with seven layers along the0Mdirection,
an external normal/tangential harmonic force is exerted on the
left side to provide an input of longitudinal/transverse waves. A
perfect matched layer (PML) is added at the right side and periodic
boundary conditions are imposed on the upper and lower edges.
The transmissions for the longitudinal or transverse waves (denoted
as ‘p’ or ‘s’) can be calculated by integrating the horizontal or
vertical displacements on the data line. In Fig. 4b,c, we show the
obtained transmissions in the 0M direction under transverse and
longitudinal inputs, respectively. It is seen that large transmissions
(on the order of one) for p waves are obtained for the upper
negative dispersion band (delineated by blue dashed lines) under
a longitudinal input. By contrast, large transmissions for s waves
are obtained for the lower negative dispersion band (delineated by
red dashed lines) under a transverse input. In Fig. 4d,e, we show
the obtained transmissions along the0X direction under transverse
and longitudinal inputs, respectively. Large transmissions are seen
only for longitudinal input excitations, for both negative dispersion
bands. The results are in exact agreement with the predictions of
the effective medium theory. Here we note that there are some
transmission values greater than one in Fig. 4b–e caused by the
use of force (load) as input instead of incident waves, but these
(normalization issues) do not affect the analysis here.

The ‘super-anisotropic’ behaviour can be understood as a result
of symmetry breaking in the rubber rod due to the presence of four
steel rods. As shown in Fig. 3c, a local quadrupolar resonance in a
cylindrically symmetric rubber rod (without the steel rods) has two
degenerate modes at the0 point (with displacements marked as red
and blue thick arrows). By matching with the displacements of the
host medium (red and blue thin arrows), it is seen that one mode
(red arrows) is transverse in the 0X direction and longitudinal in
the 0M direction, whereas the other mode (blue arrows) is just the

opposite. When the steel rods are inserted at the positions of the
dashed boxes, the symmetry of the rubber rod is broken and the two
degenerate states split. The one denoted by blue arrows in Fig. 3c
leads to the lower negative band with the ‘super-anisotropic’ elastic
characteristic shown in Fig. 2a.

We note that, in general, the theory of linear elasticity needs to
be modified so as to accommodate the finite-size limitation of the
unit cell in elastic metamaterials30–32. During the effective medium
calculation of the lower negative band, we have actually observed
stresses T eff

xy 6=T eff
yx , which implies ‘local rotations’ beyond the linear

elastic theory. However, this ‘local rotation’ effect does not have
a major impact on the phenomena shown in this paper, as they
are actually determined by the resonances involving the diagonal
terms, namely T eff

xx and T eff
yy , as can be seen from the divergence of

κeff and µeff in Fig. 2b and c, respectively. Nevertheless, the ‘local
rotation’ effect may have some interesting implications in other
types of metamaterials30–32.

The ‘fluid-like’ and ‘super-anisotropic’ hybrid elastic solids
shown in this report represent two types of new solids absent in
nature. They significantly extend our ability to control elastic waves
in solids. Potential applications of these hybrid elastic solids include
wave polarizers, wave imaging and confinement33, controlling
elastic and seismic waves34,35, transformation acoustics36, and so
on. As a result of their double-negative nature, negative refraction
and superlensing for longitudinal or transverse components are also
possible. Having a richer variety of unusual properties than their
electromagnetic and acoustic counterparts, elastic metamaterials
are likely to generate further new ideas and novel applications in
the near future.

Received 17 January 2011; accepted 6 May 2011; published online
26 June 2011

References
1. Pendry, J. B., Holden, A. J., Robbins, D. J. & Stewart, W. J. Magnetism from

conductors and enhanced nonlinear phenomena. IEEE Trans. Microwave
Theory Tech. 47, 2075–2084 (1999).

2. Shelby, R. A., Smith, D. R. & Schultz, S. Experimental verification of a negative
index of refraction. Science 292, 77–79 (2001).

3. Smith, D. R., Pendry, J. B. & Wiltshire, M. C. K. Metamaterials and negative
refractive index. Science 305, 788–792 (2004).

4. Fang, N., Lee, H., Sun, C. & Zhang, X. Sub-diffraction-limited optical imaging
with a silver superlens. Science 308, 534–537 (2005).

5. Soukoulis, C. M., Linden, S. &Wegener, M. Negative refractive index at optical
wavelengths. Science 315, 47–49 (2007).

6. Lezec, H. J., Dionne, J. A. & Atwater, H. A. Negative refraction at visible
frequencies. Science 316, 430–432 (2007).

7. Valentine, J. et al. Three-dimensional optical metamaterial with a negative
refractive index. Nature 455, 376–379 (2008).

8. Yao, J. et al. Optical negative refraction in bulk metamaterials of nanowires.
Science 321, 930 (2008).

9. Veselago, V. G. The electrodynamics of substances with simultaneously
negative values of ε and µ. Sov. Phys. Usp. 10, 509–514 (1968).

10. Pendry, J. B. Negative refraction makes a perfect lens. Phys. Rev. Lett. 85,
3966–3969 (2000).

11. Leonhardt, U. Optical conformal mapping. Science 312, 1777–1780 (2006).
12. Pendry, J. B., Schurig, D. & Smith, D. R. Controlling electromagnetic fields.

Science 312, 1780–1782 (2006).
13. Pendry, J. B. & Ramakrishna, S. A. Near-field lenses in two dimensions.

J. Phys. Condens. Matter 14, 8463–8479 (2002).
14. Yang, T., Chen, H. Y., Luo, X. D. & Ma, H. R. Superscatterer: Enhancement of

scattering with complementary media. Opt. Express 16, 18545–18550 (2008).
15. Lai, Y., Chen, H. Y., Zhang, Z. Q. & Chan, C. T. Complementary media

invisibility cloak that cloaks objects at a distance outside the cloaking shell.
Phys. Rev. Lett. 102, 093901 (2009).

16. Lai, Y. et al. Illusion optics: The optical transformation of an object into
another object. Phys. Rev. Lett. 102, 253902 (2009).

17. Liu, Z. et al. Locally resonant sonic materials. Science 289, 1734–1736 (2000).
18. Liu, Z., Chan, C. T. & Sheng, P. Analytic model of phononic crystals with local

resonances. Phys. Rev. B 71, 014103 (2005).
19. Yang, Z., Mei, J., Yang, M., Chan, N. H. & Sheng, P. Membrane-type acoustic

metamaterial with negative dynamic mass. Phys. Rev. Lett. 101, 204301 (2008).
20. Fang, N. et al. Ultrasonic metamaterials with negative modulus. Nature Mater.

5, 452–456 (2006).

NATURE MATERIALS | VOL 10 | AUGUST 2011 | www.nature.com/naturematerials 623

© 2011 Macmillan Publishers Limited. All rights reserved

http://www.nature.com/doifinder/10.1038/nmat3043
http://www.nature.com/naturematerials


ARTICLES NATURE MATERIALS DOI: 10.1038/NMAT3043

21. Ding, Y. Q., Liu, Z. Y., Qiu, C. Y. & Shi, J. Metamaterial with simultaneously
negative bulk modulus and mass density. Phys. Rev. Lett. 99, 093904 (2007).

22. Li, J. & Chan, C. T. Double-negative acoustic metamaterial. Phys. Rev. E 70,
055602 (2004).

23. Lee, S. H., Park, C. M., Seo, Y. M., Wang, Z. G. & Kim, C. K. Composite
acoustic medium with simultaneously negative density and modulus.
Phys. Rev. Lett. 104, 054301 (2010).

24. Li, J., Fok, L., Yin, X. B., Bartal, G. & Zhang, X. Experimental demonstration of
an acoustic magnifying hyperlens. Nature Mater. 8, 931–934 (2009).

25. Zhang, S., Yin, L. L. & Fang, N. Focusing ultrasound with an acoustic
metamaterial network. Phys. Rev. Lett. 102, 194301 (2009).

26. Royer, D. & Dieulesaint, E. Elastic Waves in Solids (Springer, 1999).
27. Tamura, S & Wolfe, J. P. Coupled-mode stop bands of acoustic phonons in

semiconductor superlattices. Phys. Rev. B 35, 2528–2531 (1987).
28. Zhou, X. M. & Hu, G. K. Analytic model of elastic metamaterials with local

resonances. Phys. Rev. B 79, 195109 (2009).
29. Wu, Y., Lai, Y. & Zhang, Z. Q. Effectivemedium theory for elasticmetamaterials

in two dimensions. Phys. Rev. B 76, 205313 (2007).
30. Milton, G. W. New metamaterials with macroscopic behaviour outside that of

continuum elastodynamics. New J. Phys. 9, 359 (2007).
31. Milton, G. W. & Willis, J. R. On modifications of Newton’s second law and

linear continuum elastodynamics. Proc. R. Soc. A 463, 855–880 (2007).
32. Willis, J. R. The nonlocal influence of density variations in a composite.

Int. J. Solids Struct. 210, 805–817 (1985).

33. Guenneau, S., Movchan, A., Petursson, G. & Ramakrishna, S. A. Acoustic
metamaterials for sound focusing and confinement.New J. Phys. 9, 399 (2007).

34. Brun, M., Guenneau, S. & Movchan, A. B. Achieving control of in-plane elastic
waves. Appl. Phys. Lett. 94, 061903 (2009).

35. Farhat, M., Guenneau, S. & Enoch, S. Ultrabroadband elastic cloaking in thin
plates. Phys. Rev. Lett. 103, 024301 (2009).

36. Chen, H. Y. & Chan, C. T. Acoustic cloaking and transformation acoustics.
J. Phys. D 43, 113001 (2010).

Acknowledgements
We thank Z. Hang and I. Tsukerman for useful discussions. This work was supported by
Hong Kong RGC Grant No. 605008 and RGC Grant HKUST604207.

Author contributions
Y.L. and Y.W. carried out the research and contributed equally. P.S. and Z-Q.Z.
supervised the research and contributed to its design. All the authors discussed the
results extensively.

Additional information
The authors declare no competing financial interests. Supplementary information
accompanies this paper on www.nature.com/naturematerials. Reprints and permissions
information is available online at http://www.nature.com/reprints. Correspondence and
requests for materials should be addressed to Z-Q.Z.

624 NATURE MATERIALS | VOL 10 | AUGUST 2011 | www.nature.com/naturematerials

© 2011 Macmillan Publishers Limited. All rights reserved

http://www.nature.com/doifinder/10.1038/nmat3043
http://www.nature.com/naturematerials
http://www.nature.com/reprints
http://www.nature.com/naturematerials


 1

Supplementary Information for
Hybrid Elastic Solids 

 
Yun Lai, Ying Wu, Ping Sheng, Zhao-Qing Zhang*

 
 

Department of Physics, Hong Kong University of Science and Technology 

Clear Water Bay, Kowloon, Hong Kong, China 
 

 

 
E-mail: phzzhang@ust.hk 

SUPPLEMENTARY INFORMATION
DOI: 10.1038/NMAT3043

NATURE MATERIALS | www.nature.com/naturematerials 1

© 2011 Macmillan Publishers Limited.  All rights reserved. 

 

http://www.nature.com/doifinder/10.1038/nmat3043


 2

1.  Describing our system using Christoffel’s equation 
Our system is a two-dimensional elastic solid in a square lattice, and we consider only 
elastic waves with displacements in the x-y plane.  Due to the high symmetry, the 
stiffness tensor is greatly simplified such that only 11c , 12c  and 44c  exist, and the 
constitutive relation takes the simple form as 
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where ijT  is the stress tensor and 1
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 is the strain tensor and iu  is the 

displacement in the ith direction.  By substituting Eq. S1 into the Newton’s second law, 
i.e. 2 2

i ij ju t T xρ ∂ ∂ = ∂ ∂  where ρ  is mass density, and using a plane wave solution of 

the form ( )( )0
i iu u F t v= − ⋅n x , where v  is phase velocity, 0

iu  denote the wave 

polarization vector, and in  denote the propagation direction, we find the following 
equations of in-plane elastic waves (S1), i.e., 
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By solving the secular equation of Eq. S2, we obtain two eigenvalues, i.e., phase 
velocities as functions of the angle ϕ  ( 1 cosn ϕ= , 2 sinn ϕ= )  
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The corresponding eigenvectors give the polarizations of the plane waves, which can be 

obtained from the two orthogonal solutions of the equation ( )
( )
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with β  defining the polarization through 
0

0tan y

x

u
u

β =  (Ref. S1). In general, the 

polarization is neither longitudinal nor transverse. However, for 0ϕ = , ( )1 11v c ρ=  is 

the velocity of a pure longitudinal wave and  ( )2 44v c ρ=  is the velocity of a pure 

transverse wave. For 4ϕ π= ,  the velocity ( )1 11 12 442 2v c c c ρ= + +  refers to a pure 

longitudinal wave and the velocity ( )2 11 12 2v c c ρ= −  refers to a pure transverse wave. 
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If we define the parameters ( )11 12 2c cκ = +  and ( )11 12 2c cμ = − , then we can rewrite 

the velocities as ( )1v κ μ ρ= +  for longitudinal waves and 2 44v c ρ=  for transverse 

waves in the case of 0ϕ = ; ( )1 44v cκ ρ= +  for longitudinal waves and 2v μ ρ=  for 

transverse waves in the case of 4ϕ π= .  
 
Simple analysis: 
 
Consider the case when 0ρ < , 0κ , 0μ >  and 44 0c > , which happens near the 
resonant frequency of κ  in a band gap induced by 0ρ < , as for the higher negative band 

in our paper.  For 0ϕ = , we find 0κ μ+ < , thus ( )1v κ μ ρ= +  is real and 

2 44v c ρ=  is imaginary. Thus only longitudinal waves are allowed. For 4ϕ π= , we 

find 44 0cκ + < , thus ( )1 44v cκ ρ= +  is real and 2v μ ρ=  is imaginary. Thus only 

longitudinal waves are allowed too.  For other directions, if we consider κ  is much 

larger than other parameters, then we find 1v κ ρ≈  and β ϕ≈ . This indicates almost 
pure longitudinal waves in any direction.  
 
Consider the case when 0ρ < , 0κ > , 0μ  and 44 0c > , which happens near the 
resonant frequency of μ  in a band gap induced by 0ρ < , as the lower negative band in 

our paper. For 0ϕ = , we find 0κ μ+ < , thus ( )1v κ μ ρ= +  is real and 2 44v c ρ=  

is imaginary. Thus only longitudinal waves are allowed. For 4ϕ π= , we find 

( )1 44v cκ ρ= +  is imaginary and 2v μ ρ=  is real. Thus only transverse waves are 
allowed instead.  For other directions, the polarization is neither pure transverse or pure 
longitudinal, but a mixed type.  
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2. The boundary effective medium theory 
 

 
Fig. S1. A square unit cell with 4 boundaries, i.e. 1,2,3,4 

 
We introduce a way to calculate the effective medium parameters by considering the 
“boundary responses” of the metamaterial unit cell (boundaries should be all chosen in 
the host material). We consider the unit cell as the basic element unit that “feels” and 
“responds to” the stimulations exerted by the outside waves. Basically, we calculate some 
certain eigenstates and calculate the effective force, displacement, stress, and strain of the 
unit cell by using the eigenstate fields on the boundaries (1,2,3,4 in the right figure of Fig. 
S1). The effective mass and moduli can be further obtained by using the Newton’s 
second law and the constitutive relations. This method normally gives a nonlocal 
effective medium, but for certain cases such as at low frequency here, we find the 
effective parameters do not depend on wave vector and only depend on frequency. 
 
The effective mass density can be obtained from the Newton’s second law, i.e. 
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Here effρ  is the effective density. eff
xF  is the effective net force exerted on the unit cell in 

the x direction. eff
xu is the effective displacement of the unit cell in the x direction.  eff
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The effective moduli can be obtained from the constitutive relations, i.e. 
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which involves only 3 components, i.e. 11 22 44, ,eff eff effc c c  as the effective stiffness tensors. 
Here eff

xxT , eff
yyT  and eff

xyT  are the xx, yy and xy components of the effective stress tensor. 
eff
xxS , eff

yyS  and eff
xyS  are the xx, yy and xy components of the effective strain tensor.  The 

stresses can be obtained as 0

2
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∫ ∫ . We note that eff eff

xy yxT T=  

is required for normal linear elastic solids with infinitesimal unit cells. But here the 
effective medium is based on a small but finite unit cell with unit length a, thus 
sometimes we may obtain eff eff

xy yxT T≠  which indicates local rotations of the unit cell. The 

strains can be obtained as 0
2

x xeff x a x
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, which denote the deformation of the 

unit cell.   
 

For simplicity, in the following we use 11 12

2

eff eff
eff c cκ +
=  and 11 12

2

eff eff
eff c cμ −
=  instead of 

11
effc  and 12

effc . This is also because that effκ  and effμ  can be related to monopolar and 
quadrupolar local resonances in physics, respectively. Thus, our parameter set becomes 
{ effρ , effκ , effμ , 44

effc }.  The obtained parameters for the higher negative band are plotted 
in Fig. S2.  
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Fig. S2. The effective parameters for the higher negative band obtained by using the 
eigenstates along the ΓХ (solid circle) or the ΓΜ (hollow triangle) directions. a. effκ  b. 

effρ  c. effμ  d 44
effc . Note that effμ  along the ΓΜ direction and 44

effc  along the ΓХ direction 
cannot be obtained due to the eigenstate symmetries. 

 
From the obtained effective medium parameters, we can observe the following results: 
 
First, we note that the effective parameters are all almost real (i.e. the imaginary parts are 
two orders of magnitude smaller than the real parts), indicating that they are physical. 
 
Second, these effective parameters can explain the polarizations (i.e. transverse or 
longitudinal) of the propagating waves in both negative bands, as have been discussed in 
the paper. 
 
Third, in Fig. 2b in the paper, which plots the effκ  for the higher band, we note that the 
data points independently obtained in ΓX and ΓM directions coincide with each other 
quite well, as they all lie on a smooth curve. So is effμ  for the lower band plotted in Fig. 
2c in the paper and effρ  in Fig. S2b here.  These indicate that effμ , effκ  and effρ  are the 
same for all eigenstates with different propagation directions at a single frequency.  
 
Fourth, the obtained  eff

lv  and eff
tv  coincide well with lv  and tv  obtained from the band 

structure. We have recalculated the band dispersions by using the obtained effective 
parameters, as have been shown as the crosses in Fig. 2a in the paper.  It should be noted 
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that mass density should be an anisotropic tensor in general (Refs. S2, S3).  We do find 
some small anisotropy in the lower band.  This anisotropy has been taken into account in 
the calculation of  eff

lv  and eff
tv .   

 
 
 
3. The equal-frequency surface and slowness curve contour 
maps of the two negative bands 
 
Here we plot the equal-frequency surface as well as the slowness curve, which is the 
inverse of phase velocity, in contour maps in Fig. S3 as complimentary information to the 
transmission spectrum of Figure 4. 
 
As can be seen, in the equal-frequency surfaces, both negative bands are quite isotropic 
near the Brillouin Zone center. But they differ significantly at large Bloch wave vectors, 
e.g. near the M point. However, the two slowness curve maps are not so different. 
 
It should be noted that in both the lower and higher negative bands, there is only one 
mode. For the higher negative band, the mode is almost purely longitudinal in all 
directions of the Bloch k vector. For the lower negative band, the mode is purely 
longitudinal along the ΓΧ direction and purely transverse along the ΓΜ direction. But for 
other directions between the ΓΧ and ΓΜ directions, the mode is a hybrid mode of 
longitudinal and transverse waves.  Thus it contains some longitudinal component and 
some transverse component and there is no way to separate one component from the 
other.   
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Fig. S3. The equal-frenquency surface and slowness curve contour maps. a. The equal-

frequency surface of the lower negative band. b. The equal-frequency surface of the 
higher negative band. c. The slowness curve, i.e., (phase velocity)-1, map of the lower 

negative band. d. The slowness curve map of the higher negative band. 
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