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Through exponential sample-size scaling of conductance, we demonstrate strong electron localization

in three sets of nanostructured antidot graphene samples with localization lengths of 1.1, 2, and 3:4 �m.

The large-scale mesoscopic transport is manifest as a parallel conduction channel to 2D variable range

hopping, with a Coulomb quasigap around the Fermi level. The opening of the correlation quasigap,

observable below 25 K through the temperature dependence of conductance, makes possible the

exponential suppression of inelastic electron-electron scatterings and thereby leads to an observed

dephasing length of 10 �m.
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Mesoscopic phenomena [1] are manifestations of elec-
tronic phase effects that persist after multiple elastic
scatterings. Dephasing length sets the scale above which
the classical diffusive behavior is recovered. Owing to the
small size of the dephasing length, one-dimensional (1D)
strong electron localization was only recently measured
in Si-doped GaAs structure [2], carbon nanotube [3], and
graphene nanoribbon [4], while in disordered graphene
the average size of two-dimensional (2D) localized states
has been inferred from hopping conduction parameters
[5–8]. Here we show that graphene [9] with a nanostruc-
tured antidot (hole) array can display two parallel
conduction channels—the hopping conduction at tem-
peratures higher than 25 K, and the low temperature
mesoscopic conduction that exhibits 2D strong localiza-
tion with a localization length of 1.1, 2, and 3:4 �m in the
three sample sets. In the latter there is an exponential
scaling of the conductance [10,11] with sample size that
extends to 10 �m. The magnetic field dependence of the
localization length is in excellent agreement with the
theoretical prediction [12].

Classical diffusive transport dictates that in two dimen-
sions, electrical resistance is independent of the sample
size as long as it is square in shape. In pristine graphene,
ballistic to diffusive transition has been detected at the
scale from 500 nm down to 50 nm [13]. Thus for scales
larger than one micron, sample size variation serves as a
direct and distinguishable approach to detect deviations
from the diffusive behavior. Mesoscopic transport provides
such a possibility [14].

We have fabricated two types of nanostructured antidot
graphene samples [15–18] with different geometry. Sample
set A comprises identically nanostructured graphene with
the square geometry [shown in inset, Fig. 1(a)], whose
sides are 1, 2, 4, 6, 8, and 10 �m. Arranged in a periodic

triangular lattice, the diameter of each antidot is 100 nm
and the periodicity is 150 nm. Samples in set B, B1 and B2,
are in the Hall bar geometry with the same antidot pattern,
but with a bit smaller holes (sample B1, 90 nm) or larger
holes (sample B2, 120 nm), while the periodicity remains

FIG. 1 (color online). (a) SEM images of two sets of nano-
structured graphene devices in square geometry (inset), denoted
set A, and Hall bar geometry, denoted set B. (b) The sheet
resistance of the 2 �m sample from sample set A is plotted as
a function of the backgate voltage. Above 20 K, the current used
was I ¼ 50 nA. The 2 K data were measured at Vsd ¼ 20 mV.
Inset: AFM image of the nanostructured graphene with a peri-
odic triangular lattice of antidots. (c) 2D color maps of con-
ductance shown as a function of the bias voltage, Vsd, and the
backgate voltage, measured at 2 K. A conductance gap is seen.
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150 nm. Samples in set B have a length of 14 �m, and the
measured conductance is normalized to the sheet conduc-
tance (per square) for easy comparison across the three
sample sets.

Single layer graphene samples were first prepared by
mechanical exfoliation from natural graphite deposited
on SiO2ð285 nmÞ=Si substrate. Metal contacts (10 nm
Ti=60 nm Au) were then formed by e-beam lithography.
The antidot structure was patterned by a second e-beam
step (Raith eLiNE, 20 kV) followed by oxygen plasma
etching. Each sample is contacted by at least four elec-
trodes. The contact resistance is on the order of several
hundred Ohms or even smaller. Graphene samples were
heated in situ to 380 K in high vacuum for several hours to
remove the adsorbed impurities.

All measurements were done by using the PPMS
(Quantum Design). Electrical measurements were carried
out by using a Keithley 2182A nanovoltmeter, a 6221 ac/dc
source and an Agilent 4156C semiconductor parameter
analyzer. The low temperature data (T < 20 K) were
obtained by applying voltage and measuring the current.
In all the magnetotransport measurements, the magnetic
field was applied perpendicular to the graphene film.

Figure 1(b) shows a plot of resistance as a function of
backgate voltage measured at different temperatures.
There is a resistance maximum at Vg ¼ �2:4 V, denoted

the charge neutrality point (CNP). The mobility of the
pristine graphene, prior to nanostructuring, can reach
5000–20 000 cm2=ðV sÞ, and the resistance at the CNP is
temperature independent down to 2 K. After patterning
into antidot geometry, the mobility is lowered to
750 cm2=ðVsÞ at room temperature. The resistance
increases as the temperature decreases [see Fig. 1(b)] and
exhibits a large (gate voltage) on/off ratio at 2 K. The focus
of our study, the mesoscopic transport properties, is carried
out near the CNP.

All samples exhibit large negative magnetoresistance
[MR ¼ ðRðBÞ � RðB ¼ 0ÞÞ=RðB ¼ 0Þ] at low tempera-
tures, tunable by the backgate voltage. At CNP, which has
the lowest carrier density, the most dramatic negative mag-
netoresistance—up to 90% at 4 T—was measured at 2 K for
the 10 �m sample. This negative MR is similar to those
reported in graphene nanoribbons [19]. At a higher carrier
density (Vg � VCNP ¼ �20 V), the negative MR gradually

drops to about 30%. (MRdata are shown inRef. [20].)At2K,
all samples exhibit a small transport gap near the CNP. We
have measured the conductance at different source-drain
voltages near the CNP, and plotted in color the 2D maps
for different sample sizes as shown in Fig. 1(c). The dark
areas are regions of strongly suppressed conductance.We can
see that the transport gap broadens with increasing sample
size, indicating the potential existence of a nondiffusive,
mesoscopic conduction channel at low temperatures.

To clearly visualize the two parallel channels of con-
duction in our nanostructured graphene, we plot in Fig. 2

the logarithm of the measured conductance for the six

samples of sample set A at CNP as a function of T�1=3,
in anticipation of observing 2D variable range hopping
(VRH) conduction [21]. At room temperature (RT), the
resistances of the six samples are nearly the same (varying
slightly as 39� 3 k�), in accordance with the diffusive
transport behavior. To remove the small fluctuations that
can arise from the slight differences in sample fabrication,
we normalize the conductance data so that all samples have
RT resistance of 39 k�. In addition, we express the con-
ductance in units of the quantum conductance G0 ¼ e2=h.
It can be seen that from 300 to 25 K the normalized

conductance of all the samples bundles together and fol-
lows a linear relation. This is clearly the 2D VRH regime,
defined by ‘nG / ðT0=TÞ� with � ¼ 1=3. Below 25 K,
however, the temperature dependence of conductance is
shown to follow a � ¼ 1=2 trajectory (see below) before
approaching a flat plateau. Different samples display very
different plateau values that can be orders of magnitude
apart. Such nondiffusive behavior clearly delineates the
mesoscopic conduction channel in parallel to the VRH.
In the plateau regime, as indicated by the dashed lines in
Fig. 2, conductance follows very well the relation G ¼
G0 expð�L=�Þ, where L denotes the sample size and � is
the localization length that characterizes the exponential
spatial variation of mesoscopic conductance.
We interpret the transition from � ¼ 1=3 to � ¼ 1=2 by

the opening of a Coulomb quasigap around the Fermi level,
shown schematically in the upper inset of Fig. 2. In two
dimensions the density of states within the Coulomb qua-
sigap should be linear in energy [22]. The demarcation
point between the Coulomb quasigap and the constant

FIG. 2 (color online). Logarithm of the sheet conductance of
sample set A, in units ofG0, is plotted as a function of T

�1=3. The
solid lines are measured data while the open symbols are
calculated from Eq. (1). The dashed lines are used to highlight
the plateau regime. Lower inset: A cartoon picture illustrating
the two parallel types of conduction. The upper inset shows the
density of states as a function of x ¼ "=kBTc used to account for
the temperature dependence of the hopping conduction.
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variable range hopping is given by kBTc with Tc ¼ 25 K.
We have developed a model [20] to depict the temperature
dependence of conductance in this situation:

G ¼ �0 exp

�
�
�
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�
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The symbols shown in Fig. 2 represent the predictions of
Eq. (1) with the dimensionless constant A ¼ 0:58 and
�0 ¼ 1:77G0. Excellent agreement is seen. The opening
of the Coulomb quasigap not only gives a good account of
the temperature dependence of conductance, but also offers
consistent estimates of the various length and energy scales
[20]. But perhaps the most important is that the Coulomb
quasigap enables the observation of the large-scale meso-
scopic conductance, through the suppression of the
inelastic electron-electron scattering. This exponential
suppression of the inelastic scattering was theoretically
predicted over a decade ago [23] but has rarely been
experimentally tested [24]. This point will be further ela-
borated below.

There can be a simple correspondence between the sam-
ple nanostructure and the two types of conduction channels.
We ascribe the localized states responsible for the high
temperature (i.e., >25 K) hopping conduction to be asso-
ciated with the edges created by the antidot array [25,26],
with elastic scatterings within the domain of a single hole.
Electrical conduction occurs when such a localized electron
hops (with thermal excitation) to a neighboring hole (lower
inset to Fig. 2, where the green arrow indicates an elastic
scattering and the dotted line is meant to denote a hop to a
neighboring hole’s edge state).

For the VRH channel, a hopping distance between such
localized states can be estimated by using the equation [27]:

�VRH ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
13:8=½kBgVRHT0�

p
, where kB is the Boltzmann

constant, T0 being the slope in the high temperature limit
(Fig. 2), and gVRH ¼ 8� 1016=ðeVm2Þ is the density of
states that can be obtained from the Einstein relation. Here
we have used the measured conductance at room tempera-
ture. This value for the density of states is close to those
reported in Refs. [6–8,28]. With the above value of gVRH,
we obtain �VRH ¼ 50 nm (� 5 nm), which is just the con-
striction width between two neighboring holes and there-
fore consistent with our physical picture.

The low temperature transport (i.e.,<25 K) is attributed
to the localized electrons in the nanoribbon network, away
from the edges of the holes (illustrated by the red dashed
line and arrow in the lower inset to Fig. 2). They should have
a larger localization length, since the region of (wave func-
tion) support is relatively intact. Owing to the Coulomb
quasigap, they exhibit a different temperature dependence,

‘nG / T�1=2. For a finite-sized sample, however, the low
temperature conductance would be dominated by the state,

at or very close to the Fermi level, that has the largest
localization length. This represents the parallel channel of
(temperature-independent) mesoscopic conductance.
According to the scaling theory of localization [11], in

2D disordered systems increasing sample size renormal-
izes the diffusion constant downward (starting from the
Boltzmann diffusion constant DB ¼ v2

F�=2), via the
mechanism of coherent backscattering. When the dephas-
ing length l’ > L, the 2D conductance decreases exponen-

tially with L. This is the strong localization regime as
predicted by theory [10,29].
In Fig. 3(a) we plot the logarithm of the 2 K conductance

data of sampleB1, measured at the CNP (black circles), as a
function of L. Below L ¼ 10 �m, an excellent linear rela-
tion is obtained, just as predicted from simulations [29]. The
red solid straight line is a linear fit to the conductance data
for sample sizes smaller than 10 �m, which indicates a
localization length �0 ¼ 3:4 �m (�0 ¼ 1:12 �m for B2;
data shown inRef. [20]). However, whenL exceeds 10 �m,
the conductance per square obeys the Ohmic behavior and
becomes independent of L. Such a crossover from the non-
diffusive to the diffusive regime in a single sample is a clear
indication that the dephasing length is in fact just 10 �m.
Also shown in Fig. 3(a) is that away from the CNP, e.g.,

Vg � VCNP ¼ 12 V, the conductance of all samples is

larger than the quantum conductance (shown within the
grey region), and the system has made the transition to the
weak localization regime [30,31], with no size scaling
effect. Simultaneously, the� ¼ 1=2 behavior is also absent
in the low temperature behavior of the hopping conduction.
In Fig. 3(b) the size dependence of the conductance from

samples in set A is shown for different applied magnetic

FIG. 3 (color online). (a) Conductance Gh of sample B1 is
plotted as a function of sample size L. Black open circles are for
gate voltage Vg � VCNP ¼ 12 V and blue open circles are for a

7 nm discontinuous gold film as a reference sample. Here Gh

was measured at 2 K with Vsd ¼ 20 mV. The red solid line is a
linear fit to the data. The dashed lines are guides to the eyes.
(b) ConductanceGh from sample set A is plotted as a function of
sample size L at different magnetic field. Inset: 1=�ðBÞ is plotted
as a function of the magnetic field, normalized by B0. Here, �0 is
the zero field value. The black line is the theory prediction [12],
the blue symbols are for samples in set A, and red and green
symbols are for samples B1 and B2, respectively.
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fields up to 3 T. From the 0 T slope we deduce the
localization length �0 to be 2 �m. Such a large 2D local-
ization length has been theoretically predicted [32–34],
with a relation to the elastic mean free path lm as � ffi
lm exp½ð�=2ÞkFlm� [14], in which kF denotes the Fermi
wave vector. By estimating kF ¼ ffiffiffiffiffiffiffi

n�
p

, where the carrier
density n ¼ 2:5� 1011 cm�2 at the CNP may be obtained
by fitting the RT conductance G�1 ¼ G�1

s þ ðne�Þ�1

[20,35], we obtain lm ¼ 30 nm (lm ¼ 33, 26 nm for
samples B1 and B2, respectively). Here the fitted G�1

s for
our samples ranges from 1–3 k�. It has a minimal effect
on the value of the carrier density.

It is seen clearly in Fig. 3(b) that the localization length
increases with an applied magnetic field. The precise
behavior has been predicted by Ono [12] for 2D strong
Anderson localization. In the inset to Fig. 3(b) we fit all
three data sets to the theory prediction. Excellent agree-
ment is obtained. Separately, the magnetic field depen-
dence of �VRH is shown in Ref. [20].

From Fig. 3(b) inset and Ref. [12], we have B=B0 ¼
ðev2

F�
2=@Þe1=�B, in which B0 is a function of the elastic

scattering time �, and � ¼ @=EF� is a dimensionless
coupling constant. This relation between B0 and � offers
an alternative approach to estimate the elastic mean free
path. Since B0 is 0.075 T from our data of sample set A
(B0 ¼ 0:04, 0.13 T for B1 and B2, respectively), we obtain
an estimate of � ¼ 28 fs. The Boltzmann diffusion con-
stant is therefore DB ¼ v2

F�=2 ¼ 1:4� 10�2 m2=s, and
the mean free path is lm ¼ vF� ¼ 28 nm (lm ¼ 32,
24 nm for B1 and B2, respectively). This value is noted
to be consistent with the lm ¼ 30 nm (33 and 26 nm for B1
and B2) deduced earlier. The density of states can also be
deduced, based on the relation g ¼ G=e2DB. Here the
conductance is that of the 1 �m sample measured at 2 K,
so that g ¼ G=e2DB ¼ 1:7� 1015=ðeVm2Þ. Thus the
states with larger localization lengths have �1=50 the
DOS responsible for the VRH. Our model, Eq. (1), is based
on the simplified picture of two DOS groupings and the
resulting temperature variation in conductance.

The low density of states, coupled with the Coulomb
quasigap, constitute the very reason for the very large
dephasing length that makes our observations possible.
For an Anderson-localized state at the Fermi level, if there
is a finite electronic level separation �" to the next
excited state, then the electron-electron scattering can
not cause dephasing at those temperatures T � �"=kB.
Here the spatially averaged value of the gap is on the
order of kBTc; hence for T � 25 K, inelastic electron-
electron scatterings will be exponentially suppressed
[23]. The low density of states at low temperatures is
also explained by the Coulomb quasigap, which depletes
the density of states close to the Fermi level. The
1:1–3:4 �m Anderson-localized state, as it is manifest
only at low temperatures, should be at, or very close to,
the Fermi level.

One can also measure the dephasing length from the
Aharonov-Bohm (AB) effect [18]. Associated with the AB
effect data there is always an effective radius r of the
circular current path around the holes, with a path length
�r� 200 nm. We attribute the dephasing length measured
by the AB effect to be associated with the tightly localized
edge states, which are much more numerous than the states
at the Fermi level. Since the edge states can inevitably
induce spin-flip scatterings, hence the dephasing lengths
obtained from the AB effect are expected to be much
smaller [18]. In this context the size scaling approach,
over the 1 to 10 micron range, provides a rather unique
method to access the large dephasing length associated
with the states at the Fermi level. However, related issues
deserve to be further investigated.
It may be puzzling at first sight to observe a significantly

larger dephasing length in a nanostructured graphene sam-
ple than in pristine graphene [31]. However, whereas pris-
tine graphene is a poor metal, here the Fermi level state is
Anderson localized with a Coulomb quasigap. A qualita-
tively similar situation was encountered in disordered
indium oxide [24], in which a significantly smaller inelas-
tic electron-electron scattering rate, as compared to the
crystalline case, has been attributed to the discreteness of
the local energy spectrum at the Fermi level.
In graphene, electron-phonon interaction is weak, espe-

cially at low temperatures [36–38]. A detailed study of the
dephasing length in graphene and the condition for achiev-
ing a large value would not only be scientifically interest-
ing, but also important technologically.
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I. Magnetoresistance at different gate voltages measured at 2K 

Figure S1 shows the magnetoresistance (MR= ( ( ) ( 0)) / ( 0)R B R B R B   ) measured at 

2 K for different gate voltages. The resistance has been normalized by the resistance 

measured at 0 Tesla. It is seen in Fig. S1 that the negative magnetoresistance is the largest 

at the charge neutrality point (CNP), reaching -90% at 4 Tesla. As the gate voltage 

deviates from the CNP, the negative magnetoresistance gradually drop to -30% at 4 Tesla.  

 

FIG. S1.  Magetoresistance of the L=6 µm antidot graphene sample measured at 2K, for different 

gate voltages. The bias current used was  Isd = 5 nA. 
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II. Temperature dependence of conductance with a Coulomb gap 

 

2A.  Derivation of the hopping conduction expression 

We start from the following equation in deducing the VRH behavior [1]: 

1/2

1
exp

( ) B

G
N l k T




  
    

  
, 

where ( )N   is the carrier density in units of 1/Area; l  characterizes the size of the 

localized states. ( )N   is the energy integral of g , where g is the density of states.  The 

temperature dependence of 2D hopping conductance, ~ exp[ ( / ) ]oG T T   with 1/ 3  , 

is derived with the assumption of constant density of states.  Suppose a Coulomb 

quasigap is opened in the density of states g around the Fermi level.  In 2D such a 

quasigap is linear in  , measured relative to the Fermi level.  For the purpose of deriving 

the temperature dependence of hopping conductance, let us start from the dimensionless 

/ /g 2g g l B ck T .  Here g and l can take either of the two values—for the states close to 

the Fermi level (the Coulomb quasigap) or for those further away from the Fermi level 

(those responsible for the high temperature 2D hopping).  In Fig. S2 we show g  plotted 

as a function of / B cx k T .  This simple model may be expressed as 

 

( ) | |g x A x ;  | | 1x  , 

( )g x A ;   | | . 1x 

Here B cA l k Tg .  The advantage of this formulation is that while A is an approximate 

constant, the size of the localized state l  can vary independently, with the condition that 

l g  must remain invariant (so that A remains a constant).  This criterion is based on the 

fact that the average separation ijr  between the localized states selects the participating 

states to be those with the comparable sizes.  This is because l >> ijr  would imply 
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thermal activation behavior instead of hopping.  In the other limit of l << ijr , the 

contribution to the overall hopping conductance would be minimal.  Hence we should 

have l ~ ijr .  Constancy of l g  follows because g ~ 2
ijr  .   In our case we shall have a 

low temperature regime and a high temperature regime, with different values of l and g in 

the two regimes.  The constancy of A then serves as a consistency check for the model 

against the experimental data. 

 

FIG. S2. Dimensionless density of states as a function of / B cx k T . 

 

It follows that   

1 2

1

1

( ) ( ) ;                 | | 1

( ) 2 ( ) (2 | | 1);  | | 1
x

N x g x dx Ax x

N x g x dx A A x x


 

   






 .
 

Then the hopping conduction probability has the form 

0

0

1
exp

( ) kTN




  
       

=
1

exp
( )

xTc
TAN x

  
  



   

.             (S1) 

Maximizing the hopping conduction probability with respect to x yields  
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2/3

;                | | 1

1 1
;   | | 1
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T
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 
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 

. 

 

Substituting the above into Eq. (S1), we have for the low temperature regime  

 

    1/2exp 2 cT
G T

A


  
         

and 

   
1/3

1/3 1
2/3

3
exp

2 2
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           
   

T

ij

 

 

for the high temperature regime.  As the influence of 1/T  term is small, the predominant 

behavior is still T-1/3 at high temperatures.  Hence in the high temperature regime the 

behavior is still that of 2D variable range hopping.  

 

2B.  Consistency checks of the Coulomb gap model against experimental 

parameters 

We use the value of g deduced experimentally to check the consistency of the 

Coulomb gap model. Since the total number of localized states within the quasigap is 

given by 21/ ( )cBN gk T r 

300ijr 

, the average separation between these localized states can 

be estimated to be   nm. With 300ijl r 

168 10 / (eV m

 nm and , we get 

the dimensionless constant A=0.574, which is precisely the value obtained from fitting 

the data by using Eq. (1) in the main text.  For the regime of T>Tc, if we use the DOS 

calculated from Mott VRH and the same value of A, then the 

value l

15 21.7 10 / (eV m )g   

2 )VRH  g

VRH =43.5 nm is obtained, which is in reasonable agreement with VRH =50 nm 

obtained previously.  Moreover, since ij 2
0/ 4e r  wit 45h 2.   [3] yields a Coulomb 

 gap  , we can use ijr =300 nm to obta eVin 1.96 m  , corresponding to a temperature 
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of 23 K.  This value is very close to the obs 25 Kerved cT  . The above consistency 

checks further confirm the existence of a Coulomb quasigap in our samples.  

It might be argued that the states far away from the Fermi level may also exhibit the 

correlation effect.  However, such effect, against a high density of states background, can 

hardly be distinguished from the  =1/3 to 1/2 crossover delineated by our simplified 

model. 

 

III. Determination of residual charge carrier density 0n  

 

We fit the conductivity data to  

1 1 (sG G n 1)e        ,                                         (S2) 

where sG  comes from short-range scattering and is independent of the carrier density, n  

is the total carrier density. 2 2
0n nn  , where  is the residual charge carrier density  

induced by electron-hole puddle and  is the carrier density that can be tuned by the 

back gate voltage [

0n

*n

CNP2]. |g gV V en c | / ,  is the elementary electric charge and 

is the back gate capacitance per unit area for the 285 nm thick SiO2 .  

e

81.2 0 /g F cmc  21 

We use the resistance data shown in Fig. 1(b), measured at 300 K, for our analysis.  

Shown below in Fig. S3 is the experimentally measured resistance as a function of gate 

voltage (black solid line), and the fitting based on Eq. S(2) (red solid circles). From the 

fitting, the residual carrier density  is obtained. 11 -2
0 2.5 10  cmn  
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FIG. S3. Resistance measured as a function of gate voltage and relevant fitting. 

 

IV. Bias voltage dependence    

We have measured sample B1 at different bias voltages. The small bias data of 

sample B1 is shown below. Since there is a transport gap in the antidot graphene sample 

as shown in Fig. 1(c), transport at finite Vsd shows a strong nonlinear G-Vsd characteristic, 

and conductance is smaller at lower bias voltages. We have lowered the bias voltage to 

10 mV, so that the corresponding power is lowered to a quarter of the power at 20 mV. 

The mesoscopic scaling behavior still exists and the value of the dephasing length still 

remains the same at 10 µm. 
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FIG. S4.  Logarithm of G□/G0 of sample B1 plotted as a function of sample size L at different 
bias voltage. The solid lines are linear fit to the conductance data of sample size smaller than 10 µm.  

 

V. Additional experimental data on different antidot size and spacing  

We have performed additional experiments on two different samples—B1 and B2. 

They are both in the Hall bar geometry (as shown in Fig. 1(a)) but with different antidot 

size and spacing. The antidot diameter is 90 nm for B1 and 120 nm for B2. The 

periodicity still remains at 150 nm.  The antidots are arranged in triangular lattice, just as 

sample set A.  

At 2 K, the conductance of B1 and B2 at CNP is plotted as a function of L in Fig. 

S5. It is clearly seen that the most remarkable difference induced by the antidot 

size/spacing is the localization length.  

  The localization length of B1, which has a smaller antidot size (90 nm), and 

hence larger ribbon width, is ξ=3.4 µm while the localization length of B2 with the larger 

antidot size (120 nm), and hence smaller ribbon width, is ξ=1.12 µm.  This conforms with 

with physical picture that the localization length is shorter when the constriction between 

dot is smaller so that the elastic mean free path is smaller.  

The localization length can also be adjusted by applying a magnetic field. We 

have measured the localization length under different magnetic field by the same method 
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as before. For B1, ξ(0.25 T)=4.4 µm, ξ(0.5 T)=5.7 µm, ξ(1 T)=9.1 µm; for B2, ξ(1 

T)=1.5 µm, ξ(2 T)=2.0 µm, ξ(3 T)=2.6 µm, ξ(4 T)=3.0 µm.  We normalize the applied 

field by B0 (B0 for B1 is 0.04 T, for B2 is 0.13 T) and then plot them in Fig. R3(b).  

Excellent agreement is seen.  

 

 

FIG. S5.  (a) Logarithm of G□/G0 at 2 K plotted as a function of sample size L of B1 and B2. (b) Inverse 
of localization length is plotted as a function of the magnetic field, normalized by B0. Here 0  

is the zero field 

value of the localization length.  

We can use the same analysis as described in the main text to check how the 

scaling parameters change with the antidot size/spacing. For sample B1, using the 

equation  exp[( /2) ]m Fl mk l 

2 2 1/
0/ ( / )FB B ev e  

, a mean free path is obtained. From B0 =0.04 T, 

we have , in which 

33 nmml 

B 0B  is seen to be a function of the elastic 

scattering time  , and / FE  

0B
 
is a dimensionless coupling constant.  This relation 

between  and   offers an alternative approach to estimate the elastic mean free path. 

We obtain 32 sf   , and the mean free path is 32m Fl v    nm, which is in good 

agreement with the mean free path 33 nm obtained earlier.  By the same analysis, for 

sample set B2, a mean free path 26 nm can be obtained from the localization length and 

24 nm from the B0.  

 

VI. Magnetic field dependence of VRH .  

 8



 

FIG. S6.  Magnetic field dependence of VRH . Inverse of VRH  is plotted as a function of the magnetic 

field, normalized by B0.  
The hopping distance VRH , interpreted as the localization length of the VRH states, 

can also be increased by an applied magnetic field shown in Fig. S6.  A value of B1 = 

0.09 T is obtained from the best fit, from which we deduce an elastic mean scattering 

time . The associated elastic mean free path is . However, from 

the relation , we obtain .  This discrepancy may 

imply that the relation between 

VRH
m 26 nmVRH VRH

m F ml v  

11 nmVRH
ml  exp[( ]VRH VRH

mVRH Fl k 

VRH

/2) ml

  and , valid in the limit of weak elastic 

scatterings, may be inapplicable to the present case.  

VRH
ml
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