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Local-Field Distribution in Random Dielectric Media
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By generalizing Onsager’s reaction-field approach, we calculate the local field in random dielectric
media characterized by uniform or percolative correlations. The distribution of the local field is found to
display a double-peak character in general. We show that the variance of the distribution is linearly
correlated to the deviation of the mean from the Lorentz value, where the latter quantity is also
identified as the correlation to the Clausius-Mossotti relation. Structural correlations are demonstrated
to have a significant effect in determination of the distribution characteristics.

PACS numbers: 78.20.Dj, 41.10.—j, 42.20.—y, 77.20.+y

The Lorentz local field! and the Clausius-Mossotti
(CM) relation have long been recognized as the founda-
tion of our study of dielectrics as well as the basis of gen-
eralization for effective-medium theories®™* that were
widely applied to inhomogeneous composites. In recent
years, experiments involving the physical phenomena
such as surface-enhanced Raman scattering,5 fluores-
cence,® and surface reflectance anisotropy’~° have called
attention to the particularly important role of micro-
structural inhomogeneities in determining the local field
and its spatial variations. While the idea of spatial-
fluctuation correction to the Lorentz local field and the
CM relation is not new and has been explored theoreti-
cally'®!'? in general terms, yet in view of the recent ad-
vances in the understanding of the structure and symme-
try of random physical systems, '*~'® there has still been
no systematic investigation of their local-field and dielec-
tric consequences. In particular, the local-field implica-
tions of extended structural correlations, which is a com-
mon feature for many random systems, remain to be ad-
dressed.

In this Letter, we study the local field and effective
dielectric properties of a lattice gas of polarizable point
particles whose structure is characterized by either uni-
form or percolative correlations. Physically, the uniform
correlation case can correspond to a gas or a fluid or
solid mixture of two atomic species. The percolative
structure, on the other hand, can correspond to materials
that result from growth or aggregation processes. By
generalizing Onsager’s reaction-field approach,!” we ob-
tain for the first time the distribution of local field and its
variation with density and geometry. We find the distri-
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bution to be doubly peaked in general, with the Lorentz
value, E'1, situated between the two peaks. Furthermore,
the variance of the distribution is shown to be linearly
correlated with the shift of the mean from the Lorentz
value. The shift, in turn, is also identified as the correc-
tion to the CM relation. In terms of these distribution
characteristics, the percolative structure is found to yield
significantly different behavior from those with the uni-
form correlation.

Consider an inhomogeneous system consisting of po-
larizable point particles randomly occupying the sites of
a simple cubic lattice. In general, a random medium is
characterized by a correlation length ¢, a scale on (or
beyond) which the medium may be regarded as homo-
geneous. To calculate the local-field distribution that is
representative of the inhomogeneous system, we would
like to solve the electrostatic problem of N particles in-
side a spherical cavity of radius @ > ¢ under the action of
an applied field. The material outside the cavity is as-
sumed to be homogeneous and characterized by an as yet
unspecified dielectric constant e. Following Onsager,!’
we express the local field E acting on the ith particle as
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where G,, R,, and D, stand for the components of the
cavity field, the reaction field, and the dipolar field, re-
spectively; and r; denotes the position of particle i inside
the cavity. The form of R, may be obtained by the solu-
tion of the electrostatic problem of a dipole located at ar-
bitrary position inside the cavity. By our further noting
that G=[3¢/(2e+1)]1E®, where E° is the macroscopic
field, and r;; =r; —1;, we get
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where
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and y,,=ad,0,r;; '. Equations (2) constitute a set of
3N linear simultaneous equations with the polarizability
a, the coordinates of the particles, and ¢ as inputs. To
obtain ¢, we regard the system as composed of units each
of which has a size ‘~2a. The dielectric constant may
then be determined by the coherent-potential approxima-
tion>* (or the effective-medium theory) which, in the
static limit, is simply the condition that the average di-
pole moments of all the units should vanish. Straightfor-
ward algebra yields

N
€1 =pa<L Y E(r;)-é/E °> =paE,,-¢/E°, (3)
4r N =1
where p is the site occupation fraction, € the unit vector
along the applied field E°, E,, is the mean of the local
field, and angular brackets denote configurational
averaging. Equations (2) and (3) form the self-con-
sistent basis of the generalized Onsager approach to the
calculation of local fields and dielectric constant. It is
easy to verify that if the spherical cavity contains only
one particle, i.e., a==lattice constant, then one recovers
the Lorentz formula and the CM relation.

For calculation on random systems, a cavity of radius
a > ¢ is drawn with the positions of particles inside as in-
puts to Eq. (2). The cavity radius a is slightly adjusted
so as to make the particle density inside the cavity corre-
spond as closely as possible with the mean density. For
those particles lying close to the boundary of the cavity,
the interface can produce an artificial distortion of the
local environment. To mitigate this effect, we use the
rule that the local field of any particle j which is closer
than ' from the boundary is assigned a value of E,,,
ie., E(r;)=E, in Egs. (2). Equations (2) and (3) are
then solved self-consistently by iteration. To calibrate
our method, we first examine the case of p =1 where it is
known that the Lorentz formula is exact. Indeed, local
fields for IV particles (V> 27) are all identical and equal
to the Lorentz value EL =(e+2)E%3 no matter where
one chooses the center of the cavity. For homogeneous
random occupation of the sites, i.e., uniform correlation,
the same &-function-like distribution is also found for
p=0. At intermediate values of p, three representative
distributions'® calculated with a=0.1 (in units of lattice
constant cubed) are displayed in Figs. 1(a)-1(c) as a
function of E/E, where E,=E-&. It is seen that the
distribution P,(E,/EL) generally exhibits two peaks,'’
with the single peak in the p =0.5 case also interpretable
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FIG. 1. Local-field distribution plotted as a function of
EWEL (a)-(c) are for uniform but random systems of
different densities. (d) is for a random percolative structure.
Number of particles in each of the distributions is (a) 2593,
(b) 3117, (c) 3103, and (d) 5613.

as the merging of the two. It can be easily verified that
the peak above E| arises from a local environment where
the dipole field contributions from the neighbors above
and below the site (in the direction of the field) exceed
those in the plane of the site, which we denote as a type-
1 environment, whereas the peak below E arises from
the reverse situation, which we denote as a type-2 envi-
ronment. In Fig. 1(d) we show the result for a percola-
tive structure (obtained by retaining only “connected”
sites) with an occupation fraction of p=0.261, a =0.1,
and a correlation length ¢(=6.4 (lattice units). The
double-peak character of the distribution is even more
pronounced with an accompanying increase in the distri-
bution width. It should be remarked that since the sys-
tem is linear and macroscopically equivalent in the three
coordinate-axis directions, the phenomena discussed
above are invariant with respect to the orientation of the
applied field. Also, to check the effect of the underlying
lattice, we have calculated local fields for clusters that
are generated on fcc and hep lattices. Qualitatively simi-
lar results were obtained.

Since the deviations from the Lorentz local-field value
can be attributed to the field of dipoles inside the
Lorentz cavity,! a first-order estimate for the magnitude
of the deviation may be obtained from the parameter

77=< 2.D(r;,1;) 2>l/2, 4)

j=i
where the dipole field D at site i is calculated by our as-
suming that the dipole at every site is given by p=¢, and
the summation is over all the occupied sites j inside a
suitably large sphere (so that the value of n converges)
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FIG. 2. Standard deviation of the local-field distribution
plotted as a function of an, where 7 is defined in the text. Cir-
cles are for uniform correlations with each point representing
the average of 1500-3000 particles; triangles denote the results
for percolative structures where each point represents the aver-
age over 3000-6000 particles. It is seen that the percolative
structures yield larger variances. The solid line is the least-
squares fit given by Eq. (5). The dashed line, representing

o =ar, is drawn for reference.

centered at i. While the assumption that the induced di-
pole is the same at every occupied site is inconsistent
with the actual situation, one can nevertheless attribute a
physical meaning to the parameter n. From symmetry,
we know that =0 for a cubic or spherical environment
as assumed in the Lorentz formula, and n#0 in general
for random systems. Therefore, n may be regarded as a
geometric parameter that measures the local anisotropy
in the dipolar sense. In Fig. 2 the standard deviation
o=((E\/JEm)?—1)" is plotted versus the computed an
value for every calculated sample (including those not
shown in Fig. 1). A least-squares fit by the equation
o=a+ban yields

0=0.94an (5

with a~10 "% The accuracy of the linear relation tells
us that the standard deviation of the distribution is
directly correlated with the degree of local anisotropy.

From Eq. (3) it is seen that the mean of the local field,
E.., is directly related to the dielectric constant of the
system. We can reexpress Eq. (3) in a slightly different
form:

(e—1)/(e+2)=%npa(1+S), 6)

which is precisely the CM relation with a correction
term?%?! S=AE/E, where AE =E,,-é —E.. In Fig. 3
we plot in filled symbols the calculated corrections S/p?
as a function of p for both uniform and percolative ran-
dom structures. The constant ﬂz is defined as?® Ba?,
where the constant B is 11.2027 for our model and
167%/9 for a system of hard spheres. Division of S by 2
removes the leading-order dependence on a and the un-
derlying lattice and makes possible direct comparison
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FIG. 3. Correction to the Clausius-Mossotti relation plotted
as a function of density. Filled symbols represent the results
obtained with use of the generalized Onsager approach with
the same statistics as that for Fig. 2. Open symbols denote
S @ calculated from the theory of Kirkwood where each point
is the average of 30000-100000 particles. Circles are for uni-
form systems; triangles are for percolative structures. In de-
scending order, the correlation length for the calculated per-
colative structures are (in terms of lattice constant) 176, 23,
6.4, 3.4, 2.3, 1.5, and 1.1. The dash-dotted line is obtained
from Kirkwood’s low-density expansion (Ref. 10). The dashed
lines are calculated from the relation S =¢>.

with literature results. The first characteristic one no-
tices about S is that it is nonnegative, i.e., AE = 0. This
could be understood by consideration of the theory of
Kirkwood,'® in which one can show that the leading-
order term for S, S @, is expressible as a2n2. It follows
that if the higher-order corrections are small, then
S=>0. The computed S? is plotted in Fig. 3 as open
symbols connected by solid lines.?> The good agreement
with the calculated values of S demonstrates that S @ is
the major fraction of S. Kirkwood’s analytic expan-
sion'® of S @ for a system of low-density hard spheres is
also plotted for comparison. A curious implication of the
fact E,,-€= E| is that if an initially simple cubic ma-
terial is randomized, then the net absorption of the ma-
terial would increase because the mean of the local fields
does not average to the same value as before but would
always increase. Furthermore, since S @ s proportional
to n?, the amount of increase is governed by the degree
of local anisotropy. Another interesting suggestion from
the fact that S=S @ =q2p2 is that the deviation from
the CM relation offers, via Eq. (5), a direct measure of
the variance for the local-field distribution. To test the
general validity of this proposition, we plot in Fig. 3 the
dashed lines calculated from the relation S§=o?
=0.883a’n% Excellent agreement is obtained with the
calculated solid points to within statistical errors. The
existence of the correlation S =oc? implies that if the
mean of the local field is given by the Lorentz value, then
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the distribution must be a & function. As the mean in-
creases away from the Lorentz value, the distribution
also broadens proportionally.

The difference between the uniform and the percola-
tive structures is clearly visible in Fig. 3: Whereas the
uniform random system has the maximum CM correc-
tion at p=0.5, the percolative structure with extended
structural correlations shows monotonic increases in the
value of S as the correlation length increases. In fact, a
finite limiting value of S is predicted for p=0 (and
{— o) which would be that of the percolation cluster.
Since the increase in S at low densities arises from in-
creased local anisotropies, we expect the local-field dis-
tributions for aggregate or growth structures to have
large variances. The Lorentz local-field value would
therefore be a very poor approximation in these systems.
For a polarizable fractal structure with fractal dimension
< 3, {— oo (and therefore p— 0), we have the interest-
ing case of e— 1 and yet the local field is predicted to
deviate significantly from E; =E° Implications of our
results for the effective-medium theories are presently
being pursued.
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