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Molecular scale contact line hydrodynamics of immiscible flows
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From extensive molecular dynamics simulations on immiscible two-phase flows, we find the relative slip-
ping between the fluids and the solid wall everywhere to follow the generalized Navier boundary condition, in
which the amount of slipping is proportional to the sum of tangential viscous stress and the uncompensated
Young stress. The latter arises from the deviation of the fluid-fluid interface from its static configuration. We
give a continuum formulation of the immiscible flow hydrodynamics, comprising the generalized Navier
boundary condition, the Navier-Stokes equation, and the Cahn-Hilliard interfacial free energy. Our hydrody-
namic model yields interfacial and velocity profiles matching those from the molecular dynamics simulations
at the molecular-scale vicinity of the contact line. In particular, the behavior at high capillary numbers, leading
to the breakup of the fluid-fluid interface, is accurately predicted.
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I. INTRODUCTION sible to have realistic simulations of micro- or nanofluidics,
or of immiscible flows in porous media where the relative
Immiscible two-phase flow in the vicinity of the contact wetting characteristics, the moving CL dissipation, and be-
line (CL), where the fluid-fluid interface intersects the solid havior over undulating solid surfaces may have macroscopic
wall, is a classical problem that falls beyond the frameworkimplications.
of conventional hydrodynamicgl-12). In particular, mo- From MD simulations on immiscible two-phase flows, we
lecular dynamic§MD) studies have shown relative slipping report the finding that the generalized Navier boundary con-
between the fluids and the wall, in violation of the no-slip dition (GNBC) applies for all boundary regions, whereby the
boundary conditio6,7]. There have been numeroad-hoc  relative slipping is proportional to the sum of tangential vis-
models[1,8,10-12 to address this phenomenon, but nonecous stress and the uncompensated Young stress. The latter
was able to give a quantitative account of the MD slip ve-arises from the deviation of the fluid-fluid interface from its
locity profile in the molecular-scale vicinity of the CL. While static configuration[10]. By combining GNBC with the
away from the moving CL the small amount of relative slip- Cahn-Hilliard (CH) hydrodynamic formulation of two-phase
ping was found to follow the Navier boundary condition flow [11,12, we obtained a consistent, continuum descrip-
(NBC) [13], i.e., relative slipping proportional to the tangen- tion of immiscible flow with material parametefsuch as
tial viscous stress, in the molecular-scale vicinity of the CLviscosity, interfacial tension, etairectly obtainable from
the NBC failed totally to account for the near-complete slip.MD simulations. The convective-diffusive dynamics in the
This failure casts doubts on the general applicability of thevicinity of the interface and the moving CL also means the
NBC to immiscible flows and hinders a continuum formula- introduction of two phenomenological dynamic parameters
tion of the hydrodynamics in the CL region. In particular, awhose values can be fixed by comparison with one MD flow
(possible breakdown in the hydrodynamic description for profile. Once the parameter values are determined from MD
the molecular-scale CL region has been suggeffédin  simulations, our continuum hydrodynamics can yield predic-
another approackL4], it was shown that the MD results can tions matching those from MD simulationgor different
be reproduced by continuum finite element simulations, proCouette and Poiseuille flolsOur findings suggest the no-
vided the slip profile extracted from MD is used as input.slip boundary condition to be an approximation to the
This work demonstrated the feasibility of the hybrid algo- GNBC, accurate for most macroscopic flows but failing in
rithm, but left unresolved the problem concerning the boundimmiscible flows. These results open the door to efficient
ary condition governing the CL motion. Without a continuum simulations of nano- or microfluidics involving immiscible
hydrodynamic formulation, it becomes difficult or impos- components, as well as to macroscopic immiscible flow cal-
culations, e.g., in porous media, that are physically meaning-
ful at the molecular leve[15]. The latter is possible, for
* Author to whom correspondence should be addressed. Email agdxample, by employing the adaptive method based on the
dress: sheng@ust.hk iterative grid redistribution introduced in Refl5]. This
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FIG. 1. (Color) Segments of the MD simulation sample for the
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was controlled at 28kg, wherekg is Boltzmann’s con-
stant. Moving the top and bottom walls at a constant spéed
in the £x directions, respectively, induced the Couette flow
[7]. Applying a body forcemge,; to each fluid molecule in
the x direction induced the Poiseuille floy6]. Periodic
boundary conditions were imposed on thandy boundaries

of the sample. Most of our MD simulations were carried out
on samples consisting 6144 atoms for each fluid and 2880
atoms for each wall. The sample is 163.by 6.8 along the

x andy, respectively, antH =13.60. Our MD results repre-
sent time averages over 20—40 million time steps. For tech-
nical details of our MD simulations, we followed those de-
scribed in Ref[16].

Two different cases were considered in our simulations.
The symmetric case refers to identical wall-fluid interactions
for the two fluids(both 6,,s=1), which leads to a flat static
interface in theyz plane with a 90° contact angle. The asym-
metric case refers to different wall-fluid interactions, with

immiscible Couette flows. The colored dots indicate the instantadwt=1 for one andé,,=0.7 for the other. The resulting

neous molecular positions of the two fluids projected ontoxhe
plane. The blacKkgray) circles denote the wall molecules. The up-

static interface is a circular arc with a 64° contact angle. We
measured six quantities in the Couette-flow steady states of

per panel illustrates the symmetric case; the lower panel illustrate¥ =0.25(e/m) 12 H=13.60 for the symmetric case and
the asymmetric case. The red circles and the blue squares represenf).2(e/m)Y?, H=13.60 for the asymmetric Casef(“p, the

the time-averaged interface profiles, definedoby: p, (¢=0), for

slip velocity relative to the moving wallGy’, the tangential

the two cases. The black solid lines are the interface profiles calciorce per unit area exerted by the wall; the,, o, compo-

lated from the continuum hydrodynamic model with the GNBC.

nents of the fluid stress tensar enotes the outward surface
norma), andv,, v,.

method has demonstrated the capability of resolving, at the We denote the region within 0.85 z, of the wall the
same time, both the global behavior of a partial differentialboundary laye(BL). It must be thin enough to render suffi-
equation solution with coarse mesh and a strong singularitgient precision for measurings'®, while thick enough to

in a localized region with a refined local mesh of oveP 10
ratio to the coarse mesh.

II. MOLECULAR DYNAMICS SIMULATIONS

fully account for the tangential wall-fluid interaction force,
due to the finite range of the LJ interaction. Thus, it is not
possible to do MD measurements strictly at the fluid-solid
boundary, not only because of poor statistics, but also be-
cause of this intrinsic limitation. The wall force can be iden-

The MD simulations were performed for both static andtified by separating the force on each fluid molecule into
dynamic configurations in the Couette and Poiseuille flowswall-fluid and fluid-fluid components. For<0z=z, the fluid
The two immiscible fluids were confined between two paral-molecules can detect the atomic structure of the wall. When

lel walls separated along ttedirection, with the fluid-solid
boundaries defined by=0H (see Fig. 1 for the Couette

geometry. Interaction between the fluid molecules was mod-

eled by a modified Lennard-Joned.J) potential Uy
=4¢[(o/r)*?— 6;1(a/r)8], wherer is the distance between

coupled with kinetic collisions with the wall molecules, there
arises a nonzero tangential wall force that varies alongthe
direction and saturates at=z,. G} is the saturated total
tangential wall force per unit wall ard&ig. 2). In Appendix

A we give account of our MD results on both the tangential

the moleculese ando are the energy scale and the range ofand normal components of the wall force, plus the ef@ct

interaction, respectively, ané;;=1 for like molecules and

of increasing the wall thickness in our simulations from two

8¢s=— 1 for molecules of different species. Each of the twolayers of wall molecules to four layers and to infinite layers

walls was constructed by tw@r more [001] planes of an
fcc lattice (see Appendix A with each wall molecule at-

(by using the continuum approximation beyond the four lay-

ers.

tached to the lattice site by a harmonic spring. The mean- Spatial resolution along the and z directions was
squared displacement of wall molecules was controlled t@chieved by evenly dividing the sampling region into bins,
obey the Lindemann criterion. The wall-fluid interaction waseachAx=0.425 by Az=0.85r in size.v$ P was obtained

also modeled by a LJ potentibl,,;, with energy and range
parameterg,,;=1.16¢ ando ;= 1.040, and aé,,; for speci-
fying the wetting property of the fluid. Botl¢; and U,
were cut off atr .= 2.50. The mass of the wall molecule was
set equal to that of the fluid moleculg, and the average
number densities for the fluids and wall were set pat
=0.816° and p,,=1.86/3, respectively. The temperature

as the time average of fluid molecules’ velocities inside the
BL, measured with respect to the moving wally was ob-
tained from the time average of the total tangential wall force
experienced by the fluid molecules in the BL, divided by the
bin area in thexy plane;oyny Was obtained from the time
averages of the kinetic momentum transfer plus the fluid-
fluid interaction forces across the constatt) bin surfaces,
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1.0 ML~ reflect the influence of the wall-fluid interaction. For the con-
og | —ge ] sideratior_1 of moving CL, we yviII _be concerned thh_the part
e 3 i of the fluid stress tensor, which is purely dynamic in origin,

3706 3 . i.e., arising purely from the hydrodynamic motion of the
’g. ot fluid (and the CL. In the notations below, the over tilde
§ 04 %, ] denotes the difference between that quantity and its static
@ oo | ‘ 2, | part. Thus, ifo is the total stress, we will be concerned only
l with the hydrodynamic part, denoted by= o— ¢°. We note
0-00_0 010203 0j4' 0506070809 that in the absence of body forces, the momentum equation
2/ in bulk fluid is given byp[dv/dt+(v-V)v]=V-@o. In the

o _ _ _ BL, the wall-fluid interaction means the existence of a dy-
FIG. 2. By subdividing the boundary layer into thin sections, we amic. tangential wall force dens@"’ such that the force
plot the accumulated wall force per unit wall area as a function of ’ 9 o ~ X ~w o
distancez away from the boundary. Her&Y(z) is defined by balance equation is given bV o) -x+g,=0 inside the

GY(2)=/3dZ'0¥(z’), whereg is the density of tangential wall BL. The tangential wall force densityy , shown explicitly
force. For differentx positions, the absolute value of the saturatingin the inset to Fig. 2, is a function sharply peakedzat
total wall force is different. However, when normalized by the cor- ~Z¢/2. Here we note that the boundary layer thickness is
responding saturated total wall force per unit area at eactll ~ extremely small £,=0.85), hence the inertial effect may
points fall on a universal curve, nearly independenk.df is seen  be neglected ripVz,/7»<0.1). MD evidence for an inte-
that atz=z, the wall force has reached its saturation value. Insetgrated form of the steady-state force balance is shown in Fig.
Tangential wall force density plotted as a function of distaace 3. The total tangential force exerted by the wall on the fluid

away from the boundary. The solid lines are averagdn thin is given byé¥=fé°dz~gﬁ’ per unit wall area. In steady state,

sections at differen, normalized by the corresponding saturated ;¢ 4| force is necessarily balanced by the tangential fluid
total wall force per unit area. The dashed line is a smooth Gaussian

~ ~f_ r2o ~ ~ . )
fit. It is seen thap is a function sharply peaked atz,/2. In the force Gy=1/g dz(_‘?x‘rxx+ ?Zozx) .(Insfet tol Fig. 3 [18]. Here
sharp boundary limit this peaked wall force density is approximated’x,zn Meéans taking partial derivative with respectda, or
by G¥s(2) surface normal.
X ' We now present evidences to show that everywhere on the

andu,, was measured as the time-averaged velocity comPoundaries, relative slipping is proportional ©, [the
ponents) within each bin. For the contribution of intermo- GNBC, see also Eq3) below:
lecular forces to the stress, we have directly measured the _ _
fluid-fluid interaction forces across bin surfaces instead of Gl=puvs'P, (1)
using the Irving-Kirkwood expressiofiL7], whose validity
was noted to be not justified at the fluid-fluid or the wall- whereg is the slip coefficient anﬁsi can be written as
fluid interface[see the paragraph following E.15 in the
above referendeln Appendix B we give some details on our ~ 0 _
MD stress measurements. As reference quantities, we also zeﬂxf dzoy(2) = onx(20), 2
measureds!’, ¢2,, o2, in the static ¥=0) configuration. °
In addition, we measured in both the static and dynamic ~ .
configurations the average molecular densitiegndp, for ~ Where we have used the fact thaf,(0)=0. [More strictly,
the two fluid species in each bin to determine the interfacezx(0 ) =0 because there is no fluid bela-0 and hence
profile. The shear viscosity=1.95/em/c? and the interfa- N0 Momentum transport across:0] Here thez coordinate
cial tensiony=5.5¢/ o2 were also determined. is for the onver fluid-solid boundarysa}me below with the

We have also measured the interface and velocity profilednderstanding that the same physics holds at the upper
for the Poiseuille flow in the asymmetric case, as well as folooundary, andi,= — d, for the lower boundary.

the Couette flows with differen? and H in the symmetric Force balance means that at steady state, the frictional
case. force exerted by the soﬂd wall on the movifgipping fluid
is fully accounted for irGL. Thus, the GNBGor NBC) can
IIl. GENERALIZED NAVIER BOUNDARY CONDITION be expressed in eith&! or G, but not both. In Fig. 3 we

show the measured MD data for the symmetric and asym-

In the presence of a fluid-fluid interface, the static fluid oy jc cases in the Couette geometry. The symbols represent
stress tensoo~ reflects the static Young streésurface ten- the val &'m red in the BL. Th lid lines repre-
sion) as well as those stresses arising from wall-fluid inter- € values ol measure € bL. [he so €s repre

action. This is the case in spite of the fact that in all the MDsent the values o6, calculated frompuv3'® by using 8
fluid stress measurements only the fluid-fluid interaction was= 1= B8,=1.2/em/c> for the symmetric case ang;
counted(see Appendix BR The reason is that because the =1.2Jem/o®, B,=0.532/em/c® for the asymmetric case
MD measurements were carried out either in the static equiaway from the CL regioristraight line segments in Fig,,3
librium state or in the dynamic steady state, local force baland8=(B1p1+ B2p2)/(p1+ p2) in the CL region19], with
ance necessarily requires the fluid stress components to fullyf("p andp; , obtained from MD simulations. It is seen that
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FIG. 3. (Colon) B,V/G! plotted as a function o¥/v3"P. Sym- FIG. 4. (Color) Two components of the dynamic tangential

bols are MD data measured in the BL at differamocations, where ~ Stress at=z,, plotted as a function of. The dashed lines denote
the red circles denote the symmetric case and the blue squares dek; solid lines represent the viscous component. Here red indicates
note the asymmetric case. The solid lines were calculated from Edhe symmetric case and blue indicates the asymmetric case. In the
(1) with values of; , and the expression g8 given in the text. ~ CL region the nonviscous component is one order of magnitude
The statistical errors of the MD data are about the size of the symlarger than the viscous component. The difference between the two
bols. The upper-right data segment corresponds to the lower boundomponents, however, diminishes towards the boundarQ, due

ary, whereas the lower-left segment corresponds to the uppdp the large interfacial pressure drmplying a large curvatupein
boundary. The slopes of the two dashed lines are givemzp}/. the BL, thereby pullingéy closer toés. Inset: 34 s plotted as a
Inset: G plotted as a function o6/, measured in the two BL's at function of ycoséys at different values ofz Here X4
different values ok. The symbols have the same correspondence as —JdX(7nx— o), 2s=—fdxo,, and b, s was measured from

in the main figure. The data are seen to lie on a straight line with 4he time-averaged interfacial profiléSig. 1). The red circles denote
the symmetric case, the blue squares denote the asymmetric case,

the solid blue squares denote the asymmetric static case, and the

single solid red circle at the origin denotes the symmetric static

for the lower boundaryupper right pang| the MD data  case. The data are seen to follow a straiglashed line with slope
agree well with the predictions of Eql). For the upper 1 indicating3 .=y coséy..

boundary(lower left panel the straight line segments also
agree well with Eq(1). However, there is some discrepancy
in the interfacial region of the upper boundary that seems ta
arise from a “shear thinning” effect of decreasiyyat very
large tangential stressgs3].

The fact that the wall force density is distributed inside a
thin BL and vanishes beyond the BL necessitates the form of

[N

(~3; as defined by Eq(2). However, it is intuitively obvious 9
that the fluids would experience almost the identical physical £
effeci(s) from a wall force density(~3;’<"5(z), concentrated
strictly at the fluid-solid boundary with the same total wall
force per unit area. In the inset to Fig. 2, it is shown that the
MD-measured wall force density is a sharply peaked func- 105 -
tion. The sharp boundary limit involves the approximation of

replacing this peaked function k(z). The replacement of a

diffuse boundary by a sharp boundary can considerably sim- -11.0

slope of—1, indicatingG¥+ G/ =0.

-85 : , 1 ' ! . ! . .

-20 -10 0 10 20

plify the form of the GNBC, because local force balance 5

along x then requiresd,oy,+d,0,,=0 away from the

boundaryz=0. Integration of this relation from 0 to z4 FIG. 5. (Colon S=[2u,(2)dz= [ o,x(2) — 03,(2)]dz plot-
yields ted as a function ok. Here red circles denote the symmetric case

and blue squares denote the asymmetric case. For clafitywas
vertically displaced such that%,=0 far from the interface in the

3><JZOdZ?Txx(Z)+?fzx(zo)_(~rzx(o+)=o symmetric case, and for the asymmetric cagg=0 at the center
0 of the interface.
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and as a consequendey comparing with Eq.(2)] G!
—on(07). Therefore,a,, changes fromr,,(07)=0 to

—f o, (0)dx=y(cosb3" "~ coshU™),
= int
o,(07)=G! atz=0, leading to

with 03;’5’; being a microscopic dynamistatig contact angle
at the fluid-solid boundary. The fact th'éﬂX(O)av«O away

~ o=t
(V- 0)-x=Gxa(2). from the CL shows that the GNBC implies NBC for single

— - phase flows.

Comparing with the diffuse boundary, wher® (o) - x+ gy’ Due to the diffuse nature of the BL in the MD simula-
=0, we see that the form of the equation remains the sameions, the contact anglé3s cannot be directly measured.
but the BL is now from 0 to 0", instead of from 0 to z,  Nevertheless, they are obtainable through extrapolation by
as in the diffuse case. Thus, GNBT) becomes using the integrated interfacial curvature within the BL. That

is, in the sharp boundary limit the force balance in the fluids

— T ny(0)=BoSIP is expressed by, + d,0=0. Integration inz across the
BL gives

in the sharp boundary limit. %
The tangential stress,, can be decomposed into a vis- &Xf dzoy(2) — 08,(20) + 04, (0) — o) (Zo) + o) (0) =0.
cous component and a non-viscous component: 0 @

Tnl(2)=00,(2) + 01y (2). Integration[of Eq. (4) along x] across the fluid-fluid inter-
face then yields
In Fig. 4 we show that away from the interfacial region the

0 o~
tangential viscous stress;,(z) = n(dpvxt dyvn)(2) is the A f dzoy(2) —f_ dXO'lr)]X(ZO)-l-f_ dxop,(0)+ yKy
only nonzero component, but in the interfacial regﬁ;ﬁ& 0 " "
=0 py— 0y~ 00= 0 — a0, is dominant, thereby account- — yKs=0, (5

ing for the failure of NBC to describe the CL motion. There- 2o~ ) ) ~
fore, away from the CL region the NBC is valid, but in the WhereA[J’dzoy(2)] is the change of the-integratedo,

interfacial region the NBC clearly fails to describe the CL across the interfacé&q and K5 denote the dynamic and the
motion. We wish to clarify the origin oY, ando®, as the Staticzintegrated interfacial curvatures:

dynamic and static Young stresses, respectively, so&ﬁ,@t Kdzcosed(zo)—cosaﬁu”,
=) — a2, is the uncompensated Young stress. As shown in
the inset to Fig. 4, the integralacross the interfagef o), and
(=onx—0py, calculated by subtracting the viscous compo- K= cosas(zo)—coseiu”.
nentzn(d,vy+ dyv,) from the total tangential stress,,) and _
o0, are equal toy cosd, and y cosés, respectively, at differ- Here A[[°dzoy(2)], ohy(Zo), 6u(Z0), and b(zo) are ob-
ent values ofz, i.e., tainable from MD simulationsks= + 2z,cos65""/H for the
circular static interfaces, while},,(0)= 5[ d,v](0) may be
v obtained by extrapolating from the values of tangential vis-
—fintdx%x(z):ycosed(z) cous stress ar=z,, 2z, and %,. Therefore, the micro-
scopic dynamic contact angh§""" can be obtained from Eq.
(5). In Appendix B 3 we give a more detailed account of the
relationship between the MD measured stresses and the
stress components in the continuum hydrodynamics. The
_f dx o0 (2) =y cosby(2), above extrapolation is based on this correspondence.
int We have measured tteintegratedo, = oyx— agx in the
BL. The dominant behavior is a sharp drop across the inter-
wheref4(z) and64(z) are, respectively, the dynamic and the face, as shown in Fig. 5 for both the symmetric and asym-
static interfacial angles at [20]. Here [;dx denotes the metric cases. The value 6f""" obtained is 88%0.5° for the
integration across the fluid-fluid interface aloxngThese re- symmetric case and 63°0.5° for the asymmetric case at the
sults clearly show the origin of the extra tangential stress iy, ar boundary, and 64.5°0.5° at the upper boundary.
the interfacial region to be the .inte.rfacialncompensated These values are noted to be very closesis’. Yet the
Young stress. Thus, the GNBC is given by small difference between the dynamic and stdtiticro-
ol ~ ~y scopig contact angles is essential in accounting for the near-
Boy "= —0nx(0)=—[7dwx](0) =0 (0).  (3)  complete slip in the CL region.
In essence, our results show that in the vicinity of the CL,
Here only one component of the viscous stress is nonzerghe tangential viscous stressa?, as postulated by the NBC
due tov,=0 at the boundary, ané o',(0) is the uncom- cannot give rise to the near-complete CL slip without taking
pensated Young stress, satisfying into account the tangential Young stressr,, in combina-

and
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tion with the gradient of théBL-integrated normal stress together with the incompressibility conditiovi-v=0. Here
oyy. For the static configuration, the normal stress gradienp,, is the fluid mass densitp is the pressureg” denotes the
is balanced by the Young stress, leading to Young's equatiorviscous part of the stress tenspf,gey: is the external body
It is only for a moving CL that there is a component of the force density(for the Poiseuille flows andM is the phenom-
Young stress, which is no longer balanced by the normaénological mobility coefficient.

stress gradient, and this uncompensated Young stress is pre-Four boundary conditions are required to solve E@s.
cisely the additional component captured by the GNBC butnd (10). Two are given by the impermeability condition,

missed by the NBC. i.e., the normal components of the fluid velocity and diffu-
sive flux are zerov,,=0 andd,u=0. The form of the other
IV. CONTINUUM HYDRODYNAMIC FORMULATION two differential boundary conditions may be obtained from

the total free energy
For Eq.(3) to serve as a boundary condition in hydrody-

namic calculations, we need to derive the local value of the

uncompensated Young stre?éﬁx(O) from a continuum for-
mulation of the immiscible flow hydrodynamics. Such a for- ) .
mulation is important for studying the macroscopic implica-Plus our knowledge of the GNBC. Herg,(¢) is the inter-
tions of moving CL’s under scenarios beyond the capabilitfacial free energy per unit area at the fluid-solid boundary.
of MD simulations. As a first-order approximation, we for- We Us€yw($)=(Ayw/2)sin(w4/2) to denote a smooth in-
mulate a hydrodynamic model based on the GNBC and théerpolation between *Ay,,¢/2, ~with A= yui(¢+)

CH free energy functiondl21] that has been successful in — Ywi(¢-) given by —ycos6"" (Young's equation It
the calculations of fluid-fluid interfacial phenomena: should be noted that the form of the smooth interpolation has

very little effect on the final results. Hence we have chosen a
simple interpolation function. Similar to E¢7), the change

: (6)  in Fy, due to the displacement of the molecules frorto
r'=r+u(r) is given by

Ftot[(b]:[:[(ﬁ]"_f dsywi(¢), 11)

1
F[¢]=f dr{EK(V@zH((ﬁ)

where ¢=(p,—p1)/(p2+p1), f(¢)=—3r¢*+3ue®, and
K, r, u are the parameters that can be directly obtained from OF 1o1= _f dr[g.u].;.f dsoyuil, (12
MD simulations through the interface profile thickne&s
= JK/r [22], the interfacial tensiory=2+/2r2¢/3u, and the
S . ... _Where
two homogeneous equilibrium phases given by the condition

of 9f/9¢=0, yielding p.==r/u (==1 in our casg _ IYwi(®)
To derive the effects of the CH free energyon immis- (rgi= —|Kdpop+ P }(%d), (13

cible flow hydrodynamics, let us consider a composition field

¢(r). A displacement of the molecules fromto r'=r is the uncompensated Young strdd€] (see below The

+u(r) induces a local change @, 6¢=—u-V¢, to the  coniinyum (differentia) form of GNBC (3) is, therefore,
first order inu. The associated change kis given by the given by

sum of a body term and a surface term:
B3P == 70,(0)= = 7 3q0,](0) + [L() 3, $1(0),
5= [ drtg-ui+ [ asgoun Y a9

where[L()dx¢]1(0), with L(¢) =Kdnd+dywi($)/ i, is
where g=pV¢ is the capillary force density, withu — the differential expression for —oy,(0)=—o07y,(0)
f&F/&;&: —KVep—r¢+ued® being the chemical poten- +02,(0) in Eq. (3). HereKd,dpdyeh is —a,(0) as seen in
tial, and Eq. (8), and [9yui(¢)/31db=dyvwi($) [23] equals to
a2 (0), in accordance with the static force balance relation
ori=—Ka,dd (8) nx
ni n®e dywi(@)—an 0)=0.  From  [iudX[Kd,pdxh](0)

— urf . — _ urf
is the tangential Young stress due to the spatial variatiap of y cosé " [24] and findXdx Yt ycosé;™, we see that

at the fluid-solid boundaryi( n). Hence, the two coupled
equations of motion are the Navier-Stokes equatvaith the J dX[L(¢)dx](0)=y(cosb3"""— cose™),
addition of the capillary force densjtyand the convection- int

diffusion equation for(r): in agreement with L(¢)d,#](0) being the uncompensated

Young stress.
=—Vp+V.-0"+uVeod+pnlext, (9 Another boundary condition may be inferred from the fact
that L(¢)=0 is the Euler-Lagrange equation at the fluid-
solid boundary for minimizing the total free energy,,[ ¢].
That is,L(¢)=0 corresponds with the equilibriurtstatio
condition wherel¢/dt+v-V ¢=0. The boundary relaxation

v
—+(v-V)v

Pm ot

3
§—(f+v-v¢=|v|v2ﬂ, (10
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0.8 F¢7 108 T T A titatively reproduce the interface and velocity profiles from
£ 00 @ . MD simulations, including the near-complete slig, &0 in
04 - %08 7 Fig. 6 for the black curveof the CL, the fine features in the
E 0.0 I ] molecular-scale vicinity of the CL, and the fast pressure
= B variation in the BL(inset to Fig. 6, with its implied large
0.4 interfacial curvature. We wish to emphasize that for the com-
— parison with the symmetric case, the parameters in the con-
-0.8 &= tinuum model, including those in the GNBC, are directly
. obtained from the MD simulations, whose velocity profiles
o S are then fitted by those from the hydrodynamic calculations
I with optimizedM andI" values. Thus, the comparison with
E 0.0 B sz the asymmetriqCouette case, with3, directly evaluated
N r from MD simulation data, isvithout adjustable parameters
—0.4 ps—— ) Here it is noted that the black curve, which denotes the ve-
b locity profile in the BL, exhibits near-complete slipping of
-0.8 ! ! =1 the CL just as in the MD data. We have also obtais§dl’
-20  -10 0 10 20 =88.1° and 62.8° for the symmetric and asymmettte
X/o lower boundary cases shown in Figs(d) and 1b), respec-

tively. Both are in excellent agreement with their extrapo-
the continuum hydrodynamidsolid lineg results for the Couette lated values n MD simulations. ForrEhe upeer bqundqry n
flow, the latter calculated with the GNBC and values Mif the asymmetric case, our calcula@’f 265'2 » which dif-
=0.023*/y/me and '=0.660/\me. (a) The v, profiles for the fers some_vvhgt from the MD ex_trapolatlon_ value of 64.5
symmetric casgV=0.25(e/m)*? and H=13.6s] at different z +0.5°. This difference is a reflection of the discrepancy seen
planes. The profiles are symmetric about the center plane, hend@ Fig. 3. However, it is noteworthy that the difference in the
only the lower half is shown foz=0.425r (black circle3, 2.125  dynamic contact angles does not show up in the velocity
(red squares 3.825r (green diamonds and 5.525 (blue tri-  profiles, which agree well.
angles. (b) The v, profiles for the asymmetric cas¢V To further verify that the boundary conditions and the
=0.2(e/m)Y? andH=13.60] at z=0.425 (black circleg, 2.975 parameter values are local properties and hence applicable to
(red squares 5.525 (green diamonds 8.075 (blue triangle} flows with different macroscopic conditions, we have varied
10.625 (yellow triangleg, and 13.17& (maroon triangles For  the wall speedV, the system sizél, and the flow geometry
the boundary layersy,=0 means complete slip. Inset: Pressureto check that the same set of parameters plus the GNBC are
variation in the BL for the symmetric case. The solid line representsyalid for reproducing(a) the velocity profiles from a differ-
the BL-averaged hydrodynamic pressig'[°p(z)dz from the  ent set of Couette-flow simulations in the symmetric con-
continuum model, and red circles denotez, [ %0,,(z)dz mea-  figurations, shown in Fig. 7, as well 4s) the velocity pro-
sured in MD simulationgsee Fig. 5. Note the fast variation across files of the Poiseuille flow simulations in the asymmetric
the interface. The interfacial pressure drop in the BL is a factorcase, shown in Fig. 8. The remarkable overall agreement in
5-10 larger than that in the middle of the sample, implying largeall cases(especially the slip profiles as given by the black
interfacial curvature. curves affirms the validity of the GNBC and the hydrody-
namic model[27], as well as justifies the replacement of the
dynamics of¢ is plausibly assumed to be the first-order giffuse fluid-solid boundary(force density by a sharp

FIG. 6. (Color) Comparisons between the MBymbolg and

extension of that correspondence for a nonZef): boundary.
o0 Another comparison is the dissipation incurred by the
_ moving CL in the Couette-flow geometry. To calculate this
ot v-vé FL(e)], (15) dissipation, we note that the tangential force exerted by the

moving wall on the fluid isG)', and the direction of this

force is the same as that of the wall motion. In order to
maintain the constant speed of the moving wall, external
V. COMPARISON OF MD AND CONTINUUM work must be supplied. The rate of that work is positive,

HYDRODYNAMICS RESULTS given by the integrated local force times the wall velocity,

Motivated by the methods presented in Ré®5,26, a -6 JdX|GY|V=[dxB|v3""|V per unit length. HerdGy|
second order scheme is designed to solve the CH hydrody= Blv; ®| is the magnitude of the local force per unit wall
namic model, comprising the dynamic equations and the fourea and/ is the wall speed. In the steady state, the external
boundary conditions. Details of the numerical algorithm arework done to the system is fully dissipated in the system
presented in Appendix C. Besides those parameters, whidhrough convection-diffusion of the composition, slipping at
can be directly obtained from MD simulatiord, andI” are  surface, and shear viscosity in the bulk. To isolate the dissi-
treated as fitting parameters, determined by comparison withation due to the CL alone, we have to subtract fiofi"|
MD results(values given in the caption to Fig).Gn Figs. 1 a small but constant relative slipping away from the inter-
and 6 we show that the continuum model can, indeed, quarface,v'P=2VIs/(H+2l,), wherel = 7/3 is a slip length

wherel is a (positive phenomenological parameter.
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FIG. 8. (Color) Comparisons between the M@ymbols and

FIG. 7. (Color) Comparisons between the MBymbolg and the continuum hydrodynamidsolid line9 results for an asymmet-
the continuum hydrodynamidsolid lines results for two symmet-  "iC case in the Poiseuille flow geometry. Compared with Fi),6
ric cases in the Couette flow geometry. Compared with Fig), & the type of flow has been changed, but the continuum results are
andH have been varied, respectively, but the continuum results argaculated with the same set of parametéas.A segment of the
calculated with the same set of parameters and the GNBC. Thigstantaneous configuration in the MD simulation. The two walls,

profiles are symmetric about the center plane, hence only the loweieParated szy H=13.6s, move at a constant speed/
half is shown.(a) The v, profiles for V=0.25(/m)Y2 and H =0.51(e/m)™* in the —x direction in order to maintain a time-
: . :

=10.20, shown atz=0.425 (black circle3, 2.125r (red squares independent steady-state interface, witly, .= 0.05/ o applied in
and 3.825 (green diamonds (b) The v, profiles for V thex direction. The symbols have the same correspondence as those
. X

:0.275(e/m)1’2 and H=13.60, shown at z=0.425r (black in Fig. 1(b). The black solid line i§ the interface profiles calculat.ed

circles, 2.125 (red squards 3.825 (green diamonds and fror_n the contlnuum hydrodynamic m_odel. The c_olored dashed lines

5.525r (blue triangles |nd|9ate thez coordinates of theX profiles shown inb). (b) Thev,
profiles atz=0.425r (black circle$, 2.125r (red squares 3.825r

for fluid 1 if $<<O and for fluid 2 if $>0. The reason for (green diamonds and 5.525 (blue triangles The profiles are

this subtraction is thaﬁdxﬂvg"pv is the rate of work for the symmetric about the center plane, hence only the lower half is

single-phase Couette floywith constant slip in both the shown.

<0 and ¢>0 regiong and, therefore, [dxB(|vs"™| 80 r . , : . -

—v3"P)V is the rate of extra dissipation due to the presence

of the moving CL.(Note that in the vicinity of the moving

CL, large slip exists, changing from the near-complete slipat 7.5

the CL to the constant shpo"p far away from the CL). For

the symmetric case, the resulting heat generation rate due t

the CLis thusGVZWSL (for one wal), wherelL is the length o 7.0 7
of the CL andW;s defines the width of the CL region: ~, -
| ’ 6.5 T

Ws== f(|vs'p| vy P)dx. (16
Thus, CL dissipation is equivalent to a segment, 6.0 1

~H(Wq/lg), of dissipation by single phase flow. Figure 9 _ ]
shows the variation oV as a function of capillary number .
Ca= »V/vy for the symmetric case of Couette flow. Close to 5.5 20 ' 15 ' 10
Ca=0.1 the value oW, increases rapidly, in good agree- e - -
ment with the MD results, and beyond which the continuum log 10 Ca
model failed to converge. This corresponds to the breakup of
the interface observed in MD simulatiof3]. FIG. 9. (Color) Width for the moving CL regionWj, plotted as
a function of the capillary numbe€a= 5V/y for the symmetric
VI. CONCLUDING REMARKS case by varying/ and keepingd = 13.60. We note that for most of
the MD data measured in the symmetric c&3as=0.088. The solid
In summary, we have found for the first time the boundaryline was calculated from the immiscible hydrodynamic model em-
condition that yields near-complete slipping of the CL, in ploying the GNBC; red circles denote the MD results.

016306-8



MOLECULAR SCALE CONTACT LINE HYDRODYNAMICS . .. PHYSICAL REVIEW E 68, 016306 (2003

good agreement with MD results on the molecular scale. It Additional wall layers do not contribute to the perceived
should also be noted, however, that the present continuummodulation of the wall potential by the fluid molecules. Nev-
formulation cannot calculate fluctuation effects that are im-ertheless, they can still affect the tangential wall force by
portant in MD simulations. Long range interactions, e.g., thatnodifying the organization of the fluid molecules near the
due to van der Waals interaction, have also been ignored. Th#all. Such organization is governed by the wall-fluid inter-

latter is potentially important in the calculations involving action and can be greatly influenced by the normal wall
wetting layers. force. To see the effects of normal wall force due to addi-

tional wall layers, we used fo001] planes of an fcc lattice
plus a half-space continuum in constructing a wall. The first
ACKNOWLEDGMENTS four solid layers show the atomic structure detectable by the

Partial support from HKUST’s EHIA funding and Hong fluid molecules, while the half-space continuum models the

Kong RGC Grant Nos. HKUST 6176/99P and 6143/01P iSdeeper solid layers. The wall-fluid interaction was modelled
hereby acknowledged ' as follows. For an in-range pair of fluid and wall molecules

separated by a distanae<r., the interaction potential is
still U,,¢. Here the wall molecule must be from one of the
APPENDIX A: WALL-FLUID INTERACTIONS four solid layers. In addition to this short-range interaction,

. the fluid molecules can also experience the long-range inter-
We have measured both the tangential and normal com- P g-rang

onents of the wall force exerted on the fluids. Both com O_action potential due t¢1) the distant wall molecules in the
gents vary along the direction and saturate. somewhe?e four solid layers ang?) the continuum. Fof1) we integrated
6 .
away from the fluid-solid boundary. The tangential compo-the 1 . term in Uwf.over the out.-of-ranger(>rc) area of
nent saturateéby 99.8%) atz=z,, which is well inside the the solid layers, while fof2) we integrated the same term
- AN ’ he half- i LA i hi |, onl
wall-fluid interaction range#,= 0.85r, smaller than the cut- over the half-space continuum. According to this model, only

) - VS . . the in-range (<r.) part of the solid wall shows atomic
Bﬁ ?'Sggcﬁrggfﬁ?g:;éhethvga::rlﬁ:gl'gtoer:]?)(;t:?;nfgesn;g Ofstructure to a fluid molecule, while the out-of-range (
wf) - ’ ~ - . 3 .
the saturation value &=z, and 99.8% ar=2z,. The dif- o) partis effectively a half-space continuum.

. : We found that the effect of the long-range normal wall
ferent saturation ranges of the tangential and normal compQy e (for 6,,,>0) is to attract the fluid molecules to the
nents may be understood as follows. wi

For a fluid molecule close to the solid wall, the interactionwa”' In fact, the average number density in the BL can in-

40 - TN
with one particulanthe closestwall molecule can be much crease by 3-4% once the long-range force is included. As a

. o . e .
stronger than all the others. As this fluid molecule movesresu“’ the slip coefficiengy ;) increases by-5-159%. This

L ; results in small but visible changes in the interface and ve-
laterally but remaining close to the wall, it would thus expe-loCity profiles
rere s shong heide moduton 1 s lracton i e Tnese tess nave convined us tat by using o)
: i Y Y P planes of an fcc lattice to model the solid wall, we have
the tangential component of the wall force. Away from the

fluid-solid boundary, each fluid molecule can interact with S2Pturéd the dominant wall-fluid interaction. In fact, using
Y, . two molecular layers to model the solid wall has been exten-
many wall molecules on a nearly equal basis. Thus, th

: : : %ively practiced in the past MD simulatiof6,7,13,27,29
modulat|0_n a_mplltud_e of the wall potential would clearly de- although in some instances more molecular layers have also
crease with increasing distance from the wall. Hence, th

tangential wall force tends to saturate at the relatively shorf " used30], where the accurate modeling of the normal
Y y STl omponent of the wall-fluid interaction force is important.
range ofz=z,. On the contrary, the normal wall force di-

rectly arises from the V\{all-_fluid interaction, independent of APPENDIX B: STRESS MEASUREMENTS
whether the wall potential is “rough” or not. Consequently, IN MD SIMULATIONS

the normal wall force saturates much slower than the tangen-

tial component. 1. Microscopic formula of Irving and Kirkwood

The MD results presented in this paper were obtained |rying and Kirkwood[17] have shown that in the hydro-

planes of an fcc lattice. We have also carried out MD simu-stress tensafflux of momenturi may be expressed in terms
lations using thicker confining walls. First we changed thegt molecular variables as

number of molecular layer$001] planes of fcc latticefrom
two to four in constructing each of the two walls. The wall- o(r,t)=og(r,t)+ oy(r,t), (B1)
fluid interaction potentialU,; were still cut off atr,

=2.50. It turned out that neither component of the wal

| Where oy is the kinetic contribution to the stress tensor,
force shows any noticeable change. The reason is that for grfdven by

tangential component, the two outer planes are too distant to P P

contribute to the roughness of the wall potential, while for o(rt)= —<E mi[——V(r,t)H——V(r,t)}
X i m; m

the normal component, the fluid molecules closest to the wall

are separated from the two outer planes by a distanice
Consequently, both the interface and velocity profiles do not X &(X;— r),f> , (B2)
show any noticeable change.
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and oy is the contribution of intermolecular forces to the
stress tensor, given by

>

1
O'u(f,t)z—i = 2

(Xi_Xj)Fij5(Xi_r),f> . (BS)

Herem;, p;, andx; are, respectively, the mass, momentum,
and position of moleculg V(r,t) is the local average veloc-
ity, Fj; is the force on moleculedue to moleculg, f is the
probability distribution function

f(X1, « .« XnoP1s - - - 5PNOD)S

which satisfies the normalization condition

f Xm"'dXNdpl"'def:l,

and the Liouville equation

PHYSICAL REVIEW E68, 016306 (2003
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FIG. 10. Schematic illustration of measuring thecomponent
of oy, . The horizontal solid line¢separated by short vertical lines
represent bin surfaces with surface normals alongztdeection.
Circles denote fluid molecules. The dashed lines connect pairs of
interacting molecules. Here the bin surfaces and the molecules are
projected onto thexz plane. Molecules that appear to be close to
each other may not be in the interaction range if their distance along
y is too large. A pair of interacting molecules may act across more
than one bin surface. Here tlig,3) pair acts across surfacésand
C, while the (1,5 pair acts across surfac&and D. At each bin

with U being the potential energy of the system, andsurface the stress measurement must run over all the pairs that act

(---,f) means taking the average for a probability distribu-
tion functionf.

across that surface. For surfabethere are three pairs of interact-
ing moleculeq1,5), (2,4), and(2,5) that contribute to thex com-

Although widely employed in the stress measurements ifponent ofay .

MD simulations, the above expression fof, [Eq. (B3)]

represents only the leading term in an asymptotic expansioffhat meansR-V,p®(r,r+R,t) must be negligible com-
accurate when the interaction range is small compared to theared with p(®)(r,r+R,t). Here R is of the order of the

range of hydrodynamic variatiofl7]. This can be seen as
follows.

range of intermolecular force. This approximation, however,
can not be justified at the fluid-fluid or the wall-fluid inter-

Consider that all the molecules interact via a pair potentiaface, whereR- V,p®)(r,r + R,t) can be comparable in mag-

UpaidR)  such that the intermolecular forceF;
=(R/R)U,i(R) for x;=x;+R. Accordingly, Eq.(B3) can
be rewritten as

1 RR
au(r,t):if dR?Upai,(R)p (rr+Rt), (B4
wherep®) is the pair density defined by
pPrarz )= 2 (8(ri=12)8(r;=12).0).

It has been showiisee the appendix in Refl7]) that ac-
cording to the definition thatlS- oy is the force acting
acrossdS, the full expression fowry is given by

1 RR ,
oy(r,t)= EJ dR?Upair(R)

1
X Jdap(z)(r—aR,r—aR-l—R,t). (B5)
0

It is readily seen that EqB4) may be obtained from Eq.
(B5) by keeping only the lowest order term in a Taylor’s
series ina, i.e.,

p(z)(r— aR,r—aR+ R,t)@p(z)(r,r-l—R,t).

nitude top(?.

2. Stress measurement in the boundary layer

In the study of moving CL, it is of great importance to
obtain the correct information about stress distributions at
both the fluid-fluid and the wall-fluid interfaces. Therefore,
we have directly measured thecomponent of fluid-fluid
interaction forces acting across tké€z) bin surfaces, in or-
der to obtain thexx(zx) component ofoy, . For example, in
measuringoy,, at a givenz-direction bin surface, we re-
corded all the pairs of molecules interacting across that sur-
face. Here “interacting across” means that the line connect-
ing a pair of molecules intersects the bin surface. For those
pairs, we then computed,,, at the given bin surface using

>F

()]

1
UUZXZ5_SZ ijx s
where §s, is the area of the-direction bin surface,i(j)
indicates all possible pairs of molecules interacting across
the bin surface, with moleculiebeing “inside ofzss,” and
moleculej being “outside ofiész” (moleculei is below
moleculej), andF;j, is the x component of the force on
moleculei due to moleculegj. A schematic illustration is
shown in Fig. 10.
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For comparison, we have measured theand zx com- (2) 0,,(zp) can be decomposed into a viscous component
ponents of oy, using the discrete version of Irving- plus a Young’s componentt,(zo) = 0%,(Zo) + 05(Zo) With
Kirkwood expressior(B3): 0= 1(d %+ dxv;) and [iyd XO—ZX(ZO) =y C0S64(Z0)-

(3) 09(z0) is the static Young stress, i.6fydxo % (Zo)
1 =y C0SO(2p).
oy=- m<zl & (Xi_xj)':ij>’ With the help of the above relations, integration of Eq.

(B6) across the fluid-fluid interface yields

molecules in the sampling bipyuns over fluid molecules in
interaction with moleculé, and(- - - ) means taking the time

where dv is the volume of sampling bin, runs over fluid f
I

sli  HD v
dxBu; P=A dzoy,’ [+ | dxob,(zp)+ v cosby(zp)
nt 0 int

average. We found that far from the the fluid-fluid and the 20

wall-fluid interfaces, the results based on the Irving- —A f dsz('XS — 7y €0sb(zy), (B7)
Kirkwood expression agree well with those from direct force 0

measurement, whereas near the fluid-fluid or the wall-fluid z HD(HS) :

interface, the two results show appreciable differeriapsto Wﬂg{gs?[foodzaxx ( _ '] is the chang_e of the-integrated
50%), especially for thex component at the fluid-fluid in- Oxx  across the interface. According to Laplace’s equa-
terface. tion, the change of the hydrostatiéntegrated normal stress

is directly related to the statizintegrated curvaturés:

3. Relation of MD-measured stresses to the continuum 2 Hs surf
hydrodynamic stress components —A f . dzo, = yKs= y[c0Sb(zg) —coshs"']. (B8)

We want to note the correspondence between the MD-
measured stresses and the continuum hydrodynamic strelete thatXCq vanishes in the symmetric case. Substituting
components. This correspondence is essential to obtain tHeg. (B8) into Eq. (B7) then yields
microscopic contact anglé5"'", defined in the continuum
hydrodynamic model but not directly measurable in MD f
simulations.

The GNBC for the diffuse BL is given by

n

slip_ % HD v
dxBuy "=A| dzoy, t+ | dxob(zg)+ ycosby(zg)
t 0 int

—ycosHU'", (B9)
~ ' d (2
Gl=puvsP= &J d7 oyx(2) — o0y(2)] If interpreted in the continuum hydrodynamic formulation
0 with a sharp fluid-solid boundary, the last term in the right-
+ oy Z0) — 00(Z0) T, (86)  hand side of Eq(B9), —ycost2"", is the net wall force

along x arising from the wall-fluid interfacial free energy
jump across the fluid-fluid interface, in accordance with
surf Young’s equation- y cosé2""'=A . On the other hand, the

the contact anglg;™ " from MD results, we need to interpret : . )
the MD-measured quantities in terms of the various consUM of the first three terms on the right-hand side of(B9)

. ; ) . ; ..is the net fluid force along exerted on the three fluid sides
tinuum variables in the hydrodynamic model. In doing so it . X ; . .

. ; . of a BL fluid element in the interfacial region, due to the
is essential to note the following.

(1) oy can be decomposed into a molecular component'ydrocwna.mIC motion of the fluids. f
and a hydrodynamic component =T + "0 Mean To obtain an extrapolated value for the contact amgHé
XX xx XX * B

while, agx can be decomposed into the same molecular comf-rom Eq.(B9), we tumn to the Stokes equation in the BL:
ponent and a hydrostatic component, =T, ,+d">. The — ayp+ 9yt 0507, + wdyd=0, (B10)

molecular component,, exists even if there is no hydrody-

namic fluid motion or fluid-fluid interfacial curvature. In par- obtained from thex component of Eq(9) by dropping the
ticular, T,, in the BL depends on the wall-fluid interactions. inertial and external forces. Integration mof Eq. (B10)

The change of the BL-integratef,, across the fluid-fluid across the BL, together with the integration alongcross
interface equals the change in the wall-fluid interfacial freethe fluid-fluid interface, yields

energy, i.e.,

J o7
X_
int X

On the other hand, the hydrodynamic componefjt in o,

results from the hydrodynamic fluid motion and fluid-fluid Here we have made use of two relationd) wd.¢
interfacial curvature. In the statia/(= 0 or gey=0) configu- =k S(X—X;,) in the sharp interface limit31], with « be-
ration, o}'C becomes the hydrostatic componet]f in o2, . ing the interfacial curvature ang, the location of the inter-

which involves only MD measurable quantities. To obtain

Z,
A Jodz(—ercr)‘ix) +f dxo?(z) + v €c0sby(Zp)
0 int

f:’dszx(z) = A Yot = Yur(B4) — yur($).

- f dxo?,(0)—ycose5'" '=0. (B11)
int
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face alongx; (2) [ é"dz;c is the dynamicz-integrated curva-

ture Kq= cosfy(z,) —cos6™"". The local force balance along
x is expressed by EqB10). Accordingly, the force balance

PHYSICAL REVIEW E68, 016306 (2003

[L(p)] 0S"P=8 d,dp— \/?Ecosezu”sy(qﬁ)} Ayp— Iy
(C4)

along x for the BL fluids in the integration region is ex-
pressed by EqB11), whereA[ [ °dz(—p+0%,)] is the net
force on the left and the rightlconstantx) surfaces,
JintdXa,(zg) + ¥ cos4(Z) is the tangential force on the
=1z, surface, and- [, dxa?(0)— y cosd"" is the tangen-
tial force on thez=0 surface. Substituting E¢B11) into Eq.
(B9) and identifying the normal stressp+ o, with o>,
we obtain

Here s (¢)=(m/2)cos@m¢/2). Five dimensionless param-
eters appear in the above equations. They @re L4
=Mr/V¢, which is the ratio of a diffusion lengtMr/V to
£ (2) R=pVéln, (3) B=r2&lunV=3v/2\27V, which is
inversely proportional to the capillary numb€a= »V/vy,
(4) Vs=KI'/V, which is the ratio oKI" (of velocity dimen-
sion) to V, and (5) Ls(¢)= 5/ B($)&, which is the ratio of
the slip length I4(¢)=7n/B(¢p) to & Here B(¢)=(1

— @) B1/2+(1+ @) B2

f dxﬁvi'ipzf dxal,(0)+ ycosb3" "~ y cose, S
t int 2. Finite-difference scheme

n

(812 For immiscible Couette flows, there are four variabjes
which is identical to the integration of the continuum GNBC vy, v,, andp to be solved in a two-dimensionéD) system
[Eq. (14)] alongx across the fluid-fluid interface. (in the xz plane. We want to solve the convection-diffusion

In summary, to obtain EqB12) from Eq.(B7), we have equation and the Navier-Stokes equation in a 2D system of

used bothdya S+ 9,69, =0 and dya!iP + 9,0,,=0, whose lengthL, (alongx) and height_, (alongz). HereL, must be
integrated expressions are given by Egg) and Eq.(B11),  large enough to allow the single phase floiar from the
respectively. We note thati, (o~ a"S)+ d,(a,,—00)  fluid-fluid interface to approach uniform shear flows. A

— 0 is equivalent to the relatiof,or,+ d, 0= 0 [integrated finite-difference scheme is employed as follows.

; . . 1) N, andN, equally spaced levels are introduced in the
expressions given by Eq&) and(5)], which has been used (1) Ny Sz ) o e T
suf through extrapolation in Sec. IIl. x and z directions, respectively. Grid size is given Iy

to obtain fg =L,/(Ny,—1) andA,=L,/(N,—1) alongx andz respec-
tively.
(2) Each variabldq) is defined aiN, X N, sites distributed
We present our numerical algorithm for solving the con-from x=—L,/2 to L,/2 and fromz=—L,/2 to L,/2, repre-
tinuum hydrodynamic model, comprising dynamics equasented by the arrayg;;, with i=1,... N, and j
tions (9) and (10) and the four boundary conditions,=0, =1....N;. Here g;;=q(x;,z), with x;=(i—1)L,/(Ny
dnu=0, plus Eqs(14) and(15). We pay special attention to —1)—L,/2 andz;=(j—1)L,/(N,—1)—-L,/2.
the application of boundary conditions, and restrict our (3) In applying the various boundary conditions, “ghost”
analysis to the Couette flow because the generalization tdites outside the system, i.e=0, i=N,+1, j=0, orj

APPENDIX C: NUMERICAL ALGORITHM

Poiseuille flow is straightforward.

1. Dimensionless hydrodynamic equations

To obtain a set of dimensionless equations suitable f°f=x or 2)

numerical computations, we scateby | ¢..|=r/u, length
by £€= JK/r, velocity by the wall speed, time by &/V, and

pressure/stress bypV/é. In dimensionless forms, the
convection-diffusion equation reads
d¢
E+V-V¢=£dV2(—V2¢—¢+¢3). (CY
the Navier-Stokes equation reads
ov
Ry (v V)v|=-Vp+V+B(—V2p—p+ 3V,
(C2

the relaxation ofp at the fluid-solid boundary is governed by

J
_¢+Ux‘9x¢: —Vs

\/E surf
P &n¢—?cos¢95 s,(¢)|, (C3

and the GNBC becomes

=N,+1, may appear in the discretization scheme. The val-

ues of the variables at the ghost sites are determined sepa-

rately from the various boundary conditions, detailed below.
(4) First and second spatial derivatives along

are  represented by 9,0(5) =[d(Zy+1)

—q(&c-)128,  and  32a(£)=[a(Lk1) +A(dk-1)

—2q(2)1/AZ.

3. Convection-diffusion equation

With the chemical potentigk; ; given by

B {¢i+l,j_2¢i,j+¢i—l,j Dij+1— 20 j T hij-1
Mij=— +

AZ A7
—biitd;, (C5)
the discretized convection-diffusion equation is
d Mi+1j= 2/ )+ Mio1;
S PtV Velij=Ly — A;J —
X
Mijr1— 200t Mi -1
+ > , (C6)
AZ
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with V2p=—RV-[(v-V)V]+BV-[(—V2¢p— ¢+ ¢$°)V ¢].

4 ¢ ¢ ¢ (1
1= P R
[V'Vqs]i,jzvxi,j%‘l'vzi,j%-

. ‘ (C7) Dotting the momentum equatici€2) with the surface nor-

mal at the fluid-solid boundary and using=0, we obtain
The boundary conditions at= = L,/2 can be easily applied, for Eq. (C11) the boundary condition
using¢==+1 and

_yp2 2. 3
L, g;(' (C8) Inp=Vv,+B(=Vp—d+¢°) s, (C12

for single-phase uniform shear flows. Here we focus on thé@tZz=*L,/2. In addition, we us&*p=0 andd,p=0 for the
boundary conditions @-= = L,/2: d,x=0 and Eq(C3). We  values of V?p and d,p at the boundaries= *L,/2. This
spell out the numerics for the lower boundary 1, with the  reflects the single-phase flow given by EGS). _
understanding that the same can be applied to the upper From the momentum equati¢@2) and the pressure Pois-
boundary. son equatior{C11), we derive a diffusion equation

To solve the discretized convection-diffusion equation
(C6) at the lower boundary=1, we need the values @f; AV )
atj=1 andj=0. We also need the values pf ; atj=1 to
solve the same equation jat 2. According to Eq(C5), u; ot
atj=1 andj=0 cannot be directly evaluated frog ; with
i=1,...Nyandj=1,... N,. But they can still be deter-
mined from the boundary conditions 2& —L,/2. u;; at |
=0 is obtained fromy,u=0 atj=1 as

=VA(V-v),

for V.v. With V.v=0 given at timet=0, and in order to
ensure that remains divergence free &t-0, we must im-
pose the additional boundary conditi¥ v=0 at all times

Bij-1-0=Mij+1-2- (c9  t=0. We will show that this boundary condition is needed in
' ’ solving for p in a finite-difference scheme.
To obtainu;; atj=1, we need to determing, ; at j=0. In order to solve the pressure Poisson equation, we need

This can be done by requiring that E¢€.1) and(C3) yield to evaIuate[Vzp]i,j for i=1,... N, and j=1,... N,,
the samed¢/dt at z=—L,/2. The discretized convection- [d,p];; for i=1N, andj=1,... N,, and[d,p];; for i
diffusion equation is given by EqC6) while the discretized =1,... N, andj=1N,. ForV?p, we have

relaxation equation foty at the boundary=1 is given by

d dij-1— bij+1 [V?p];,;=0,
S PtV Veli;= _VS[T
2 fori=1Ny,andj=1, ... N,;
—\/?_cosagu”sy(qsi,j)] (C10
Equating the right-hand side of E¢C6) at j=1 [with ;o [V2p];;=2R UX”“'ZZU’“*” UZi'j*lz_AUZi'j*
fixed by Eq.(C9) and otheru’s given by Eq.(C5)] with that x z

of Eq. (C10 leads to a tridiagonal system of linear equations
for ¢;; (¢;; coupled withe¢; _;; and¢; ;) atj=0. Solv-

_ Uzi+1j 7 Uzi-1 Uxi,j+1_UXi,jl}

ing this tridiagonal system determines ; at j=0, from 24y 24,

which we obtainu; j atj=1 by using Eq{(C5). Biiri—2d + i 1.
i+1, i i—1,
+Bui j 21 j

4. Navier-Stokes equation A

We now turn to the Navier-Stokes equati@@?) with the biji1— 2+ dij_1
incompressibility conditiorV -v=0. The difficulty in solv- +— AZY '
z

ing the Navier-Stokes equation is the lack of a time evolution

equation for the pressume In the following, we will intro- e o — b .
. . Mi+1j= Mi-1j ¢|+l,] ¢|*l,]

duce a numerical method based on the pressure Poisson +B oA oA

equation[25]. X X

a. Pressure Poisson equation 'ui’jﬂz_A'ui’j*l d)i'j“z;d)i'jl),
Taking the divergence of momentum equati@®) and ’ ’
applying the incompressibility condition, we obtain the pres-

sure Poisson equation fori=2,... Ny,—1andj=2,... N,—1; and

016306-13
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Uxi+1j7 Uxi—1,j VUzi,j+17 Vzij-1

24, 24,

Dir1j— 20 it bi-1j
A

[VZp];j=2R

+B,U«i,j(

N bijr1—2¢ijt+ dij-1
A7
Mi+1j— Mi-1j ¢i+1,j—¢i—1,j

TR, 28,

for i=2,...Ny—1 and j=1N, (wherev,=0 and d,u
=0). We see thatp andv, at ghost sites of =0,N,+1

PHYSICAL REVIEW E68, 016306 (2003

&vzi,j .
gt Ui

Uzi+1) 7 Uzi-1j

24,

Uzij+17 Vzij-1

24,

~ Uziyj

1 pi,j+1_pi,j—1+ 1 (Uzi+1,j_20zi,j+vzi—1,j

R 24, R AZ

Uzi,'+1_2Uzi,'+Uzi,'fl
+ J J J

AZ
B ijr1—dij-1

fori=2,... Ny—1 andj=2,... N,—1, together with the
boundary conditions that,; ;=0 atj=1N, andv is given

appear in the last expression. The ghgss have already by Eq.(C8) ati=1N,. Equation(C13 atj=1,N, involves
been determined in solving the convection-diffusion equa-< andv, at ghost sites of=0,N,+ 1. The ghosip’'s come
tion, while the ghosb,’s are determined through the addi- from y; ; atj=1,N,, and have already been determined. The

tional boundary conditiotV - v=0:

Uxi+1,j Uxi—-1j
2A,

Uzij+17 Vzij-1 -0
2A, '

fori=2,... Ny—1, andj=1N,. Ford,p, we have

[9xp];;=0
fori=1N, andj=1,... Ng;
[d,p];;=0

fori=1N, andj=1N,; and

Ugii+1FUgij— i1 Dij-
[ﬁzp]i,jz ZI,]+1A2 zi,j l+B,U«i,j ¢|,]+12A¢|,J 1
z

z

for i=2,... N,—1 andj=1N, (wherev,=0). The last
expression involves the ghost's andv,'s at j=0N,+1.
Given the above values @sz]i,j and[d,p]; ;, we apply a
2D fast Fourier transformation to solywe ;(0) (up to a con-
stan) fori=1,... Nyandj=1,... N,.

b. Slip boundary condition
The discretized Navier-Stokes equation is given by

19Uxi’j _

_ Uxi+1j” Uxi-1j
gt Ui

24, vz

Uxi,j+17 Uxi,j—1

24,

1 Pit1jTPicg 1 [ Uxiv1j T 20k FUxi-1,
R 24, R AZ

Ui j+1~ 2Uxi j FUxij-1
T 2
AZ
B b= di-1y

el oA, : (C13

fori=2,...Ny,—1andj=1,... N,, and

ghostv,’s are determined from the discretized GNBC

Dij—1— bij+1

(L] vif =8 =55

2 Gis1i— D1

f i+1,) i—1j

T oSS ) [Ty
_ Uxij—17 Uxij+1 (C15

20,

at the lower boundary=1 with v} P=v,;;—V, and

- ] ¢ 1_¢','*1
[Lo(i))] o5 P=8 IHZTIJ
V2 ; Piv1j— Pi-uj
—3€0s6:""s (¢ ) oA,
_ Uxijr1 Uil (C16)

28,

at the upper boundary=N, with v3P=v,; ;+V.

In summary, to solve the dynamic equatig@s and(10),
we need to useb=*+1 and Eq.(C8) at x=*L,/2, withv,
=0, d,u=0, plus Egs.(14) and(15) at z=*L,/2. In par-
ticular, in applying the boundary conditions at =L,/2,
values of¢, v,, andv, at ghost sites have to be introduced
and solved for.

5. Time integration

We outline the scheme for time discretization and integra-
tion. For simplicity, we only describe the forward Euler time
stepping. In the following a superscriptdenotes consecu-
tive time instants andt is the time interval.

Time stepping: Giver{#{;} and{v};} at all the sites i(
=1,...Nyandj=1,... N, in the system.

Step 1: Determingu;}, {4/}, and{Vv];} at the ghost
sites from the various boundary conditions, as described in
Secs.,,C3,C44a,and C4b.

016306-14



MOLECULAR SCALE CONTACT LINE HYDRODYNAMICS . .. PHYSICAL REVIEW E 68, 016306 (2003

Step 2: Sovapﬂj} at all the interior sitesi=1,... N, and

andj=1, ... N,) from Eq.(C11) with appropriate boundary
conditions ford,p, as described in Sec. C 4 a. yntloyn
Step 3: Computd ¢! '} and {v]'/'} at all the interior RA—,[=—R(V”'V)V“—Vp”+V2V”+BM“V¢“,
sites (except those fixed by the boundary conditions at all
times using

according to Eqs(C6), (C13), and(C14) in discretized time.
Here, the ghosfu}, {#';}, and{v]';} determined in Step 1
and{p;';} solved in Step 2 are needed.

n+1_ 4n
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