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Molecular scale contact line hydrodynamics of immiscible flows
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From extensive molecular dynamics simulations on immiscible two-phase flows, we find the relative slip-
ping between the fluids and the solid wall everywhere to follow the generalized Navier boundary condition, in
which the amount of slipping is proportional to the sum of tangential viscous stress and the uncompensated
Young stress. The latter arises from the deviation of the fluid-fluid interface from its static configuration. We
give a continuum formulation of the immiscible flow hydrodynamics, comprising the generalized Navier
boundary condition, the Navier-Stokes equation, and the Cahn-Hilliard interfacial free energy. Our hydrody-
namic model yields interfacial and velocity profiles matching those from the molecular dynamics simulations
at the molecular-scale vicinity of the contact line. In particular, the behavior at high capillary numbers, leading
to the breakup of the fluid-fluid interface, is accurately predicted.
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I. INTRODUCTION

Immiscible two-phase flow in the vicinity of the conta
line ~CL!, where the fluid-fluid interface intersects the so
wall, is a classical problem that falls beyond the framewo
of conventional hydrodynamics@1–12#. In particular, mo-
lecular dynamics~MD! studies have shown relative slippin
between the fluids and the wall, in violation of the no-s
boundary condition@6,7#. There have been numerousad-hoc
models @1,8,10–12# to address this phenomenon, but no
was able to give a quantitative account of the MD slip v
locity profile in the molecular-scale vicinity of the CL. Whil
away from the moving CL the small amount of relative sli
ping was found to follow the Navier boundary conditio
~NBC! @13#, i.e., relative slipping proportional to the tange
tial viscous stress, in the molecular-scale vicinity of the
the NBC failed totally to account for the near-complete sl
This failure casts doubts on the general applicability of
NBC to immiscible flows and hinders a continuum formu
tion of the hydrodynamics in the CL region. In particular,
~possible! breakdown in the hydrodynamic description f
the molecular-scale CL region has been suggested@7#. In
another approach@14#, it was shown that the MD results ca
be reproduced by continuum finite element simulations, p
vided the slip profile extracted from MD is used as inp
This work demonstrated the feasibility of the hybrid alg
rithm, but left unresolved the problem concerning the bou
ary condition governing the CL motion. Without a continuu
hydrodynamic formulation, it becomes difficult or impo
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sible to have realistic simulations of micro- or nanofluidic
or of immiscible flows in porous media where the relati
wetting characteristics, the moving CL dissipation, and
havior over undulating solid surfaces may have macrosco
implications.

From MD simulations on immiscible two-phase flows, w
report the finding that the generalized Navier boundary c
dition ~GNBC! applies for all boundary regions, whereby th
relative slipping is proportional to the sum of tangential v
cous stress and the uncompensated Young stress. The
arises from the deviation of the fluid-fluid interface from i
static configuration@10#. By combining GNBC with the
Cahn-Hilliard~CH! hydrodynamic formulation of two-phas
flow @11,12#, we obtained a consistent, continuum descr
tion of immiscible flow with material parameters~such as
viscosity, interfacial tension, etc! directly obtainable from
MD simulations. The convective-diffusive dynamics in th
vicinity of the interface and the moving CL also means t
introduction of two phenomenological dynamic paramet
whose values can be fixed by comparison with one MD fl
profile. Once the parameter values are determined from
simulations, our continuum hydrodynamics can yield pred
tions matching those from MD simulations~for different
Couette and Poiseuille flows!. Our findings suggest the no
slip boundary condition to be an approximation to t
GNBC, accurate for most macroscopic flows but failing
immiscible flows. These results open the door to efficie
simulations of nano- or microfluidics involving immiscibl
components, as well as to macroscopic immiscible flow c
culations, e.g., in porous media, that are physically mean
ful at the molecular level@15#. The latter is possible, for
example, by employing the adaptive method based on
iterative grid redistribution introduced in Ref.@15#. This
d-
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QIAN, WANG, AND SHENG PHYSICAL REVIEW E68, 016306 ~2003!
method has demonstrated the capability of resolving, at
same time, both the global behavior of a partial differen
equation solution with coarse mesh and a strong singula
in a localized region with a refined local mesh of over 15

ratio to the coarse mesh.

II. MOLECULAR DYNAMICS SIMULATIONS

The MD simulations were performed for both static a
dynamic configurations in the Couette and Poiseuille flo
The two immiscible fluids were confined between two par
lel walls separated along thez direction, with the fluid-solid
boundaries defined byz50,H ~see Fig. 1 for the Couette
geometry!. Interaction between the fluid molecules was mo
eled by a modified Lennard-Jones~LJ! potential U f f
54e@(s/r )122d f f(s/r )6#, wherer is the distance betwee
the molecules,e ands are the energy scale and the range
interaction, respectively, andd f f51 for like molecules and
d f f521 for molecules of different species. Each of the tw
walls was constructed by two~or more! @001# planes of an
fcc lattice ~see Appendix A!, with each wall molecule at-
tached to the lattice site by a harmonic spring. The me
squared displacement of wall molecules was controlled
obey the Lindemann criterion. The wall-fluid interaction w
also modeled by a LJ potentialUw f , with energy and range
parametersew f51.16e andsw f51.04s, and adw f for speci-
fying the wetting property of the fluid. BothU f f and Uw f
were cut off atr c52.5s. The mass of the wall molecule wa
set equal to that of the fluid moleculem, and the average
number densities for the fluids and wall were set atr
50.81/s3 and rw51.86/s3, respectively. The temperatur

FIG. 1. ~Color! Segments of the MD simulation sample for th
immiscible Couette flows. The colored dots indicate the instan
neous molecular positions of the two fluids projected onto thexz
plane. The black~gray! circles denote the wall molecules. The u
per panel illustrates the symmetric case; the lower panel illustr
the asymmetric case. The red circles and the blue squares repr
the time-averaged interface profiles, defined byr15r2 (f50), for
the two cases. The black solid lines are the interface profiles ca
lated from the continuum hydrodynamic model with the GNBC.
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was controlled at 2.8e/kB , where kB is Boltzmann’s con-
stant. Moving the top and bottom walls at a constant speeV
in the 6x directions, respectively, induced the Couette flo
@7#. Applying a body forcemgext to each fluid molecule in
the x direction induced the Poiseuille flow@6#. Periodic
boundary conditions were imposed on thex andy boundaries
of the sample. Most of our MD simulations were carried o
on samples consisting 6144 atoms for each fluid and 2
atoms for each wall. The sample is 163.5s by 6.8s along the
x andy, respectively, andH513.6s. Our MD results repre-
sent time averages over 20–40 million time steps. For te
nical details of our MD simulations, we followed those d
scribed in Ref.@16#.

Two different cases were considered in our simulatio
The symmetric case refers to identical wall-fluid interactio
for the two fluids~both dw f51), which leads to a flat static
interface in theyz plane with a 90° contact angle. The asym
metric case refers to different wall-fluid interactions, wi
dw f51 for one anddw f50.7 for the other. The resulting
static interface is a circular arc with a 64° contact angle.
measured six quantities in the Couette-flow steady state
V50.25(e/m)1/2, H513.6s for the symmetric case andV
50.2(e/m)1/2, H513.6s for the asymmetric case:vx

slip , the
slip velocity relative to the moving wall;Gx

w , the tangential
force per unit area exerted by the wall; thesxx , snx compo-
nents of the fluid stress tensor (n denotes the outward surfac
normal!, andvx , vz .

We denote the region within 0.85s5z0 of the wall the
boundary layer~BL!. It must be thin enough to render suffi
cient precision for measuringvx

slip , while thick enough to
fully account for the tangential wall-fluid interaction force
due to the finite range of the LJ interaction. Thus, it is n
possible to do MD measurements strictly at the fluid-so
boundary, not only because of poor statistics, but also
cause of this intrinsic limitation. The wall force can be ide
tified by separating the force on each fluid molecule in
wall-fluid and fluid-fluid components. For 0,z<z0 the fluid
molecules can detect the atomic structure of the wall. Wh
coupled with kinetic collisions with the wall molecules, the
arises a nonzero tangential wall force that varies along thz
direction and saturates atz.z0 . Gx

w is the saturated tota
tangential wall force per unit wall area~Fig. 2!. In Appendix
A we give account of our MD results on both the tangent
and normal components of the wall force, plus the effec~s!
of increasing the wall thickness in our simulations from tw
layers of wall molecules to four layers and to infinite laye
~by using the continuum approximation beyond the four la
ers!.

Spatial resolution along thex and z directions was
achieved by evenly dividing the sampling region into bin
eachDx50.425s by Dz50.85s in size.vx

slip was obtained
as the time average of fluid molecules’ velocities inside
BL, measured with respect to the moving wall;Gx

w was ob-
tained from the time average of the total tangential wall fo
experienced by the fluid molecules in the BL, divided by t
bin area in thexy plane;sxx(nx) was obtained from the time
averages of the kinetic momentum transfer plus the flu
fluid interaction forces across the constant-x(z) bin surfaces,
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MOLECULAR SCALE CONTACT LINE HYDRODYNAMICS . . . PHYSICAL REVIEW E 68, 016306 ~2003!
andvx(z) was measured as the time-averaged velocity co
ponent~s! within each bin. For the contribution of intermo
lecular forces to the stress, we have directly measured
fluid-fluid interaction forces across bin surfaces instead
using the Irving-Kirkwood expression@17#, whose validity
was noted to be not justified at the fluid-fluid or the wa
fluid interface@see the paragraph following Eq.~5.15! in the
above reference#. In Appendix B we give some details on ou
MD stress measurements. As reference quantities, we
measuredGx

w0 , sxx
0 , snx

0 in the static (V50) configuration.
In addition, we measured in both the static and dynam
configurations the average molecular densitiesr1 andr2 for
the two fluid species in each bin to determine the interf
profile. The shear viscosityh51.95Aem/s2 and the interfa-
cial tensiong55.5e/s2 were also determined.

We have also measured the interface and velocity pro
for the Poiseuille flow in the asymmetric case, as well as
the Couette flows with differentV and H in the symmetric
case.

III. GENERALIZED NAVIER BOUNDARY CONDITION

In the presence of a fluid-fluid interface, the static flu
stress tensors0 reflects the static Young stress~surface ten-
sion! as well as those stresses arising from wall-fluid int
action. This is the case in spite of the fact that in all the M
fluid stress measurements only the fluid-fluid interaction w
counted~see Appendix B 2!. The reason is that because t
MD measurements were carried out either in the static e
librium state or in the dynamic steady state, local force b
ance necessarily requires the fluid stress components to

FIG. 2. By subdividing the boundary layer into thin sections,
plot the accumulated wall force per unit wall area as a function

distancez away from the boundary. HereG̃x
w(z) is defined by

G̃x
w(z)5*0

zdz8g̃x
w(z8), where g̃x

w is the density of tangential wal
force. For differentx positions, the absolute value of the saturati
total wall force is different. However, when normalized by the c
responding saturated total wall force per unit area at eachx, all
points fall on a universal curve, nearly independent ofx. It is seen
that atz5z0 the wall force has reached its saturation value. Ins
Tangential wall force density plotted as a function of distancz

away from the boundary. The solid lines are averagedg̃x
w in thin

sections at differentx, normalized by the corresponding saturat
total wall force per unit area. The dashed line is a smooth Gaus

fit. It is seen thatg̃x
w is a function sharply peaked atz'z0/2. In the

sharp boundary limit this peaked wall force density is approxima

by G̃x
wd(z).
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reflect the influence of the wall-fluid interaction. For the co
sideration of moving CL, we will be concerned with the pa
of the fluid stress tensor, which is purely dynamic in orig
i.e., arising purely from the hydrodynamic motion of th
fluid ~and the CL!. In the notations below, the over tild
denotes the difference between that quantity and its st
part. Thus, ifs is the total stress, we will be concerned on
with the hydrodynamic part, denoted bys̃5s2s0. We note
that in the absence of body forces, the momentum equa
in bulk fluid is given byrm@]v/]t1(v•“)v#5“•s̃. In the
BL, the wall-fluid interaction means the existence of a d
namic, tangential wall force densityg̃x

w such that the force

balance equation is given by (“•s̃)• x̂1g̃x
w50 inside the

BL. The tangential wall force densityg̃x
w , shown explicitly

in the inset to Fig. 2, is a function sharply peaked atz
'z0/2. Here we note that the boundary layer thickness
extremely small (z050.85s), hence the inertial effect may
be neglected (mrVz0 /h,0.1). MD evidence for an inte-
grated form of the steady-state force balance is shown in
3. The total tangential force exerted by the wall on the flu
is given byG̃x

w5*0
z0dzg̃x

w per unit wall area. In steady state
this wall force is necessarily balanced by the tangential fl
force G̃x

f 5*0
z0dz(]xs̃xx1]zs̃zx) ~inset to Fig. 3! @18#. Here

]x,z,n means taking partial derivative with respect tox, z, or
surface normal.

We now present evidences to show that everywhere on
boundaries, relative slipping is proportional toG̃x

f @the
GNBC, see also Eq.~3! below#:

G̃x
f 5bvx

slip , ~1!

whereb is the slip coefficient andG̃x
f can be written as

G̃x
f 5]xE

0

z0
dzs̃xx~z!2s̃nx~z0!, ~2!

where we have used the fact thats̃zx(0)50. @More strictly,
s̃zx(0

2)50 because there is no fluid belowz50 and hence
no momentum transport acrossz50] Here thez coordinate
is for the lower fluid-solid boundary~same below!, with the
understanding that the same physics holds at the up
boundary, and]n52]z for the lower boundary.

Force balance means that at steady state, the frictio
force exerted by the solid wall on the moving~slipping! fluid
is fully accounted for inG̃x

f . Thus, the GNBC~or NBC! can

be expressed in eitherG̃x
f or G̃x

w , but not both. In Fig. 3 we
show the measured MD data for the symmetric and as
metric cases in the Couette geometry. The symbols repre
the values ofG̃x

f measured in the BL. The solid lines repr

sent the values ofG̃x
f calculated frombvx

slip by using b
5b15b251.2Aem/s3 for the symmetric case andb1

51.2Aem/s3, b250.532Aem/s3 for the asymmetric case
away from the CL region~straight line segments in Fig. 3!,
andb5(b1r11b2r2)/(r11r2) in the CL region@19#, with
vx

slip andr1,2 obtained from MD simulations. It is seen tha

f

-
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QIAN, WANG, AND SHENG PHYSICAL REVIEW E68, 016306 ~2003!
for the lower boundary~upper right panel!, the MD data
agree well with the predictions of Eq.~1!. For the upper
boundary~lower left panel! the straight line segments als
agree well with Eq.~1!. However, there is some discrepan
in the interfacial region of the upper boundary that seem
arise from a ‘‘shear thinning’’ effect of decreasingb at very
large tangential stresses@13#.

The fact that the wall force density is distributed inside
thin BL and vanishes beyond the BL necessitates the form
G̃x

f as defined by Eq.~2!. However, it is intuitively obvious
that the fluids would experience almost the identical phys
effect~s! from a wall force densityG̃x

wd(z), concentrated
strictly at the fluid-solid boundary with the same total w
force per unit area. In the inset to Fig. 2, it is shown that
MD-measured wall force density is a sharply peaked fu
tion. The sharp boundary limit involves the approximation
replacing this peaked function byd(z). The replacement of a
diffuse boundary by a sharp boundary can considerably s
plify the form of the GNBC, because local force balan
along x then requires]xs̃xx1]zs̃zx50 away from the
boundaryz50. Integration of this relation from 01 to z0
yields

]xE
0

z0
dzs̃xx~z!1s̃zx~z0!2s̃zx~01!50

FIG. 3. ~Color! b1V/G̃x
f plotted as a function ofV/vx

slip . Sym-
bols are MD data measured in the BL at differentx locations, where
the red circles denote the symmetric case and the blue square
note the asymmetric case. The solid lines were calculated from
~1! with values ofb1,2 and the expression ofb given in the text.
The statistical errors of the MD data are about the size of the s
bols. The upper-right data segment corresponds to the lower bo
ary, whereas the lower-left segment corresponds to the u
boundary. The slopes of the two dashed lines are given byb1,2

21 .

Inset:G̃x
w plotted as a function ofG̃x

f , measured in the two BL’s a
different values ofx. The symbols have the same correspondenc
in the main figure. The data are seen to lie on a straight line wi

slope of21, indicatingG̃x
w1G̃x

f 50.
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FIG. 4. ~Color! Two components of the dynamic tangenti
stress atz5z0, plotted as a function ofx. The dashed lines denot

s̃zx
Y ; solid lines represent the viscous component. Here red indic

the symmetric case and blue indicates the asymmetric case. In
CL region the nonviscous component is one order of magnit
larger than the viscous component. The difference between the
components, however, diminishes towards the boundary,z50, due
to the large interfacial pressure drop~implying a large curvature! in
the BL, thereby pullingud closer tous . Inset: Sd,s plotted as a
function of g cosud,s at different values of z. Here Sd

52*dx(snx2snx
v ), Ss52*dxsnx

0 , andud,s was measured from
the time-averaged interfacial profiles~Fig. 1!. The red circles denote
the symmetric case, the blue squares denote the asymmetric
the solid blue squares denote the asymmetric static case, an
single solid red circle at the origin denotes the symmetric st
case. The data are seen to follow a straight~dashed! line with slope
1, indicatingSd,s5g cosud,s .

FIG. 5. ~Color! S5*0
z0s̃xx(z)dz5*0

z0@sxx(z)2sxx
0 (z)#dz plot-

ted as a function ofx. Here red circles denote the symmetric ca
and blue squares denote the asymmetric case. For clarity,sxx

0 was
vertically displaced such thatsxx

0 50 far from the interface in the
symmetric case, and for the asymmetric case,sxx

0 50 at the center
of the interface.
6-4
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MOLECULAR SCALE CONTACT LINE HYDRODYNAMICS . . . PHYSICAL REVIEW E 68, 016306 ~2003!
and as a consequence@by comparing with Eq.~2!# G̃x
f

52s̃nx(0
1). Therefore,s̃zx changes froms̃zx(0

2)50 to
s̃zx(0

1)5G̃x
f at z50, leading to

~“•s̃!• x̂5G̃x
f d~z!.

Comparing with the diffuse boundary, where (“•s̃)• x̂1g̃x
w

50, we see that the form of the equation remains the sa
but the BL is now from 02 to 01, instead of from 01 to z0
as in the diffuse case. Thus, GNBC~1! becomes

2s̃nx~0!5bvx
slip

in the sharp boundary limit.
The tangential stresss̃nx can be decomposed into a vi

cous component and a non-viscous component:

s̃nx~z!5snx
v ~z!1s̃nx

Y ~z!.

In Fig. 4 we show that away from the interfacial region t
tangential viscous stresssnx

v (z)5h(]nvx1]xvn)(z) is the

only nonzero component, but in the interfacial regions̃nx
Y

5snx2snx
v 2snx

0 5snx
Y 2snx

0 is dominant, thereby accoun
ing for the failure of NBC to describe the CL motion. Ther
fore, away from the CL region the NBC is valid, but in th
interfacial region the NBC clearly fails to describe the C
motion. We wish to clarify the origin ofsnx

Y andsnx
0 as the

dynamic and static Young stresses, respectively, so thats̃nx
Y

5snx
Y 2snx

0 is the uncompensated Young stress. As shown
the inset to Fig. 4, the integrals~across the interface! of snx

Y

(5snx2snx
v , calculated by subtracting the viscous comp

nenth(]nvx1]xvn) from the total tangential stresssnx) and
snx

0 are equal tog cosud andg cosus, respectively, at differ-
ent values ofz, i.e.,

2E
int

dx snx
Y ~z!5g cosud~z!

and

2E
int

dx snx
0 ~z!5g cosus~z!,

whereud(z) andus(z) are, respectively, the dynamic and th
static interfacial angles atz @20#. Here * intdx denotes the
integration across the fluid-fluid interface alongx. These re-
sults clearly show the origin of the extra tangential stress
the interfacial region to be the interfacial~uncompensated!
Young stress. Thus, the GNBC is given by

bvx
slip52s̃nx~0!52@h]nvx#~0!2s̃nx

Y ~0!. ~3!

Here only one component of the viscous stress is nonz
due tovn50 at the boundary, and2s̃nx

Y (0) is the uncom-
pensated Young stress, satisfying
01630
e,

in

-

n

o,

2E
int

s̃nx
Y ~0!dx5g~cosud

sur f2cosus
sur f!,

with ud(s)
sur f being a microscopic dynamic~static! contact angle

at the fluid-solid boundary. The fact thats̃nx
Y (0)'0 away

from the CL shows that the GNBC implies NBC for sing
phase flows.

Due to the diffuse nature of the BL in the MD simula
tions, the contact angleud(s)

sur f cannot be directly measured
Nevertheless, they are obtainable through extrapolation
using the integrated interfacial curvature within the BL. Th
is, in the sharp boundary limit the force balance in the flu
is expressed by]xs̃xx1]ns̃nx50. Integration inz across the
BL gives

]xE
0

z0
dzs̃xx~z!2snx

v ~z0!1snx
v ~0!2s̃nx

Y ~z0!1s̃nx
Y ~0!50.

~4!

Integration@of Eq. ~4! along x] across the fluid-fluid inter-
face then yields

DF E
0

z0
dzs̃xx~z!G2E

int
dxsnx

v ~z0!1E
int

dxsnx
v ~0!1gKd

2gKs50, ~5!

whereD@*0
z0dzs̃xx(z)# is the change of thez-integrateds̃xx

across the interface,Kd andKs denote the dynamic and th
staticz-integrated interfacial curvatures:

Kd5cosud~z0!2cosud
sur f ,

and

Ks5cosus~z0!2cosus
sur f .

Here D@*0
z0dzs̃xx(z)#, snx

v (z0), ud(z0), andus(z0) are ob-
tainable from MD simulations,Ks.62z0cosus

surf/H for the
circular static interfaces, whilesnx

v (0)5h@]nvx#(0) may be
obtained by extrapolating from the values of tangential v
cous stress atz5z0 , 2z0, and 3z0. Therefore, the micro-
scopic dynamic contact angleud

sur f can be obtained from Eq
~5!. In Appendix B 3 we give a more detailed account of t
relationship between the MD measured stresses and
stress components in the continuum hydrodynamics.
above extrapolation is based on this correspondence.

We have measured thez-integrateds̃xx5sxx2sxx
0 in the

BL. The dominant behavior is a sharp drop across the in
face, as shown in Fig. 5 for both the symmetric and asy
metric cases. The value ofud

sur f obtained is 88°60.5° for the
symmetric case and 63°60.5° for the asymmetric case at th
lower boundary, and 64.5°60.5° at the upper boundary
These values are noted to be very close tous

sur f . Yet the
small difference between the dynamic and static~micro-
scopic! contact angles is essential in accounting for the ne
complete slip in the CL region.

In essence, our results show that in the vicinity of the C
the tangential viscous stress2snx

v as postulated by the NBC
cannot give rise to the near-complete CL slip without taki
into account the tangential Young stress2snx

Y in combina-
6-5
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QIAN, WANG, AND SHENG PHYSICAL REVIEW E68, 016306 ~2003!
tion with the gradient of the~BL-integrated! normal stress
sxx . For the static configuration, the normal stress grad
is balanced by the Young stress, leading to Young’s equat
It is only for a moving CL that there is a component of t
Young stress, which is no longer balanced by the norm
stress gradient, and this uncompensated Young stress is
cisely the additional component captured by the GNBC
missed by the NBC.

IV. CONTINUUM HYDRODYNAMIC FORMULATION

For Eq.~3! to serve as a boundary condition in hydrod
namic calculations, we need to derive the local value of
uncompensated Young stresss̃nx

Y (0) from a continuum for-
mulation of the immiscible flow hydrodynamics. Such a fo
mulation is important for studying the macroscopic implic
tions of moving CL’s under scenarios beyond the capabi
of MD simulations. As a first-order approximation, we fo
mulate a hydrodynamic model based on the GNBC and
CH free energy functional@21# that has been successful
the calculations of fluid-fluid interfacial phenomena:

F@f#5E dr F1

2
K~¹f!21 f ~f!G , ~6!

where f5(r22r1)/(r21r1), f (f)52 1
2 rf21 1

4 uf4, and
K, r, u are the parameters that can be directly obtained fr
MD simulations through the interface profile thicknessj
5AK/r @22#, the interfacial tensiong52A2r 2j/3u, and the
two homogeneous equilibrium phases given by the condi
of ] f /]f50, yieldingf656Ar /u (561 in our case!.

To derive the effects of the CH free energyF on immis-
cible flow hydrodynamics, let us consider a composition fi
f(r ). A displacement of the molecules fromr to r 85r
1u(r ) induces a local change off, df52u•“f, to the
first order inu. The associated change inF is given by the
sum of a body term and a surface term:

dF52E dr @g•u#1E ds@sni
Y ui #, ~7!

where g5m“f is the capillary force density, withm
5dF/df52K¹2f2rf1uf3 being the chemical poten
tial, and

sni
Y 52K]nf] if ~8!

is the tangential Young stress due to the spatial variation of
at the fluid-solid boundary (i'n). Hence, the two coupled
equations of motion are the Navier-Stokes equation~with the
addition of the capillary force density! and the convection-
diffusion equation forf(r ):

rmF]v

]t
1~v•“ !vG52“p1“•sv1m“f1rmgext , ~9!

]f

]t
1v•“f5M¹2m, ~10!
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together with the incompressibility condition“•v50. Here
rm is the fluid mass density,p is the pressure,sv denotes the
viscous part of the stress tensor,rmgext is the external body
force density~for the Poiseuille flows!, andM is the phenom-
enological mobility coefficient.

Four boundary conditions are required to solve Eqs.~9!
and ~10!. Two are given by the impermeability condition
i.e., the normal components of the fluid velocity and diff
sive flux are zero:vn50 and]nm50. The form of the other
two differential boundary conditions may be obtained fro
the total free energy

Ftot@f#5F@f#1E dsgw f~f!, ~11!

plus our knowledge of the GNBC. Heregw f(f) is the inter-
facial free energy per unit area at the fluid-solid bounda
We usegw f(f)5(Dgw f/2)sin(pf/2) to denote a smooth in
terpolation between 6Dgw f/2, with Dgw f5gw f(f1)
2gw f(f2) given by 2g cosus

surf ~Young’s equation!. It
should be noted that the form of the smooth interpolation
very little effect on the final results. Hence we have chose
simple interpolation function. Similar to Eq.~7!, the change
in Ftot due to the displacement of the molecules fromr to
r 85r1u(r ) is given by

dFtot52E dr @g•u#1E ds@s̃ni
Y ui #, ~12!

where

s̃ni
Y 52FK]nf1

]gw f~f!

]f G] if, ~13!

is the uncompensated Young stress@12# ~see below!. The
continuum ~differential! form of GNBC ~3! is, therefore,
given by

bvx
slip52s̃nx~0!52h@]nvx#~0!1@L~f!]xf#~0!,

~14!

where@L(f)]xf#(0), with L(f)5K]nf1]gw f(f)/]f, is
the differential expression for 2s̃nx

Y (0)52snx
Y (0)

1snx
0 (0) in Eq. ~3!. HereK]nf]xf is 2snx

Y (0) as seen in
Eq. ~8!, and @]gw f(f)/]f#]xf5]xgw f(f) @23# equals to
snx

0 (0), in accordance with the static force balance relat
]xgw f(f)2snx

0 (0)50. From * intdx@K]nf]xf#(0)
5g cosud

surf @24# and* intdx]xgw f52g cosus
surf , we see that

E
int

dx@L~f!]xf#~0!5g~cosud
sur f2cosus

sur f!,

in agreement with@L(f)]xf#(0) being the uncompensate
Young stress.

Another boundary condition may be inferred from the fa
that L(f)50 is the Euler-Lagrange equation at the flui
solid boundary for minimizing the total free energyFtot@f#.
That is, L(f)50 corresponds with the equilibrium~static!
condition where]f/]t1v•“f50. The boundary relaxation
6-6
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MOLECULAR SCALE CONTACT LINE HYDRODYNAMICS . . . PHYSICAL REVIEW E 68, 016306 ~2003!
dynamics off is plausibly assumed to be the first-ord
extension of that correspondence for a nonzeroL(f):

]f

]t
1v•“f52G@L~f!#, ~15!

whereG is a ~positive! phenomenological parameter.

V. COMPARISON OF MD AND CONTINUUM
HYDRODYNAMICS RESULTS

Motivated by the methods presented in Refs.@25,26#, a
second order scheme is designed to solve the CH hydr
namic model, comprising the dynamic equations and the f
boundary conditions. Details of the numerical algorithm a
presented in Appendix C. Besides those parameters, w
can be directly obtained from MD simulations,M andG are
treated as fitting parameters, determined by comparison
MD results~values given in the caption to Fig. 6!. In Figs. 1
and 6 we show that the continuum model can, indeed, qu

FIG. 6. ~Color! Comparisons between the MD~symbols! and
the continuum hydrodynamics~solid lines! results for the Couette
flow, the latter calculated with the GNBC and values ofM
50.023s4/Ame and G50.66s/Ame. ~a! The vx profiles for the
symmetric case@V50.25(e/m)1/2 and H513.6s] at different z
planes. The profiles are symmetric about the center plane, h
only the lower half is shown forz50.425s ~black circles!, 2.125s
~red squares!, 3.825s ~green diamonds!, and 5.525s ~blue tri-
angles!. ~b! The vx profiles for the asymmetric case@V
50.2(e/m)1/2 andH513.6s] at z50.425s ~black circles!, 2.975s
~red squares!, 5.525s ~green diamonds!, 8.075s ~blue triangles!,
10.625s ~yellow triangles!, and 13.175s ~maroon triangles!. For
the boundary layers,vx50 means complete slip. Inset: Pressu
variation in the BL for the symmetric case. The solid line represe
the BL-averaged hydrodynamic pressurez0

21*0
z0p(z)dz from the

continuum model, and red circles denote2z0
21*0

z0s̃xx(z)dz mea-
sured in MD simulations~see Fig. 5!. Note the fast variation acros
the interface. The interfacial pressure drop in the BL is a fac
5–10 larger than that in the middle of the sample, implying la
interfacial curvature.
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titatively reproduce the interface and velocity profiles fro
MD simulations, including the near-complete slip (vx'0 in
Fig. 6 for the black curve! of the CL, the fine features in the
molecular-scale vicinity of the CL, and the fast pressu
variation in the BL~inset to Fig. 6!, with its implied large
interfacial curvature. We wish to emphasize that for the co
parison with the symmetric case, the parameters in the c
tinuum model, including those in the GNBC, are direc
obtained from the MD simulations, whose velocity profil
are then fitted by those from the hydrodynamic calculatio
with optimizedM andG values. Thus, the comparison wit
the asymmetric~Couette! case, withb2 directly evaluated
from MD simulation data, iswithout adjustable parameters.
Here it is noted that the black curve, which denotes the
locity profile in the BL, exhibits near-complete slipping o
the CL just as in the MD data. We have also obtainedud

sur f

588.1° and 62.8° for the symmetric and asymmetric~the
lower boundary! cases shown in Figs. 1~a! and 1~b!, respec-
tively. Both are in excellent agreement with their extrap
lated values in MD simulations. For the upper boundary
the asymmetric case, our calculatedud

sur f565.2°, which dif-
fers somewhat from the MD extrapolation value of 64
60.5°. This difference is a reflection of the discrepancy se
in Fig. 3. However, it is noteworthy that the difference in th
dynamic contact angles does not show up in the velo
profiles, which agree well.

To further verify that the boundary conditions and t
parameter values are local properties and hence applicab
flows with different macroscopic conditions, we have vari
the wall speedV, the system sizeH, and the flow geometry
to check that the same set of parameters plus the GNBC
valid for reproducing~a! the velocity profiles from a differ-
ent set of Couette-flow simulations in the symmetric co
figurations, shown in Fig. 7, as well as~b! the velocity pro-
files of the Poiseuille flow simulations in the asymmet
case, shown in Fig. 8. The remarkable overall agreemen
all cases~especially the slip profiles as given by the bla
curves! affirms the validity of the GNBC and the hydrody
namic model@27#, as well as justifies the replacement of th
diffuse fluid-solid boundary~force density! by a sharp
boundary.

Another comparison is the dissipation incurred by t
moving CL in the Couette-flow geometry. To calculate th
dissipation, we note that the tangential force exerted by
moving wall on the fluid isG̃x

w , and the direction of this
force is the same as that of the wall motion. In order
maintain the constant speed of the moving wall, exter
work must be supplied. The rate of that work is positiv
given by the integrated local force times the wall veloci
i.e., *dxuG̃x

wuV5*dxbuvx
slipuV per unit length. HereuG̃x

wu
5buvx

slipu is the magnitude of the local force per unit wa
area andV is the wall speed. In the steady state, the exter
work done to the system is fully dissipated in the syst
through convection-diffusion of the composition, slipping
surface, and shear viscosity in the bulk. To isolate the di
pation due to the CL alone, we have to subtract fromuvx

slipu
a small but constant relative slipping away from the int
face,v0

slip52Vls /(H12l s), wherel s5h/b is a slip length

ce

ts

r
e
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QIAN, WANG, AND SHENG PHYSICAL REVIEW E68, 016306 ~2003!
for fluid 1 if f,0 and for fluid 2 if f.0. The reason for
this subtraction is that*dxbv0

slipV is the rate of work for the
single-phase Couette flow~with constant slip in both thef
,0 and f.0 regions! and, therefore, *dxb(uvx

slipu
2v0

slip)V is the rate of extra dissipation due to the prese
of the moving CL.~Note that in the vicinity of the moving
CL, large slip exists, changing from the near-complete slip
the CL to the constant slipv0

slip far away from the CL.! For
the symmetric case, the resulting heat generation rate du
the CL is thusbV2WsL ~for one wall!, whereL is the length
of the CL andWs defines the width of the CL region:

Ws5
1

VE ~ uvx
slipu2v0

slip!dx. ~16!

Thus, CL dissipation is equivalent to a segme
;H(Ws / l s), of dissipation by single phase flow. Figure
shows the variation ofWs as a function of capillary numbe
Ca5hV/g for the symmetric case of Couette flow. Close
Ca.0.1 the value ofWs increases rapidly, in good agree
ment with the MD results, and beyond which the continuu
model failed to converge. This corresponds to the breaku
the interface observed in MD simulations@28#.

VI. CONCLUDING REMARKS

In summary, we have found for the first time the bounda
condition that yields near-complete slipping of the CL,

FIG. 7. ~Color! Comparisons between the MD~symbols! and
the continuum hydrodynamics~solid lines! results for two symmet-
ric cases in the Couette flow geometry. Compared with Fig. 6~a!, V
andH have been varied, respectively, but the continuum results
calculated with the same set of parameters and the GNBC.
profiles are symmetric about the center plane, hence only the lo
half is shown. ~a! The vx profiles for V50.25(e/m)1/2 and H
510.2s, shown atz50.425s ~black circles!, 2.125s ~red squares!,
and 3.825s ~green diamonds!. ~b! The vx profiles for V
50.275(e/m)1/2 and H513.6s, shown at z50.425s ~black
circles!, 2.125s ~red squares!, 3.825s ~green diamonds!, and
5.525s ~blue triangles!.
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FIG. 8. ~Color! Comparisons between the MD~symbols! and
the continuum hydrodynamics~solid lines! results for an asymmet
ric case in the Poiseuille flow geometry. Compared with Fig. 6~b!,
the type of flow has been changed, but the continuum results
calculated with the same set of parameters.~a! A segment of the
instantaneous configuration in the MD simulation. The two wa
separated by H513.6s, move at a constant speedV
50.51(e/m)1/2 in the 2x direction in order to maintain a time
independent steady-state interface, withmgext50.05e/s applied in
thex direction. The symbols have the same correspondence as t
in Fig. 1~b!. The black solid line is the interface profiles calculat
from the continuum hydrodynamic model. The colored dashed li
indicate thez coordinates of thevx profiles shown in~b!. ~b! Thevx

profiles atz50.425s ~black circles!, 2.125s ~red squares!, 3.825s
~green diamonds!, and 5.525s ~blue triangles!. The profiles are
symmetric about the center plane, hence only the lower hal
shown.

FIG. 9. ~Color! Width for the moving CL region,Ws , plotted as
a function of the capillary numberCa5hV/g for the symmetric
case by varyingV and keepingH513.6s. We note that for most of
the MD data measured in the symmetric case,Ca.0.088. The solid
line was calculated from the immiscible hydrodynamic model e
ploying the GNBC; red circles denote the MD results.
6-8
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MOLECULAR SCALE CONTACT LINE HYDRODYNAMICS . . . PHYSICAL REVIEW E 68, 016306 ~2003!
good agreement with MD results on the molecular scale
should also be noted, however, that the present contin
formulation cannot calculate fluctuation effects that are
portant in MD simulations. Long range interactions, e.g., t
due to van der Waals interaction, have also been ignored.
latter is potentially important in the calculations involvin
wetting layers.
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APPENDIX A: WALL-FLUID INTERACTIONS

We have measured both the tangential and normal c
ponents of the wall force exerted on the fluids. Both com
nents vary along thez direction and saturate somewhe
away from the fluid-solid boundary. The tangential comp
nent saturates~by 99.8%) atz5z0, which is well inside the
wall-fluid interaction range (z050.85s, smaller than the cut-
off distancer c52.5s for the wall-fluid interaction potentia
Uw f). On the other hand, the normal component is 87%
the saturation value atz5z0 and 99.8% atz52z0. The dif-
ferent saturation ranges of the tangential and normal com
nents may be understood as follows.

For a fluid molecule close to the solid wall, the interacti
with one particular~the closest! wall molecule can be much
stronger than all the others. As this fluid molecule mov
laterally but remaining close to the wall, it would thus exp
rience a strong periodic modulation in its interaction with t
wall. This lateral inhomogeneity is an important source
the tangential component of the wall force. Away from t
fluid-solid boundary, each fluid molecule can interact w
many wall molecules on a nearly equal basis. Thus,
modulation amplitude of the wall potential would clearly d
crease with increasing distance from the wall. Hence,
tangential wall force tends to saturate at the relatively sh
range ofz.z0. On the contrary, the normal wall force d
rectly arises from the wall-fluid interaction, independent
whether the wall potential is ‘‘rough’’ or not. Consequent
the normal wall force saturates much slower than the tang
tial component.

The MD results presented in this paper were obtain
from simulations using solid walls constructed by two@001#
planes of an fcc lattice. We have also carried out MD sim
lations using thicker confining walls. First we changed t
number of molecular layers~@001# planes of fcc lattice! from
two to four in constructing each of the two walls. The wa
fluid interaction potentialUw f were still cut off at r c
52.5s. It turned out that neither component of the wa
force shows any noticeable change. The reason is that fo
tangential component, the two outer planes are too distan
contribute to the roughness of the wall potential, while
the normal component, the fluid molecules closest to the w
are separated from the two outer planes by a distance>r c .
Consequently, both the interface and velocity profiles do
show any noticeable change.
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Additional wall layers do not contribute to the perceive
modulation of the wall potential by the fluid molecules. Ne
ertheless, they can still affect the tangential wall force
modifying the organization of the fluid molecules near t
wall. Such organization is governed by the wall-fluid inte
action and can be greatly influenced by the normal w
force. To see the effects of normal wall force due to ad
tional wall layers, we used four@001# planes of an fcc lattice
plus a half-space continuum in constructing a wall. The fi
four solid layers show the atomic structure detectable by
fluid molecules, while the half-space continuum models
deeper solid layers. The wall-fluid interaction was model
as follows. For an in-range pair of fluid and wall molecul
separated by a distancer ,r c , the interaction potential is
still Uw f . Here the wall molecule must be from one of th
four solid layers. In addition to this short-range interactio
the fluid molecules can also experience the long-range in
action potential due to~1! the distant wall molecules in the
four solid layers and~2! the continuum. For~1! we integrated
the 1/r 6 term in Uw f over the out-of-range (r .r c) area of
the solid layers, while for~2! we integrated the same term
over the half-space continuum. According to this model, o
the in-range (r ,r c) part of the solid wall shows atomic
structure to a fluid molecule, while the out-of-ranger
.r c) part is effectively a half-space continuum.

We found that the effect of the long-range normal w
force ~for dw f.0) is to attract the fluid molecules to th
wall. In fact, the average number density in the BL can
crease by 3–4 % once the long-range force is included. A
result, the slip coefficientb1(2) increases by;5 –15 %. This
results in small but visible changes in the interface and
locity profiles.

These tests have convinced us that by using two@001#
planes of an fcc lattice to model the solid wall, we ha
captured the dominant wall-fluid interaction. In fact, usi
two molecular layers to model the solid wall has been ext
sively practiced in the past MD simulations@6,7,13,27,29#,
although in some instances more molecular layers have
been used@30#, where the accurate modeling of the norm
component of the wall-fluid interaction force is important.

APPENDIX B: STRESS MEASUREMENTS
IN MD SIMULATIONS

1. Microscopic formula of Irving and Kirkwood

Irving and Kirkwood@17# have shown that in the hydro
dynamic equation of motion~momentum transport!, the
stress tensor~flux of momentum! may be expressed in term
of molecular variables as

s~r ,t !5sK~r ,t !1sU~r ,t !, ~B1!

where sK is the kinetic contribution to the stress tenso
given by

sK~r ,t !52K (
i

miF pi

mi
2V~r ,t !GF pi

mi
2V~r ,t !G

3d~xi2r !, f L , ~B2!
6-9
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and sU is the contribution of intermolecular forces to th
stress tensor, given by

sU~r ,t !52
1

2 K (
i

(
j Þ i

~xi2xj !Fi j d~xi2r !, f L . ~B3!

Heremi , pi , andxi are, respectively, the mass, momentu
and position of moleculei, V(r ,t) is the local average veloc
ity, Fi j is the force on moleculei due to moleculej, f is the
probability distribution function

f ~x1 , . . . ,xN ,p1 , . . . ,pN ,t !,

which satisfies the normalization condition

E dx1•••dxNdp1•••dpN f 51,

and the Liouville equation

] f

]t
52(

i
F pi

mi
•

] f

]xi
2“xi

U•

] f

]pi
G ,

with U being the potential energy of the system, a
^•••, f & means taking the average for a probability distrib
tion function f.

Although widely employed in the stress measurement
MD simulations, the above expression forsU @Eq. ~B3!#
represents only the leading term in an asymptotic expans
accurate when the interaction range is small compared to
range of hydrodynamic variation@17#. This can be seen a
follows.

Consider that all the molecules interact via a pair poten
Upair(R) such that the intermolecular forceFi j

5(R/R)Upair8 (R) for xj5xi1R. Accordingly, Eq.~B3! can
be rewritten as

sU~r ,t !5
1

2E dR
RR

R
Upair8 ~R!r (2)~r ,r1R,t !, ~B4!

wherer (2) is the pair density defined by

r (2)~r1 ,r2 ,t !5(
iÞ j

^d~r i2r1!d~r j2r2!, f &.

It has been shown~see the appendix in Ref.@17#! that ac-
cording to the definition thatdS•sU is the force acting
acrossdS, the full expression forsU is given by

sU~r ,t !5
1

2E dR
RR

R
Upair8 ~R!

3F E
0

1

dar (2)~r2aR,r2aR1R,t !G . ~B5!

It is readily seen that Eq.~B4! may be obtained from Eq
~B5! by keeping only the lowest order term in a Taylor
series ina, i.e.,

r (2)~r2aR,r2aR1R,t !'r (2)~r ,r1R,t !.
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That meansR•“ rr
(2)(r ,r1R,t) must be negligible com-

pared with r (2)(r ,r1R,t). Here R is of the order of the
range of intermolecular force. This approximation, howev
can not be justified at the fluid-fluid or the wall-fluid inte
face, whereR•“ rr

(2)(r ,r1R,t) can be comparable in mag
nitude tor (2).

2. Stress measurement in the boundary layer

In the study of moving CL, it is of great importance t
obtain the correct information about stress distributions
both the fluid-fluid and the wall-fluid interfaces. Therefor
we have directly measured thex component of fluid-fluid
interaction forces acting across thex(z) bin surfaces, in or-
der to obtain thexx(zx) component ofsU . For example, in
measuringsUzx at a givenz-direction bin surface, we re
corded all the pairs of molecules interacting across that
face. Here ‘‘interacting across’’ means that the line conne
ing a pair of molecules intersects the bin surface. For th
pairs, we then computedsUzx at the given bin surface usin

sUzx5
1

dsz
(
( i , j )

Fi jx ,

where dsz is the area of thez-direction bin surface, (i , j )
indicates all possible pairs of molecules interacting acr
the bin surface, with moleculei being ‘‘inside of ẑdsz’’ and
molecule j being ‘‘outside of ẑdsz’’ ~molecule i is below
molecule j ), and Fi jx is the x component of the force on
molecule i due to moleculej. A schematic illustration is
shown in Fig. 10.

FIG. 10. Schematic illustration of measuring thezx component
of sU . The horizontal solid lines~separated by short vertical lines!
represent bin surfaces with surface normals along thez direction.
Circles denote fluid molecules. The dashed lines connect pair
interacting molecules. Here the bin surfaces and the molecules
projected onto thexz plane. Molecules that appear to be close
each other may not be in the interaction range if their distance a
y is too large. A pair of interacting molecules may act across m
than one bin surface. Here the~1,3! pair acts across surfacesA and
C, while the ~1,5! pair acts across surfacesB and D. At each bin
surface the stress measurement must run over all the pairs tha
across that surface. For surfaceD, there are three pairs of interac
ing molecules~1,5!, ~2,4!, and~2,5! that contribute to thezx com-
ponent ofsU .
6-10
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For comparison, we have measured thexx and zx com-
ponents of sU , using the discrete version of Irving
Kirkwood expression~B3!:

sU52
1

2dv K (
i

(
j Þ i

~xi2xj !Fi j L ,

wheredv is the volume of sampling bin,i runs over fluid
molecules in the sampling bin,j runs over fluid molecules in
interaction with moleculei, and^•••& means taking the time
average. We found that far from the the fluid-fluid and t
wall-fluid interfaces, the results based on the Irvin
Kirkwood expression agree well with those from direct for
measurement, whereas near the fluid-fluid or the wall-fl
interface, the two results show appreciable differences~up to
50%), especially for thezx component at the fluid-fluid in-
terface.

3. Relation of MD-measured stresses to the continuum
hydrodynamic stress components

We want to note the correspondence between the M
measured stresses and the continuum hydrodynamic s
components. This correspondence is essential to obtain
microscopic contact angleud

sur f , defined in the continuum
hydrodynamic model but not directly measurable in M
simulations.

The GNBC for the diffuse BL is given by

G̃x
f 5bvx

slip5
]

]xE0

z0
dz@sxx~z!2sxx

0 ~z!#

1@szx~z0!2szx
0 ~z0!#, ~B6!

which involves only MD measurable quantities. To obta
the contact angleud

sur f from MD results, we need to interpre
the MD-measured quantities in terms of the various c
tinuum variables in the hydrodynamic model. In doing so
is essential to note the following.

~1! sxx can be decomposed into a molecular compon
and a hydrodynamic component:sxx5Txx1sxx

HD . Mean-
while, sxx

0 can be decomposed into the same molecular c
ponent and a hydrostatic component:sxx

0 5Txx1sxx
HS . The

molecular componentTxx exists even if there is no hydrody
namic fluid motion or fluid-fluid interfacial curvature. In pa
ticular, Txx in the BL depends on the wall-fluid interaction
The change of the BL-integratedTxx across the fluid-fluid
interface equals the change in the wall-fluid interfacial fr
energy, i.e.,

E
int

dx
]

]x F E
0

z0
dzTxx~z!G5Dgw f5gw f~f1!2gw f~f2!.

On the other hand, the hydrodynamic componentsxx
HD in sxx

results from the hydrodynamic fluid motion and fluid-flu
interfacial curvature. In the static (V50 or gext50) configu-
ration,sxx

HD becomes the hydrostatic componentsxx
HS in sxx

0 .
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~2! szx(z0) can be decomposed into a viscous compon
plus a Young’s component:szx(z0)5szx

v (z0)1szx
Y (z0) with

szx
v 5h(]zvx1]xvz) and* intdxszx

Y (z0)5g cosud(z0).
~3! szx

0 (z0) is the static Young stress, i.e.,* intdxszx
0 (z0)

5g cosus(z0).
With the help of the above relations, integration of E

~B6! across the fluid-fluid interface yields

E
int

dxbvx
slip5DF E

0

z0
dzsxx

HDG1E
int

dxszx
v ~z0!1g cosud~z0!

2DF E
0

z0
dzsxx

HSG2g cosus~z0!, ~B7!

where D@*0
z0dzsxx

HD(HS)# is the change of thez-integrated
sxx

HD(HS) across the interface. According to Laplace’s equ
tion, the change of the hydrostaticz-integrated normal stres
is directly related to the staticz-integrated curvatureKs :

2DE
0

z0
dzsxx

HS5gKs5g@cosus~z0!2cosus
sur f#. ~B8!

Note thatKs vanishes in the symmetric case. Substituti
Eq. ~B8! into Eq. ~B7! then yields

E
int

dxbvx
slip5DE

0

z0
dzsxx

HD1E
int

dxszx
v ~z0!1g cosud~z0!

2g cosus
sur f . ~B9!

If interpreted in the continuum hydrodynamic formulatio
with a sharp fluid-solid boundary, the last term in the righ
hand side of Eq.~B9!, 2g cosus

surf , is the net wall force
along x arising from the wall-fluid interfacial free energ
jump across the fluid-fluid interface, in accordance w
Young’s equation2g cosus

surf5Dgwf . On the other hand, the
sum of the first three terms on the right-hand side of Eq.~B9!
is the net fluid force alongx exerted on the three fluid side
of a BL fluid element in the interfacial region, due to th
hydrodynamic motion of the fluids.

To obtain an extrapolated value for the contact angleud
sur f

from Eq. ~B9!, we turn to the Stokes equation in the BL:

2]xp1]xsxx
v 1]zszx

v 1m]xf50, ~B10!

obtained from thex component of Eq.~9! by dropping the
inertial and external forces. Integration inz of Eq. ~B10!
across the BL, together with the integration alongx across
the fluid-fluid interface, yields

DF E
0

z0
dz~2p1sxx

v !G1E
int

dxszx
v ~z0!1g cosud~z0!

2E
int

dxszx
v ~0!2g cosud

sur f50. ~B11!

Here we have made use of two relations:~1! m]xf
.gkd(x2xint) in the sharp interface limit@31#, with k be-
ing the interfacial curvature andxint the location of the inter-
6-11
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face alongx; ~2! *0
z0dzk is the dynamicz-integrated curva-

ture Kd5cosud(z0)2cosud
surf . The local force balance alon

x is expressed by Eq.~B10!. Accordingly, the force balance
along x for the BL fluids in the integration region is ex
pressed by Eq.~B11!, whereD@*0

z0dz(2p1sxx
v )# is the net

force on the left and the right~constant-x) surfaces,
* intdxszx

v (z0)1g cosud(z0) is the tangential force on thez
5z0 surface, and2* intdxszx

v (0)2g cosud
surf is the tangen-

tial force on thez50 surface. Substituting Eq.~B11! into Eq.
~B9! and identifying the normal stress2p1sxx

v with sxx
HD ,

we obtain

E
int

dxbvx
slip5E

int
dxszx

v ~0!1g cosud
sur f2g cosus

sur f ,

~B12!

which is identical to the integration of the continuum GNB
@Eq. ~14!# alongx across the fluid-fluid interface.

In summary, to obtain Eq.~B12! from Eq. ~B7!, we have
used both]xsxx

HS1]zszx
0 50 and ]xsxx

HD1]zszx50, whose
integrated expressions are given by Eq.~B8! and Eq.~B11!,
respectively. We note that]x(sxx

HD2sxx
HS)1]z(szx2szx

0 )

50 is equivalent to the relation]xs̃xx1]ns̃nx50 @integrated
expressions given by Eqs.~4! and~5!#, which has been use
to obtainud

sur f through extrapolation in Sec. III.

APPENDIX C: NUMERICAL ALGORITHM

We present our numerical algorithm for solving the co
tinuum hydrodynamic model, comprising dynamics equ
tions ~9! and ~10! and the four boundary conditionsvn50,
]nm50, plus Eqs.~14! and~15!. We pay special attention to
the application of boundary conditions, and restrict o
analysis to the Couette flow because the generalizatio
Poiseuille flow is straightforward.

1. Dimensionless hydrodynamic equations

To obtain a set of dimensionless equations suitable
numerical computations, we scalef by uf6u5Ar /u, length
by j5AK/r , velocity by the wall speedV, time byj/V, and
pressure/stress byhV/j. In dimensionless forms, th
convection-diffusion equation reads

]f

]t
1v•“f5L d¹2~2¹2f2f1f3!, ~C1!

the Navier-Stokes equation reads

RF]v

]t
1~v•“ !vG52“p1¹2v1B~2¹2f2f1f3!“f,

~C2!

the relaxation off at the fluid-solid boundary is governed b

]f

]t
1vx]xf52VsF]nf2

A2

3
cosus

sur fsg~f!G , ~C3!

and the GNBC becomes
01630
-
-

r
to

r

@Ls~f!#21vx
slip5BF]nf2

A2

3
cosus

sur fsg~f!G]xf2]nvx .

~C4!

Here sg(f)5(p/2)cos(pf/2). Five dimensionless param
eters appear in the above equations. They are~1! Ld
5Mr /Vj, which is the ratio of a diffusion lengthMr /V to
j, ~2! R5rVj/h, ~3! B5r 2j/uhV53g/2A2hV, which is
inversely proportional to the capillary numberCa5hV/g,
~4! Vs5KG/V, which is the ratio ofKG ~of velocity dimen-
sion! to V, and ~5! Ls(f)5h/b(f)j, which is the ratio of
the slip length l s(f)5h/b(f) to j. Here b(f)5(1
2f)b1/21(11f)b2/2.

2. Finite-difference scheme

For immiscible Couette flows, there are four variablesf,
vx , vz , andp to be solved in a two-dimensional~2D! system
~in the xz plane!. We want to solve the convection-diffusio
equation and the Navier-Stokes equation in a 2D system
lengthLx ~alongx) and heightLz ~alongz). HereLx must be
large enough to allow the single phase flows~far from the
fluid-fluid interface! to approach uniform shear flows. A
finite-difference scheme is employed as follows.

~1! Nx andNz equally spaced levels are introduced in t
x and z directions, respectively. Grid size is given byDx
5Lx /(Nx21) andDz5Lz /(Nz21) alongx and z, respec-
tively.

~2! Each variable~q! is defined atNx3Nz sites distributed
from x52Lx/2 to Lx/2 and fromz52Lz/2 to Lz/2, repre-
sented by the arrayqi , j , with i 51, . . . ,Nx and j
51, . . . ,Nz . Here qi , j[q(xi ,zj ), with xi5( i 21)Lx /(Nx
21)2Lx/2 andzj5( j 21)Lz /(Nz21)2Lz/2.

~3! In applying the various boundary conditions, ‘‘ghos
sites outside the system, i.e.,i 50, i 5Nx11, j 50, or j
5Nz11, may appear in the discretization scheme. The v
ues of the variables at the ghost sites are determined s
rately from the various boundary conditions, detailed belo

~4! First and second spatial derivatives alongz
(5x or z) are represented by ]zq(zk)5@q(zk11)
2q(zk21)#/2Dz and ]z

2q(zk)5@q(zk11)1q(zk21)
22q(zk)#/Dz

2 .

3. Convection-diffusion equation

With the chemical potentialm i , j given by

m i , j52Ff i 11,j22f i , j1f i 21,j

Dx
2

1
f i , j 1122f i , j1f i , j 21

Dz
2 G

2f i , j1f i , j
3 , ~C5!

the discretized convection-diffusion equation is

]

]t
f i , j1@v•“f# i , j5LdFm i 11,j22m i , j1m i 21,j

Dx
2

1
m i , j 1122m i , j1m i , j 21

Dz
2 G , ~C6!
6-12
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with

@v•“f# i , j5vxi, j

f i 11,j2f i 21,j

2Dx
1vzi, j

f i , j 112f i , j 21

2Dz
.

~C7!

The boundary conditions atx56Lx/2 can be easily applied
usingf561 and

v~z!5
Lz

Lz12Ls

2z

Lz
x̂, ~C8!

for single-phase uniform shear flows. Here we focus on
boundary conditions atz56Lz/2: ]nm50 and Eq.~C3!. We
spell out the numerics for the lower boundaryj 51, with the
understanding that the same can be applied to the u
boundary.

To solve the discretized convection-diffusion equati
~C6! at the lower boundaryj 51, we need the values ofm i , j
at j 51 and j 50. We also need the values ofm i , j at j 51 to
solve the same equation atj 52. According to Eq.~C5!, m i , j
at j 51 andj 50 cannot be directly evaluated fromf i , j with
i 51, . . . ,Nx and j 51, . . . ,Nz . But they can still be deter
mined from the boundary conditions atz52Lz/2. m i , j at j
50 is obtained from]nm50 at j 51 as

m i , j 21505m i , j 1152 . ~C9!

To obtainm i , j at j 51, we need to determinef i , j at j 50.
This can be done by requiring that Eqs.~C1! and~C3! yield
the same]f/]t at z52Lz/2. The discretized convection
diffusion equation is given by Eq.~C6! while the discretized
relaxation equation forf at the boundaryj 51 is given by

]

]t
f i , j1@v•“f# i , j52VsFf i , j 212f i , j 11

2Dz

2
A2

3
cosus

sur fsg~f i , j !G . ~C10!

Equating the right-hand side of Eq.~C6! at j 51 @with m i ,0
fixed by Eq.~C9! and otherm ’s given by Eq.~C5!# with that
of Eq. ~C10! leads to a tridiagonal system of linear equatio
for f i , j (f i , j coupled withf i 21,j andf i 11,j ) at j 50. Solv-
ing this tridiagonal system determinesf i , j at j 50, from
which we obtainm i , j at j 51 by using Eq.~C5!.

4. Navier-Stokes equation

We now turn to the Navier-Stokes equation~C2! with the
incompressibility condition“•v50. The difficulty in solv-
ing the Navier-Stokes equation is the lack of a time evolut
equation for the pressurep. In the following, we will intro-
duce a numerical method based on the pressure Poi
equation@25#.

a. Pressure Poisson equation

Taking the divergence of momentum equation~C2! and
applying the incompressibility condition, we obtain the pre
sure Poisson equation
01630
e

er

s

n

on

-

¹2p52R“•@~v•“ !v#1B“•@~2¹2f2f1f3!“f#.
~C11!

Dotting the momentum equation~C2! with the surface nor-
mal at the fluid-solid boundary and usingvn50, we obtain
for Eq. ~C11! the boundary condition

]np5¹2vn1B~2¹2f2f1f3!]nf, ~C12!

at z56Lz/2. In addition, we use¹2p50 and]xp50 for the
values of¹2p and ]np at the boundariesx56Lx/2. This
reflects the single-phase flow given by Eq.~C8!.

From the momentum equation~C2! and the pressure Pois
son equation~C11!, we derive a diffusion equation

R]~“•v!

]t
5¹2~“•v!,

for “•v. With “•v50 given at timet50, and in order to
ensure thatv remains divergence free att.0, we must im-
pose the additional boundary condition“•v50 at all times
t>0. We will show that this boundary condition is needed
solving for p in a finite-difference scheme.

In order to solve the pressure Poisson equation, we n
to evaluate@¹2p# i , j for i 51, . . . ,Nx and j 51, . . . ,Nz ,
@]xp# i , j for i 51,Nx and j 51, . . . ,Nz , and @]zp# i , j for i
51, . . . ,Nx and j 51,Nz . For ¹2p, we have

@¹2p# i , j50,

for i 51,Nx and j 51, . . . ,Nz ;

@¹2p# i , j52RFvxi11,j2vxi21,j

2Dx

vzi, j 112vzi, j 21

2Dz

2
vzi11,j2vzi21,j

2Dx

vxi, j 112vxi, j 21

2Dz
G

1Bm i , j S f i 11,j22f i , j1f i 21,j

Dx
2

1
f i , j 1122f i , j1f i , j 21

Dz
2 D

1BS m i 11,j2m i 21,j

2Dx

f i 11,j2f i 21,j

2Dx

1
m i , j 112m i , j 21

2Dz

f i , j 112f i , j 21

2Dz
D ,

for i 52, . . . ,Nx21 and j 52, . . . ,Nz21; and
6-13
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@¹2p# i , j52Rvxi11,j2vxi21,j

2Dx

vzi, j 112vzi, j 21

2Dz

1Bm i , j S f i 11,j22f i , j1f i 21,j

Dx
2

1
f i , j 1122f i , j1f i , j 21

Dz
2 D

1Bm i 11,j2m i 21,j

2Dx

f i 11,j2f i 21,j

2Dx
,

for i 52, . . . ,Nx21 and j 51,Nz ~where vz50 and ]zm
50). We see thatf and vz at ghost sites ofj 50,Nz11
appear in the last expression. The ghostf ’s have already
been determined in solving the convection-diffusion eq
tion, while the ghostvz’s are determined through the add
tional boundary condition“•v50:

vxi11,j2vxi21,j

2Dx
1

vzi, j 112vzi, j 21

2Dz
50,

for i 52, . . . ,Nx21, and j 51,Nz . For ]np, we have

@]xp# i , j50

for i 51,Nx and j 51, . . . ,Nz ;

@]zp# i , j50

for i 51,Nx and j 51,Nz ; and

@]zp# i , j5
vzi, j 111vzi, j 21

Dz
2

1Bm i , j

f i , j 112f i , j 21

2Dz

for i 52, . . . ,Nx21 and j 51,Nz ~where vz50). The last
expression involves the ghostf ’s and vz’s at j 50,Nz11.
Given the above values of@¹2p# i , j and@]np# i , j , we apply a
2D fast Fourier transformation to solvepi , j (0) ~up to a con-
stant! for i 51, . . . ,Nx and j 51, . . . ,Nz .

b. Slip boundary condition

The discretized Navier-Stokes equation is given by

]vxi, j

]t
52vxi, j

vxi11,j2vxi21,j

2Dx
2vzi, j

vxi, j 112vxi, j 21

2Dz

2
1

R
pi 11,j2pi 21,j

2Dx
1

1

R S vxi11,j22vxi, j1vxi21,j

Dx
2

1
vxi, j 1122vxi, j1vxi, j 21

Dz
2 D

1
B
Rm i , j

f i 11,j2f i 21,j

2Dx
, ~C13!

for i 52, . . . ,Nx21 and j 51, . . . ,Nz , and
01630
-

]vzi, j

]t
52vxi, j

vzi11,j2vzi21,j

2Dx
2vzi, j

vzi, j 112vzi, j 21

2Dz

2
1

R
pi , j 112pi , j 21

2Dz
1

1

R S vzi11,j22vzi, j1vzi21,j

Dx
2

1
vzi, j 1122vzi, j1vzi, j 21

Dz
2 D

1
B
Rm i , j

f i , j 112f i , j 21

2Dz
. ~C14!

for i 52, . . . ,Nx21 and j 52, . . . ,Nz21, together with the
boundary conditions thatvzi, j50 at j 51,Nz andv is given
by Eq. ~C8! at i 51,Nx . Equation~C13! at j 51,Nz involves
f andvx at ghost sites ofj 50,Nz11. The ghostf ’s come
from m i , j at j 51,Nz , and have already been determined. T
ghostvx’s are determined from the discretized GNBC

@Ls~f i , j !#
21vxi, j

sl ip5BFf i , j 212f i , j 11

2Dz

2
A2

3
cosus

sur fsg~f i , j !Gf i 11,j2f i 21,j

2Dx

2
vxi, j 212vxi, j 11

2Dz
, ~C15!

at the lower boundaryj 51 with vxi, j
sl ip5vxi, j2V, and

@Ls~f i , j !#
21vxi, j

sl ip5BFf i , j 112f i , j 21

2Dz

2
A2

3
cosus

sur fsg~f i , j !Gf i 11,j2f i 21,j

2Dx

2
vxi, j 112vxi, j 21

2Dz
, ~C16!

at the upper boundaryj 5Nz with vxi, j
sl ip5vxi, j1V.

In summary, to solve the dynamic equations~9! and~10!,
we need to usef561 and Eq.~C8! at x56Lx/2, with vn
50, ]nm50, plus Eqs.~14! and ~15! at z56Lz/2. In par-
ticular, in applying the boundary conditions atz56Lz/2,
values off, vx , andvz at ghost sites have to be introduce
and solved for.

5. Time integration

We outline the scheme for time discretization and integ
tion. For simplicity, we only describe the forward Euler tim
stepping. In the following a superscriptn denotes consecu
tive time instants andDt is the time interval.

Time stepping: Given$f i , j
n % and $vi , j

n % at all the sites (i
51, . . . ,Nx and j 51, . . . ,Nz) in the system.

Step 1: Determine$m i , j
n %, $f i , j

n %, and $vi , j
n % at the ghost

sites from the various boundary conditions, as described
Secs., C 3, C 4 a, and C 4 b.
6-14
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Step 2: Solve$pi , j
n % at all the interior sites (i 51, . . . ,Nx

and j 51, . . . ,Nz) from Eq.~C11! with appropriate boundary
conditions for]np, as described in Sec. C 4 a.

Step 3: Compute$f i , j
n11% and $vi , j

n11% at all the interior
sites ~except those fixed by the boundary conditions at
times! using

fn112fn

Dt
52vn

•“fn1L d¹2mn,
et
n,

-

co
on

m-
u

w
os
ion

e
-

in

s

01630
ll

and

Rvn112vn

Dt
52R~vn

•“ !vn2¹pn1¹2vn1Bmn¹fn,

according to Eqs.~C6!, ~C13!, and~C14! in discretized time.
Here, the ghost$m i , j

n %, $f i , j
n %, and$vi , j

n % determined in Step 1
and$pi , j

n % solved in Step 2 are needed.
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