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Abstract

The recent advent of acoustic metamaterials has initiated a strong revival
of interest on the subject of sound absorption. The present review is based
on the physics perspective as the coherent basis of this diverse field. For
conventional absorbers, viscous dissipation and heat conduction at the fluid-
solid interface, when expressed through micro-geometric parameters, yield
an effective medium description of porous media and micro-perforated pan-
els as effectual sound absorbers. Local resonances and their geometric and
symmetry constraints serve as the framework for surveying a variety of acous-
tic metamaterial absorbers that can realize previously unattainable absorp-
tion spectra with subwavelength-scale structures. These structures include
decorated membrane resonators, degenerate resonators, hybrid resonators,
and coiled Fabry-Pérot and Helmholtz resonators. As the acoustic response
of any structure or material must obey the causality principle, the implied
constraint—which relates the absorption spectrum of a sample to its required
minimum thickness—is presented as a means to delineate what is ultimately
possible for sound-absorbing structures. The review concludes by describing
a recently reported strategy for realizing structures that can exhibit custom-
designed absorption spectra, as well as its implementation in the form of a
broadband absorber with a thickness that is close to the minimum value as
dictated by causality.
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1. INTRODUCTION

Owing to the importance of sound absorption in room acoustics and environmental noise reme-
diation, its study and practice were extensively pursued during the past century. For sound in the
audible frequency range of 20 to 20,000 Hz, dissipation in the transmitting medium—air—is usu-
ally minimal so that the effective absorption of sound depends on micro- and/or macrostructured
materials in which the sound energy is dissipated through two mechanisms associated with the
solid-air interface. One is viscous dissipation in the vicinity of the solid surface, where the non–slip
boundary condition can cause large relative motion within the viscous boundary layer. The other
is heat conduction through solids, which leads to the breakdown of the adiabatic character of
sound propagation. It follows that materials with a large microstructured air-solid interfacial area,
e.g., porous media, generally have the largest dissipation coefficients.

Because sound is associated with very small air displacement velocities, its dissipation as a
function of frequency must obey the linear response theory, in which the generalized flux (e.g.,
electrical current density, flow rate, heat flux) is linearly proportional to the generalized force (e.g.,
gradients of electrical potential, pressure, temperature). Because dissipative force varies linearly
as function of the rate (e.g., dynamic friction varies linearly as a function of relative velocity) and
dissipated power is given by the product of force and flux, it follows that sound dissipation is a
quadratic function of frequency, as shown below. Hence, for low-frequency sound, dissipation is
inherently much weaker than for high-frequency sound.

The dissipation coefficient is not the only parameter controlling sound absorption. Dissipated
energy is given by the volume integral of the product between the local energy density and the
dissipation coefficient. Hence, even if the dissipation coefficient is large, the total absorption can
be weak if most of the wave energy is reflected at the structure-air interface. This highlights the
importance of impedance matching in sound absorption. Impedance is defined as the product
of mass density and sound velocity. Impedance matching with air implies no reflection from the
sound-absorbing structure, which guarantees that the maximum amount of sound energy can be
subject to absorption inside the structure. To diminish impedance mismatch, porous materials
are shaped into wavelength-scale pyramids so as to minimize reflection, usually denoted as the
gradient index strategy, and micro-perforated panels (MPPs) use designed backcavities to better
impedance match with air over a desired frequency band.

Above are the main elements of physics relevant to sound absorption. They serve as the back-
ground for this review, which comprises three parts. The first part is focused on traditional porous
materials such as plastic foam, fiber glass, and mineral wool (1, 2), whose absorption characteristics
can be accounted for by a unifying effective medium theory. Here MPPs are singled out as a special
topic because it utilizes the resonance principle for attaining impedance matching over certain
frequency regimes and hence serves as a suitable link to what follows. The second part reviews
acoustic metamaterial absorbers that utilize local resonances to enhance the energy density and
thereby the sound dissipation. In this context, during the past decade, structures that resonate
locally with subwavelength scales (3–9), acoustic metamaterials (10, 11), and metasurfaces (12, 13)
have shown diverse functionalities in the manipulation of sound such as negative refraction (14–
16), subwavelength imaging (17–19), cloaking (20, 21), and one-way transmittance (22, 23). It is not
surprising that some acoustic metamaterial structures can exhibit near-perfect absorption within
deep-subwavelength volumes (24–38), far beyond the limit of conventional sound-absorbing ma-
terials. The third part reviews the recent advances in achieving optimal sound-absorbing struc-
tures. Here optimality is defined by attaining the limit as dictated by the causality constraint,
which must be obeyed by acoustic responses of all sound-absorbing structures and materials. We
show that broadband optimal metamaterial absorbers (BOMAs) (39, 39a) can be constructed by
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Figure 1
Absorption by porous materials. The microstructures of three different porous materials are shown in (a) plastic foam, (b) glass fiber,
and (c) mineral wool. Panel d shows the measurement geometry for the data on glass fiber shown in panels e and f. For a sample with d =
5.6 cm, φ = 0.94, κ0 = 4.53 × 10−10m2, α∞ = 1.06, � = 0.56 × 10−4 m, and �τ = 1.1 × 10−4 m, the predictions of the effective
medium theory (Equation 12) on the real and imaginary parts of the impedance are shown in panel e, plotted as a function of frequency.
Here the open circles are the measured results, and the solid lines denote the theory predictions. In panel f, the measured (open circles)
and predicted (solid line) absorption coefficients are plotted as a function of frequency. The experimental data in panels e and f are
adapted from Allard et al. (40). The photographs in panels a–c are adapted with permission from Fahy (100), courtesy of Mr. M.J.B.
Shelton.

using a conventional porous medium with carefully designed acoustic metamaterial backing so
that flat, near-perfect broadband absorption is achieved starting at a lower cutoff frequency of a
few hundred hertz. The sample thickness is close to the minimum thickness as defined by the
causality relation; i.e., the structure is close to optimal.

2. POROUS SOUND ABSORBERS

As Figure 1a–c shows, porous materials usually have two phases comprising a solid framework
intertwined with a network of pores. The viscosity and thermal gradient in the vicinity of the
solid-air interface result in the dissipation of energy for sound waves. By denoting the sound
velocity field by v = vi and the temperature gradient with ∇T , the rate of energy dissipation is
given by (41, pp. 300–3)

Ė = − κ

T

∫
(∇T )2dV − 2

∫
DdV, 1.

where κ is the thermal conductivity of air and D is the air dissipative function

D = η

(
vik − 1

3
δikvll

)2

+ 1
2
ζv2

ll . 2.
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Here η and ζ are the shear and bulk viscosity of air, respectively, δik is the Kronecker delta function,
and vik = (∂vi/∂xk +∂vk/∂xi )/2. For sound waves of angular frequency ω and speed v0, Equation 1
can be expressed alternatively in terms of the energy averaged over one oscillation within a volume
V 0, 〈E〉 = ρ0v

2
0 V 0/2. By using the thermodynamic formula, c p − c v = T v2

0 c v/c p · (∂V /∂T )2
p/V 2

0 ,
we have (41, pp. 300–3)

〈Ė〉 = ω2

ρ0v
2
0

[(
4
3
η + ζ

)
+ κ

(
1
c v

− 1
c p

)]
〈E〉. 3.

Here ρ0 is the air density, and c v , cp are the specific heat evaluated at fixed volume and fixed pressure,
respectively. The quadratic frequency dependence of the energy dissipation rate is explicitly seen,
as stated above. Because the solid frame has a thermal conductivity different from (i.e., usually
larger than) that of air, the solid frame temperature can be assumed to stay constant. It follows that,
with the adiabatic compression and extension associated with the sound wave, there can be small
temperature variations in air that would lead to transient temperature gradients in the vicinity of
the air-solid interface. In accordance with the first term of Equation 1, such temperature gradients
lead to dissipation. For the second term of Equation 1, the non–slip boundary condition for the
air-solid interface means that there is always a viscous boundary layer, with a thickness given by
lvis = √

η/(ρ0ω), within which there can be a significant normal gradient in the tangential air
displacement velocity relative to the solid surface, provided pore diameter l � 2lvis. Such velocity
gradients, plus the nonzero divergence of v, provide another source of energy dissipation. Of
course, for lvis ≤ l the sound waves would decay in the pores along the direction of propagation.

2.1. Parameters Relevant to a Porous Medium

A porous medium is usually characterized by three parameters: porosity, static permeability, and
tortuosity.

2.1.1. Porosity φ. The fraction of the pore volume V f filled with air of the total volume Vt is
denoted as the porosity (1, 42)

φ = V f

V t
. 4.

Porosity is a fundamental geometric parameter for porous materials. For acoustic dissipative
materials, porosity can be close to 1.

2.1.2. Static permeability κ0. In the limit of lvis � l , i.e., the static regime, the porous medium is
characterized by Darcy’s law (43), which governs the air flow rate under a pressure gradient. For
a sample with thickness of d , a pressure difference 
p on two ends of the porous medium would
result in a flow velocity given by

v = − κ0

ηφ


p
d

. 5.

Here the permeability κ0 is a parameter depending only on the micro-geometry of the porous
frame (44–46):

κ0 = c �2
τ f (φ), 6.

where c is a dimensionless constant, �τ = 2V f/Sf is the thermal characteristic length (47), Sf

denotes the frame-air interface area, and f (φ) is a function of porosity that is ∼φ3 for small φ

(44).
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2.1.3. Tortuosity α∞. For airborne sound waves impinging on a porous medium, the pores
and the frame represent two parallel channels, with the pores having a much lower impedance.
Hence the waves tend to travel mostly in the pores. Because the pores are not straight, the wave
is effectively slowed down. This slowdown effect can be quantified by the pores’ tortuosity, α∞,
defined by the effective arc-chord ratio, i.e., the ratio of the length of the channel length L to the
straight-line distance C between its two ends (45),

α∞ = L
C

. 7.

Tortuosity is 1 for a straight channel and is infinite for a closed loop.

2.2. Effective Medium Description for Porous Media

A macroscopic description that ignores the fine details of microstructures but focuses on the overall
properties of porous media is termed effective medium theory, which uses a set of homogeneous
material parameters to effectively characterize sound wave propagation.

In a porous medium, a time harmonic acoustic wave with frequency ω must satisfy Newton’s
law and the constitutive relation:

∇ pmacro(ω) = −ω2ρe(ω)umacro(ω), pmacro(ω) = −Be(ω)∇umacro(ω). 8.

Here ρe is the effective mass density; Be is the effective modulus; and pmacro and umacro are the
macroscopic sound pressure and displacement field, respectively.

In the model of Johnson et al. (45) and the Champoux-Allard model (48), the effective mass
density and modulus can be expressed as

ρe(ω) = ρ0α(ω), 9a.

Be(ω) = γ p0

γ − (γ − 1)/ατ (ω)
. 9b.

Here γ is air’s adiabatic index; p0 denotes atmospheric pressure; and α(ω), ατ (ω) are the dynamic
tortuosity and thermal tortuosity, respectively, given by (1)

α(ω) = α∞ + iηφ

ωρ0κ0

√
1 − iωρ0

η

(
2α∞κ0

�φ

)2

, 10a.

ατ (ω) = 1 + i8κ

ωρ0c p�2
τ

√
1 − iωρ0c p

κ

(
�τ

4

)2

. 10b.

Here � = 2
∫

V f
v2

invisciddV /
∫

Sf
v2

invisciddS is the viscous characteristic length, with vinviscid being the
air velocity field in the absence of viscosity (47). The dynamic tortuosity α(ω) in Equation 10a
expresses the effects of air viscosity on the effective mass density, whereas the thermal tortuosity
ατ (ω) in Equation 10b reflects the influence of thermal conduction on the effective bulk modulus.

By taking into account the elastic deformation of the solid frame, Von Terzaghi (49) and Biot
(50) presented a theoretical model for sound propagation in porous materials saturated with a vis-
cous fluid. The theory was further generalized to anisotropic materials as well as to cases involving
viscoelastic frames (51). Biot’s dynamic theory was published in two articles (52, 53), in which
three types of waves were identified: two longitudinal waves and one shear wave. The two types of
longitudinal waves of Biot are distinguished by the in-phase and out-of-phase oscillations of the
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fluid relative to the solid frame. Other models used to predict the behaviors of porous materials
based on empirical laws include those developed by Delany & Bazley (54) and Allard & Cham-
poux (55). Recently, based on the analogy to electromagnetism, Lafarge & Nemati proposed an
effective medium theory allowing spatial dispersion. This theory delineates nonlocal correlations
in composite media for sound waves propagating in porous structures (56, 57).

For airborne sound impinging on a porous medium, the solid frame motion can largely be
ignored, and the predictions of the effective medium theory are testable by comparison with the
experimental results. For a layer of porous material with thickness d backed by a reflecting wall,
the reflection coefficient can be evaluated from the surface impedance Z as

R = Z − Z0

Z + Z0
. 11.

Here Z0 denotes the air impedance, given by Z0 = ρ0v0, where v0 = 343 m/s and ρ0 = 1.2kg/m3,
and the surface impedance can be expressed in terms of the effective parameters:

Z(ω) = i
√

ρe Be cot(ωd
√

ρe/Be). 12.

The sound absorption coefficient is calculated as A = 1 − |R|2.
The validity of Equation 9 was confirmed by the experiment of Allard et al. (40), as shown

in Figure 1d–f. A layer of 5.6-cm-thick sample made of glass wool was placed on top of a rigid
substrate. The surface impedance (Equation 12) evaluated from the measured reflection R is
shown in Figure 1e. Solid curves are the theory predictions based on Equation 12, in which the
effective mass density and bulk modulus are calculated by using Equation 9 with the parameter
values of glass wool given by φ = 0.94, κ0 = 4.53 × 10−10m2, α∞ = 1.06, � = 0.56 × 10−4 m,
and �τ = 1.1 × 10−4 m. Good agreement between theory and experiment is seen. The small
ripple around 850 Hz is the consequence of resonant motions of the glass framework. Because
Equation 9 is based on the assumption of a rigid framework, it cannot predict this effect. The
absorption behavior of this porous material is shown in Figure 1f on the basis of the prediction
from Equation 12. Absorption displays a relatively flat absorption coefficient of >80%, starting
from 800 Hz.

2.3. Perforated and Micro-Perforated Panel Absorbers

The perforated panel can be treated as a special version of porous material, comprising a thin, rigid
(usually metallic) plate with straight holes, as illustrated in Figure 2a. In practice, such structures
have been used as facings for porous materials to improve low-frequency absorption (59–62; 63,
pp. 460–63). In the 1960s and 1970s, Maa (58, 64) realized that if the cross-sectional scale of the
perforated pores is in the submillimeter range—in contrast to conventional ones, which are in the
millimeter range—then such MPPs can exhibit large absorption in the low-frequency regime.

As perforated panels have a relatively simple geometry, an accurate theoretical model is avail-
able. For a rigid plate of thickness τ , pore diameter l , and overall porosity φ, the acoustic effect
of the perforated plate can be characterized by its impedance, defined as the ratio between the
pressure drop across its two surfaces, 
p , and the surface-averaged air velocity through the holes,
v̄. According to Maa (58), the impedance is given by

Z ≡ 
p
v̄

= −iω
ρ0τ

φ

[
1 − 2

σ
√

i
J1(σ

√
i )

J0(σ
√

i )

]−1

− i0.85ω
ρ0l
φ

, 13.

with the dimensionless σ = l
√

ωρ0/(4η), where J0(1) denotes the Bessel function of zeroth (first)
order. Here the first term is from air’s viscous motions in straight pores, first obtained by Lord
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Figure 2
Micro-perforated panel (MPP) absorber. (a) Schematic illustration for the structure of an MPP. Here τ denotes the thickness of the
perforated plate, l denotes the diameter of the circular perforated holes, and d denotes the back cavity thickness. For ease of
visualization, the size of the holes is greatly exaggerated. (b) The absorption coefficient of an MPP with τ = l = 0.2 mm, φ = 0.5%, and
d = 6 cm. Here φ is the porosity of the perforated plate, given by the total area of the circular holes divided by the total area of the
plate. The solid curve is the prediction from Maa’s theory (Equation 13), and the open circles are data adapted from Maa (58).

Rayleigh (65) and Crandall (66), and the second term is a correction arising from the piston sound
radiation at the pores’ ends suggested by Morse & Ingard (61; 63, pp. 460–63). For MPPs, the
value of σ is generally in the range between 1 and 10, and a handy approximation to Equation 13
is given by

Z = −iω
ρ0τ

φ
σi + 32ητ

φl2
σr, 14.

in which

σi = 1 + 1/

√
1 + σ 2

2
+ 0.85

l
τ

, σr =
√

1 + σ 2

32
+

√
2

32
σ

l
τ

. 15.

The sound absorption performance of an MPP can be enhanced by placing it in front of a cavity
with a reflecting wall that is a distance d away. The air cavity serves the function of enhancing the
wave amplitude (and hence the energy density) in the plate through the constructive interference
effect. The impedance for the composite system is given by

Zc = Z + i Z0 cot(ωd/v0), 16.

from which the reflection coefficient R = (Zc − Z0)/(Zc + Z0) and the absorption coefficient
A = 1 − |R|2 for normal incident sounds can be evaluated.

Figure 2b shows an example of MPP absorption (58), in which τ = l = 0.2 mm, φ = 0.5%,
and d = 6 cm. An absorption peak close to 0.9 can be seen at approximately 760 Hz, followed
by near-zero absorption at approximately 2,850 Hz. A second absorption peak is at 3,050 Hz.
Such behavior is distinct from the absorption spectrum of a layer of porous material as shown in
Figure 1f. The reason for this difference is due to the constructive interference of the back-
reflected wave with that of the incident wave inside the thin layer of perforated plate. Such reso-
nance usually takes the Lorentzian form as a function of frequency. For frequencies in between two
adjacent resonances, destructive interference can occur at the so-called antiresonance frequency,
at which the responses of the two resonances may completely cancel each other. In the present
case, antiresonance occurs at 2,850 Hz. Recent works on improving the absorption of MPP by
altering the resonant features of the back chambers include those of Liu & Herrin (67), Wang
and colleagues (68, 69), and Park (70).
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3. METAMATERIAL ABSORBERS

Metamaterials are characterized by local resonators that are subwavelength in scale. Because reso-
nances would enhance the energy density, metamaterials are potential absorbers, even though high
absorption would necessarily occur only in the vicinity of resonant frequencies. Hence metamate-
rial absorbers are inherently narrow band in nature. In this section, we describe the metamaterial
sound absorbers from a perspective of vibrational symmetry and geometric constraint.

3.1. Elastic Membrane as Sound Absorber

A decorated membrane (DM) comprises a pretensioned elastic membrane with a rigid weight(s)
adhered on its surface. Due to the small restoring force of DM, resonances can easily be in the audi-
ble range. As first reported by Yang et al. (71), a circular DM that is 20 mm in diameter and 0.28 mm
in thickness has its lowest resonance at 146 Hz. The relevant airborne sound at this frequency has
a wavelength of 2.35 m; i.e., the size of a DM can be in the extreme subwavelength regime.

Vibration of a DM can be characterized by its normal displacement velocity, v(x), where x
denotes the lateral coordinates. By denoting the surface-averaged displacement velocity by v̄, the
component that is left over, δv(x) = v(x) − v̄, denoted the delta component, can couple only
to the evanescent waves. This is because from the dispersion relation of airborne sound we have
|k‖|2 + k2

⊥ = (2π/λ)2, where the subscripts ‖ and ⊥ denote the vector components parallel and
perpendicular to the membrane surface, respectively. The continuity of normal displacement
means that the air displacement next to the membrane’s surface is the same as that of the
membrane. Owing to the subwavelength lateral scale of the membrane, the magnitude of k‖ in
the Fourier transform of δv(x) must be larger than 2π/λ, hence k2

⊥ < 0; i.e., the wave must be
evanescent along the perpendicular direction. In contrast, the k‖ components for v̄ peak at k‖ = 0,
and hence v̄ couples to the propagating modes. It follows that in the far field, the piston-like
motion represented by v̄ is sufficient to characterize the scattering characteristics of DM, and an
effective impedance can be defined by Z ≡ 
p/v̄, with v̄ being the DM’s displacement velocity
when a pressure difference, 
p , is applied across its two surfaces.

The effective impedance is dispersive, as it is related to the resonances of DM (72) such that
Z = i/(ωg), where g is the surface-averaged Green function, defined as the ratio between the
averaged displacement, ū, and 
p :

g = ū

p

=
∑

n

|ūn|2
ρn(�2

n − ω2 − 2iωβn)
. 17.

Here ρn ≡ ∫
ρ|un|2dV is the displacement eigenfunction-weighted mass density for DM’s nth

mode un with a resonance frequency �n, and ρ is the local density. If we denote the viscosity
coefficient of the system to be η, then the dissipation coefficient βn in Equation 17 is defined as

βn =
∫

η|∇un|2dV /(2ρn). 18.

For a plane wave incident on a DM, the normalized transmission amplitude T and reflection
amplitude R can be evaluated from the impedances as

R = Z
2Z0 + Z

, T = 2Z0

2Z0 + Z
. 19.
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In arriving at the above expressions, we note that the geometric constraint as detailed below is
already incorporated. In terms of the impedances, the sound dissipation coefficient A = 1−|R|2 −
|T |2 is given by

A = 4Z0Re(Z)
[2Z0 + Re(Z)]2 + Im(Z)2

. 20.

The maximum absorption, Amax = 0.5, occurs when Re(Z) = 2Z0 and Im(Z) = 0, known as the
critical coupling condition (73, 74). When that happens, R = T = 0.5. According to Equation 17,
this condition is possible only at DM’s resonance with just the right amount of dissipation.

Mei et al. (25) reported high sound absorption by a thin DM; Yang et al. (24) and Chen
et al. (75, 76) investigated its upper bound. As shown in Figure 3a, a rectangular membrane was
stretched and fixed on its four edges. Two semicircular metallic platelets were attached, facing

a b c dΩ1 = 383 Hz Ω 2 = 767 Hz Ω3 = 947 Hz
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Figure 3
Absorption by a decorated membrane (DM) resonator. (a) Schematic illustration of a DM comprising two semicircular platelets ( pink)
adhered onto a rectangular membrane ( yellow) and facing each other. The elastic membrane is fixed on the supporting frame (blue).
(b–d ) The three resonant eigenmodes of the DM shown in panel a that are responsible for the three absorption peaks. Light indicates
large normal displacement, and dark indicates small displacement. In panel b, the large displacements are localized on the platelets,
which execute a flapping motion, with the diameter of the semicircular platelet acting as the center of rotation, simultaneous with the
large normal translational motion. In panel c, the membrane between the two platelets displays a large displacement. The two platelets
flap, but without the large translational displacement. In panel d, all the displacement is localized on the central part of the membrane.
(e–h) The measured transmission, reflection, and absorption coefficients when waves are incident from one side. An image of the sample
is shown in the inset, where the red square indicates the cross section of the impedance tube. At 383 Hz, maximum absorption of 50%
occurs, and R = T = 0.5, as predicted by Equation 19, a result of the continuity of displacement velocity on two sides of the thin
membrane. (i ) The first peak absorption coefficient (red curve) of the DM plotted as a function of the mass of the platelets. The
associated surface impedance is denoted by the blue curve. Here the open circles are measured data, adapted from Yang et al. (24), and
the solid curve represents the theory. At a maximum absorption of 50%, the associated impedance is exactly twice that of air.
( j ) Absorption of the DM when waves are incident from two sides, plotted as a function of the relative amplitude ratio α between the
two incident waves. Maximum total absorption occurs at α = 1, i.e., when the coherent perfect absorption (CPA) condition is satisfied.
Here the open circles are numerical simulations, and the solid line the theory prediction. Adapted from Reference 24.

www.annualreviews.org • Sound Absorption Structures 91

A
nn

u.
 R

ev
. M

at
er

. R
es

. 2
01

7.
47

:8
3-

11
4.

 D
ow

nl
oa

de
d 

fr
om

 w
w

w
.a

nn
ua

lr
ev

ie
w

s.
or

g
 A

cc
es

s 
pr

ov
id

ed
 b

y 
20

3.
18

6.
7.

11
3 

on
 0

7/
11

/1
7.

 F
or

 p
er

so
na

l u
se

 o
nl

y.
 



MR47CH05-Sheng ARI 7 June 2017 8:25

+

+

–

+

b Dipole

c Monopole
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po_ exp(–ik0z)
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+ exp(–ik0z)
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+ exp(ik0z)

Platelet

Figure 4
Dipole and monopole resonances. (a) Schematic illustration of the incident and scattered waves from a
decorated membrane (DM). The subscripts + and − are indicative of the right side and left side of the DM,
and the superscripts i and o denote the incoming and outgoing waves, respectively. Here k0 is the acoustic
wave vector in air. (b) Illustration of the relevant waves, among those shown in panel a, that are consistent
with the symmetry of the dipole resonance. (c) Illustration of the relevant waves, among those shown in
panel a, that are consistent with the symmetry of the monopole resonance.

each other. The membrane had a width of 15 mm, a length of 30 mm, and a thickness of 0.2 mm.
The radius of each platelet was 6 mm, whereas its mass could vary for different samples. The surface
impedance of its first resonance, i.e., the first absorption peak, could be tuned by changing the
platelet mass. Figure 3i shows that the maximum absorption for the first resonance was achieved
when all the samples had identical platelet masses of 151 mg, at which the condition Z = 2Z0 was
satisfied. Both R and T are approximately equal to 0.5 at the resonant frequency of 383 Hz, in
agreement with Equation 19, and the absorption coefficient reached its maximum value Amax = 0.5
(Figure 3f–h). Chen et al. (75, 76) further proposed a complete analytical model for such DM
absorption behavior and confirmed the energy absorption limit. As seen below, this absorption
upper bound is the result of a very general geometric constraint.

3.2. Geometric Constraint and a Conservation Law

Due to the fact that the membrane is very thin, time harmonic variation of its thickness can
occur only at very high frequencies. Hence at audible frequencies we can assume the membrane
thickness to be constant. It follows that the membrane’s surface velocity v̄− = v̄+, where the
subscript − (+) denotes the left-hand (right-hand) side of the membrane. Let us consider two
incoming sound waves counterpropagating from two sides, impinging on the membrane with
complex pressure amplitudes p i

− and p i
+ (Figure 4a) and scattering into two outgoing waves

with complex pressure amplitudes po
− and po

+. Here the superscripts i and o denote incoming
and outgoing waves, respectively, and p i(o)

+(−) denotes the sound wave pressure modulation with
respect to the constant ambient pressure. From the definition of impedance, the surface-averaged
air velocity next to the left-side membrane surface is given by v̄− = (p i

− − po
−)/Z0, and that for the

right side is v̄+ = (po
+ − pi

+)/Z0. From displacement continuity at the air-membrane interface, it
follows that v̄− = v̄+ implies

pm = p i
m = 1

2
(p i

− + p i
+) = 1

2
(po

− + po
+) = po

m. 21.

Equation 21 is a conservation law analogous to the conservation of center of mass momentum
in the collision of two equal mass particles. It follows from this analogy that the center of mass
energy flux, given by

jm = p2
m/Z0, 22.
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is also conserved and is therefore not available to be dissipated. In this analogy, impedance plays
the role of particle mass.

3.3. Dipole and Monopole Resonances

Resonances can in general be categorized either as dipole in character, in which the rele-
vant motions are antisymmetric under the mirror reflection on its central plane (as shown in
Figure 4b), or as monopole in character, in which the motions are symmetric under mirror reflec-
tion (Figure 4c). Such division is useful because the dipolar motions of a resonator are decoupled
from the monopole component, and hence their energies can be independently accounted for
(24).

A resonance with a particular symmetry can be excited only if the excitation waves have the same
symmetry component. In this respect, pm as defined by Equation 21 is monopole in character,
and to complete the picture we define

pd = 1
2

(p i
+ − p i

−) 23.

as the dipolar component of the incident waves. By using the monopole and dipole division, one
can immediately deduce that the energy available for dissipation is given by

1
2Z0

[
(p i

+)2 + (p i
−)2 − 2p2

m

] = 1
4Z0

(p i
+ − p i

−)2 = p2
d/Z0 = jd. 24.

Hence the absorption coefficient for the DM absorber is given by A = jd/( jm + jd). For waves
incident from one side only, p i

+ = 0 so that jm = jd, and the absorption upper bound is 50%.
In contrast to the DM, in which only dipole resonances occur at audible frequencies, resonators

like Helmholtz resonators (HRs) on a sidewall of a ventilated channel (29, 34), a pair of coupled
DMs (33), or air bubbles in rubber (32, 77–79) can exhibit monopolar resonances. If dipole reso-
nances cannot be excited at the relevant frequency regime, then jd is the conserved component,
and the energy available for absorption is the monopolar component jm. A similar 50% absorption
upper bound applies in the one-side incident scenario. Merkel et al. (34) experimentally demon-
strated this maximum absorption by two sidewall HRs mounted opposite to each other on two sides
of a ventilated tube (as shown in Figure 5a), in conjunction with an analysis of critical coupling
in the complex frequency plane. Coupled through near fields, these two HRs present a hybrid
resonance at f0 = ( f HR

2 − f HR
1 )/2, as shown in Figure 5c, in which f HR

1 and f HR
2 are the two

resonance frequencies of the HRs. By tuning the frequency difference f HR
2 − f HR

1 while keeping
f0 unchanged, the absorption has a maximum of 50%, as shown in Figure 5d. In the investi-
gation of the absorption of waterborne sounds by air bubbles in soft solid medium (as shown in
Figure 5b), Leroy et al. (32) demonstrated that the monopolar motions of bubbles absorb sound
with an upper limit of 50% (as shown in Figure 5e,f ).

An absorption upper bound also exists in nonlinear acoustic systems, as shown by Achilleos
et al. (80) in HRs with very high sound intensities, as well as in electromagnetic wave absorption,
e.g., laser absorption in thin film structures (81–83).

3.4. Coherent Perfect Absorption

By eliminating the monopole component in incoming waves, i.e., by introducing counterprop-
agating waves on both sides such that p i

− = −p i
+ so pm = 0, absorption can exceed 50%. In

general, for a given ratio α = |p i
+|/|p i

−|, the maximum absorption always occurs when p i
− and p i

+
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Figure 5
Absorption by monopole resonators. (a) Schematic illustration of a pair of coupled Helmholtz resonators (HRs) installed on two sides
of an air channel. The two HRs have resonance frequencies at f HR

1 and f HR
2 . They are coupled through near field of the sound waves

(as the channel width is smaller than the wavelength). As a result, a hybrid resonance appears at f0 = ( f HR
2 − f HR

1 )/2 = 311 Hz.
(b) Schematic illustration of a composite absorber for waterborne sounds consisting of air bubble lattices (delineated by white squares)
with lattice constant d , embedded in a soft solid medium (blue). (c) Transmitted and reflected energy spectra at the maximum absorption
condition for the coupled HRs as illustrated in panel a. Here �L = 3.14 Hz, the solid curves are data, and dashed curves are theoretical
predictions. (d ) By tuning the frequency difference f HR

2 − f HR
1 while keeping f0 unchanged, the maximum absorption of 50% is seen

at ( f HR
2 − f HR

1 )/�L = 9.8. The relevant scattering spectrum is shown in panel c. The dots are data, and the solid curves are theoretical
predictions. Panels c and d adapted with permission from Merkel et al. (34). (e) The transmission and reflection spectra of the composite
waterborne sound absorber illustrated in panel b, obtained at the maximum absorption condition. ( f ) By tuning the lattice constant d
of embedded bubbles, the absorption reaches a maximum of 50%. The solid curves are from theory, and the symbols are from finite
element simulations. Panels e and f adapted with permission from Leroy et al. (32).

are opposite in phase so that (as shown in Figure 3j)

Amax = jd
jm + jd

= (p i
−)2 + (p i

+)2 + 2|p i
− p i

+|
2(p i−)2 + 2(p i+)2

= 1
2

+ α

1 + α2
. 25.

When α = 1, we have the antisymmetric coherent perfect absorption (CPA) scenario (29).
To completely absorb incident sound from one side, the CPA strategy is to use a control wave
with the same amplitude but opposite phase, counterpropagating from the other side, so that the
transmitted (reflected) wave of the incident sound can be completely canceled by the reflection
(transmission) of the control wave through interference. Wei et al. (29) and Yang et al. (84)
theoretically predicted and numerically confirmed such antisymmetric CPA by decorated elastic
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membranes. Such an antisymmetric CPA effect was recently experimentally realized by Meng
et al. (38).

To perfectly absorb sound incident from one side with a monopole resonator, symmetric CPA
requires a control wave incoming from the opposite direction with the same phase. Symmetric
CPA by HRs was numerically simulated by Wei et al. (29) and was experimentally realized by
Meng et al. (38). Song et al. (30) extended the CPA concept to two dimensions with higher-order
symmetries such as quadrupole and octupole resonances.

3.5. Sound Absorption by Degenerate Resonators

Instead of introducing control waves, another approach to absorb sound effectively is to create a
composite resonator comprising a pair of dipole and monopole resonators with the same resonant
frequency, i.e., degenerate, and with each satisfying the critical coupling condition.

To characterize the response of such a degenerate pair, we define the dipolar impedance
Zd for dipole resonators as Zd = pd/v̄d = (p+ − p−)/(v̄+ + v̄−), which is half of the effective
impedance we defined for DM, and the monopolar impedance Zm for monopole resonators as
Zm = pm/v̄m = (p+ + p−)/(v̄+ − v̄−). The absorption coefficient for one-side incident sound waves
is then given by

A = 2Z0Re(Zm)
[Z0 + Re(Zm)]2 + Im(Zm)2

+ 2Z0Re(Zd)
[Z0 + Re(Zd)]2 + Im(Zd)2

, 26.

which comprises two terms from the monopolar and dipolar resonances, respectively. Each term
reaches a maximum of 50% when the critical coupling condition, Zm = Z0 = Zd, is satisfied.

In actual practice, the monopole resonator can be realized in the channel geometry by placing
a DM dipole resonator on the channel sidewall backed by a cavity, as shown in Figure 6a. When
this DM vibrates in and out from the channel sidewall, it pushes (out) and sucks (in) the air in
front of the DM, leading to a monopole-like air movement parallel to the channel wall.

As shown in Figure 6a–f, by using a DM as the dipole and a sidewall cavity sealed by another
DM as the monopole, a degenerate, perfect absorber was experimentally realized at 285.6 Hz
within a space that is one order of magnitude smaller than the relevant airborne sound wavelength
(33). The relevant physics can be easily described as follows. Total absorption must occur if
both transmission and reflection are suppressed. Here the reflection is suppressed by impedance
matching, and the transmission is suppressed by destructive interference between the two DMs,
one on the sidewall acting as the monopole and the other one perpendicular to the sidewall DM
acting as the dipole. By synchronizing the pushing of the air in one with the sucking of the air
in the other, the air pressure modulation in the far-field transmission direction is suppressed.
Thus, total absorption occurs. In this particular case, the dipole DM does not cover the whole
cross section of the air channel; i.e., the channel is ventilated. Hence the air constitutes the third
component of the setup, and the dipole plus air behaves as a Fano resonance. As a result, the dipole
resonance has to be tuned to a frequency slightly higher than that of the monopole so as to make
total absorption occur. This is seen in Figure 6b,c. In panels d, e, and f of Figure 6, the measured
and simulated R, T , and absorption coefficient are shown, respectively. Another sample, with
DM as the dipole resonator and a pair of coupled DMs (sealing a thin cavity in between) as the
monopole resonator, has also shown similar absorption behavior in a space that is 20 times smaller
than the airborne wavelength (Figure 6g). In this case, the cross-sectional area of the air channel
was completely covered by the combined setup. Hence the dipole and monopole resonances are
exactly degenerate. Panels h–l of Figure 6 show results similar to those of the ventilated case.
Piper et al. (85) reported the electromagnetic analog of this degenerate resonator absorber.
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Figure 6
Absorption by degenerate resonators. Panel a schematically illustrates a ventilated composite absorber comprising a sidewall monopolar
resonator placed in the vicinity of a dipolar resonator. The dipole resonator does not cover the whole cross-sectional area of the air
channel. As a result, the air contributes to this ventilated setup as the third component, and the dipole resonance is Fano like, owing to
the continuum background contributed by the air component. Thus, the dipole and monopole are not exactly degenerate, as can be
seen in panels b and c, in which the renormalized, dimensionless response functions gd(m) = i/[ωZd(m)] for the dipole/monopole
absorber are plotted as a function of frequency. Here the open circles represent experiment, and the solid curves are the numerically
simulated results. Panels d, e, and f show the relevant reflection, transmission, and absorption coefficients, respectively. Again, the open
circles are the measured data, and the solid curves the simulated results. Panel g shows a schematic illustration of a flat-panel composite
absorber. Here the composite absorber covers the whole cross section of the air channel, and the dipole and monopole resonances are
exactly degenerate, as shown in panels h and i. In panels j, k, and l, the reflection, transmission, and absorption coefficients of the
composite absorber are plotted as a function of frequency, respectively. The solid curves are from numerical simulations, and the open
circles denote the measured data. DM denotes decorated membrane. Figure adapted from Yang et al. (33).

3.6. Hybrid Resonance Absorption

By placing a reflecting wall behind a DM, separated by a distance d , multiple reflections between
the membrane and the reflecting wall (see Figure 7a,c) can create a new hybrid resonance (26),
with the resulting absorption coefficient for a one-side incident wave reaching nearly 100%. Here,
we analyze this multiple-scattering process and the perfect absorption condition with the aid of
pm conservation as introduced in Section 3.2.
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Figure 7
Multiple scatterings and sound absorption by hybrid resonance. (a) Schematic illustration of the multiple scatterings introduced by
placing a reflecting wall behind a decoratred membrane (DM). Here the aim is to find the required DM impedance for total absorption;
hence it is assumed that there is no reflected wave. (b) The relevant phasor diagram for the complex pressure amplitudes on two sides of
the DM that form an isosceles triangle due to the conservation law imposed by the continuity of displacement velocity on two sides of
the DM. The angle between two equal sides of the triangle is given by 2δ = 2k0d , owing to the nodal condition at the reflecting wall.
(c) Schematic illustration of a hybrid DM absorber. (d ) Profiles of the first two eigenmodes of the DM across the diameter of the DM.
Here u denotes the membrane normal displacement, and ū denotes its average over the surface of the membrane. The flat rectangle
denotes the rigid platelet decorated on the membrane. (e) The hybrid resonance profile of the absorber, in terms of its normal
displacement u/ū, plotted across the diameter of the DM. Comparing the normal displacement profile to that shown in panel d makes
clear that the hybrid mode has a vibrational profile that is a linear superposition of the first two modes. However, the amplitude of the
hybrid mode is at least an order of magnitude larger than that of the two original resonances under the same-amplitude incident wave
excitation. Panels e and f show the calculated real and imaginary parts of the impedance, respectively, normalized by that of air, Z0. At
the DM’s antiresonance frequency of 161 Hz, the real part of the impedance is very large, more than two orders of magnitude larger
than that of air, whereas the imaginary part displays dispersion. However, at the hybrid resonance frequency of 152 Hz (indicated by
the blue dashed line), which is a resonance caused by the combined effect of the DM plus the sealed cavity, the DM’s real part of
impedance is small, whereas the imaginary part is fairly large and negative. The latter is required to cancel the large and positive
imaginary impedance from the back-reflecting wall, so the net effect is a combined impedance of the hybrid resonator that is real and
close to that of air. ( g) The absorption coefficient for the hybrid absorber. The solid curves for panels e, f, and g are calculated from
Equation 30, with d = 21.7 mm, � = 1.286 × 10−9(m2 · s 3)/kg, ω̃ = 2π × 162.3 Hz, and β = 5.14 Hz. The open circles in panel g are
experimental data adapted from Ma et al. (26).
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3.6.1. Multiple scatterings and emergence of a new resonance. As shown in Figure 7a, in
the air layer between the dipole (DM) and the reflecting wall, there can be two sets of multiply
scattered waves: one set going right and the other set going left. These multiply scattered waves
can be superimposed to form two counterpropagating waves: p i

+ and po
+. We would like to know

what would be the impedance of the DM if total absorption were to occur. With this knowledge,
one can ask whether such impedance condition can be realized in practice.

For total absorption, there should be no reflection on the incident side, so conservation of pm

yields p i
− = po

+ − p i
+, which may be represented by a phasor diagram (as shown in Figure 7b) that

is an isosceles triangle, with p i
+ and po

+ being the two equal sides with an angle 2δ = 2k0d and p i
−

being the base. Here the angle 2δ is set by the requirement that there be a node at the reflecting
wall, and hence p i

+ and po
+ must have a relative phase of 2δ at the backside of the DM. The phasor

diagram makes clear that the net pressure applied to the dipole, 
p = p i
− − (p i

+ + po
+), is given

by 
p = p i
−(1 − i cot δ). It follows that the DM impedance for achieving total absorption is

Z = 
p/v̄ = Z0(1 − i cot δ). 27.

For δ = π/2, we have Z = Z0. Such a condition occurs at the first Fabry-Pérot (FP) resonance
of the sealed cell when d = λ/4. This is the drum resonance because the membrane that seals
the cavity is like the surface cover of a drum. However, for an air layer thinner than a quarter-
wavelength, i.e., δ → 0, the required imaginary part of Z approaches −i∞. Such a large imaginary
part of the DM impedance is necessary to cancel the impedance presented by the reflecting back
surface, which is indeed possible for DM at a frequency slightly below the antiresonance frequency,
as shown below. Because the impedance of the whole structure is the sum of two serial impedances
of the DM and the sealed cell behind it, the net impedance of the composite structure should be
Zc = Z0, i.e., impedance matched to that of air so that no reflection would occur. Because we
must have Im(Zc) = 0, the Green function of the composite structure, gc = i/(ωZc), displays an
imaginary part

Im(gc) = 1
ω

Re(Zc)
Re(Zc)2 + Im(Zc)2

28.

that exhibits a peak at this total absorption condition. A peak in the imaginary part of the Green
function signifies a resonance mode. This is precisely the hybrid resonance, which must occur close
to the antiresonance frequencies because only in the frequency ranges below the antiresonances
would the imaginary part of the DM impedance approach the required −i∞.

In what follows, we show that to satisfy Equation 27 in subwavelength thin air layers, the
required resonant mode is a new mode of the DM, which resembles the profile at the antiresonance
frequency, but with an enormously large magnitude of the δv(x) component.

3.6.2. Characteristics of the hybrid resonance. To characterize the hybrid resonance, for
simplicity we consider only two relevant eigenmodes, u1 and u2 (see Figure 7d ). By anticipating
the resonance to be in the vicinity of the antiresonance frequency ω̃, at which Re(g) = 0, the
Green function in Equation 17 yields g � 2�(iβ − 
ω), with

� ≡
2∑

n=1

|ūn|2ω̃
ρn(ω2

n − ω̃2)2
, and 
ω ≡ ω̃ − ω. 29.

The relevant impedance is given by

Z = 1
2ω̃�

β − i
ω

β2 + 
ω2
. 30.
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Equation 30 shows that for small 
ω and β, the imaginary part of the impedance can be large and
negative, up to −1/(4ω̃�β) at 
ω = β. Therefore, total absorption for a very thin air layer between
the DM and the back-reflecting surface is indeed possible. The hybrid resonance frequency is
in between those of u1 and u2. Thus, its eigenfunction profile must necessarily be the linear
superposition of u1 and u2 because the eigenfunctions of the DM form a complete basis set,
and the influence of other eigenfunctions, which are further away in their resonance frequencies,
is negligible. In addition, because the hybrid mode is close to the antiresonance frequency, its
profile must closely resemble that of the antiresonance; i.e., the surface-averaged displacement
should be small, or ū1/ū2 � 1. This follows from the fact that when the excitation frequency is in
between the two resonances, both modes are excited, but with the opposite phase, as necessitated
by the nature of the resonance response. In the present case, ū1 and ū2 do not exactly cancel,
because the hybrid resonance frequency is not exactly at antiresonance and because the impedance
matching requirement implies ū1−ū2 = us, the air displacement of the incoming sound. These two
conditions can be satisfied only when ū1,2 � us, so that 1 − ū2/ū1 = us/ū1 is a small number; i.e.,
compared to its surface-averaged component ū, which matches the airborne sound displacement,
the hybrid resonance has a much larger delta component δu (see Figure 7d,e).

Experiments reported in Reference 26 corroborated the existence of this hybrid resonance.
By placing an aluminum-reflecting wall behind a DM (Figure 7c), an absorption coefficient of
greater than 0.99 was observed at 152 Hz (Figure 6g). By using d = 21.7 mm [which is inferred
from the experimental data of 17 mm of SF6 gas, as the effects of the two thin gas layers should
be identical if their thicknesses are scaled linearly with their adiabatic index (SF6 has an adiabatic
index of 1.098, compared to 1.4 for air)], � = 1.286 × 10−9(m2 · s3)/kg, ω̃ = 2π × 162.3 Hz, and
β = 5.14 Hz, the absorption spectrum predicted by Equation 30 was confirmed by experimental
data, as shown in Figure 7g. In another experiment, reported by Romero-Garcı́a et al. (35), a
viscoelastic porous plate exhibited high absorption within a broadened frequency range when a
rigid wall was placed behind it.

A similar mechanism works for the multiple scatterings between a monopole resonator and
a reflecting wall. Romero-Garcı́a et al. (35) demonstrated the total absorption of HRs on the
sidewall of a tube, with the dead end being the reflective wall. They further showed that broadband
absorption comprising four total absorption peaks can be achieved from four different HRs with
a reflective wall placed at the back (36). By using the similar HR structures, Jiménez et al. (86)
reported quasi-omnidirectional and total absorption of sound by a composite panel. Merkel et al.
(34) showed that two different HRs, aligned in sequence, exhibited total absorption of the sound
waves traveling in a ventilated tube, in which the back HR antiresonance played the role of a
reflective wall. For waterborne sound, Leroy et al. (32) reported total absorption by monopolar
motions of air bubbles embedded in soft solid, backed by a metallic hard wall. A series of other
works reported analogous total absorptions for electromagnetic waves in systems consisting of
a thin layer of dielectric medium sandwiched by one metallic reflective surface and a layer of
patterned metallic film (87–90).

3.7. Sounds Absorption by Coiled-Space Structures and Helmholtz Resonators

As indicated by Equation 27, in addition to being achieved by the hybrid resonance, total absorption
can be achieved by the FP resonances. Previous works have suggested that, if the FP channel is
narrow enough, high absorption can be achieved through dissipation by air viscosity (1). However,
because the FP resonances require one-quarter of a wavelength, at low frequencies that can be a
significant scale for the absorption structure. One efficient way to reduce the scale is to coil the
FP channel. Such tortuous structures have been mentioned in the context of porous media with
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the tortuosity parameter. Here in the context of metamaterials, the coiled-space concept is used
to slow down waves and to achieve negative refraction (14, 15, 92, 93).

For a particular coiled FP channel with length �, the condition that the air displacement velocity
have a node at its reflecting end means that the internal velocity and pressure fields are given by

v(z) = −i sin[ω(z + �)
√

ρ0/B0]/
√

ρ0 B0, p(z) = cos[ω(z + �)
√

ρ0/B0]. 31.

For a FP channel n with length �n within an array of N FP channels, the surface impedance at
the channel’s opening, z = 0, is given by

Zn = pn(0)At

vn(0)AFP
= i

φ
Z0 cot[ω�n

√
ρ0/B0], 32.

where porosity φ = AFP/At, with At being the total area of the array and AFP the total area of
FP channels’ inner cross sections. In the present case, this ratio is exactly the porosity because
AFP is constant as a function of depth. Here we assume that all the N FP channels have the same
cross-sectional area. To account for the small dissipation presented by air viscosity, one can simply
replace ρ0 with ρ = (1+2iβ/ω)ρ0, in which the coefficient β is an effective parameter characterizing
air’s viscosity in FP channels and its value can be obtained by fitting the experimental data (39,
39a). By Taylor expansion of the expression for Zn, around the quarter-wavelength resonance
frequency �n = πv0/(2�n) in Equation 32, one obtains

Zn

Z0
� iπ

(
4�nωφ/N

�2
n − ω2 − 2iβω

)−1

. 33.

Because the FP channels are in a planar array, the total impedance of the system is given by Z =
1/(
∑N

n=1 1/Zn). To have total absorption, this total surface impedance should match that of air; i.e.,
Z = Z0. Cai et al. (27) reported such an absorber by coiling a 205-mm FP channel into a space that
is 9.7 mm thick (as shown in Figure 8a,b). Near-total absorption was experimentally observed
at approximately 400 Hz (shown in Figure 8d ). Subsequently, Li & Assouar (37) suggested a
theoretical model based on perforated panels for similar structures. Jiang et al. (28) proposed a
broadband absorber based on FP resonances that is triangular in shape, as shown in Figure 8i, j.

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
Figure 8
Fabry-Pérot (FP) and Helmholtz resonator (HR) absorbers. (a) Schematic drawing for an ultrathin sound absorber based on coiled FP
resonant channels. (b) An image of the absorber illustrated in panel a. (c) An image of another similar absorber based on an HR that can
exhibit absorption in lower frequencies. Here the horseshoe-shaped neck of the HR has an opening to the backside of the image, facing
the incoming sound wave. (d ) The absorption performance for the sample shown in panel b is plotted as a function of frequency. A high
absorption peak is seen at approximately 400 Hz, at which the wavelength is 50 times the sample thickness. The red curve is the
measured absorption coefficient, and the blue curve is the theory prediction. The dashed and dotted curves are the transmission
amplitudes without and with the coiled-space structure, respectively. (e) The absorption spectrum of the sample illustrated in panel c
that can absorb sound with a wavelength 100 times the sample thickness, at 250 Hz. The red curve is the measured absorption
coefficient, whereas the blue curve is theory. The dashed and dotted curves are the transmission amplitude without and with the HR
structure, respectively. Panels a–e adapted with permission from Cai et al. (27). ( f ) An image of the coupled HR absorber. ( g) The
simulated sound field at total absorption frequency. The orange arrows indicate the direction of incoming sounds. (h) The reflection
and absorption coefficients, as well as the relevant real and imaginary parts of the normalized surface impedance Zr = Z/Z0, plotted as
functions of frequency. The total absorption is seen at the impedance-matched frequency, with Zr = 1. Here the solid curves are from
simulations, and the red dashed curves are data. Panels f–h adapted with permission from Li et al. (91). (i ) An image of a sample in
which the FP resonant channels (dark colors) of various lengths are arranged in a triangular pattern. ( j ) A three-dimensional illustration
of the sample and the measurement setup. Here 1, 2, 3, and 4 indicate plexiglass covers on four sides, forming a waveguide with a
rectangular cross section with width l . (k) With FP channels resonant at different frequencies, high absorption for incoming sound was
realized in a broadband frequency range. The black symbols are data, and the red symbols denote simulation results. Panels i–k adapted
with permission from Jiang et al. (28).
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By employing FP channels with different lengths, high absorption over a broadband frequency
range was achieved, as shown in Figure 8k.

Another efficient way to reduce resonators’ spatial scale is by utilizing the narrow-neck HR,
a resonator that can be understood simply as a cavity covered by an effective mass representing
the neck port and its surrounding panel (1). This effective mass corresponds with that shown in
Equation 13 (with me = i Z/ω) for perforated panels. A smaller porosity φ, implying a narrower
neck of the HR, can effect a larger effective mass and therefore requires a smaller cavity for a
given resonance frequency. In the experiment of Cai et al. (27), a 13.3-mm-thick HR showed a
near-total absorption peak at 250 Hz (as shown in Figure 8b,e). In the work of Kim et al. (94),
based on a theoretical model utilizing mutual radiation impedance for calculating an HR array, a
high-absorption band comprising multiple peaks of HR absorption was experimentally realized.
Li et al. (91) reported that, coupled through local fields, two different HRs can exhibit a hybrid
resonance that absorbs sound completely (as shown in Figure 8f–h). Wu et al. (95) designed a
split-tube resonator, comprising an HR with a coiled neck, that exhibited total absorption of sound.

4. CAUSALITY CONSTRAINT AND OPTIMALITY

In traditional sound-absorbing materials/structures, the absorption spectrum is usually fixed by
the thickness of the structure and cannot be easily altered. For metamaterial absorbers, how-
ever, the absorption spectrum can be tuned through structural design, even though it is usually
narrow-frequency band in character. A natural question is therefore: What is the best absorption
performance one can achieve over a designated frequency band, with the minimum structural
thickness? The causal nature of the acoustic response offers a useful perspective with which to
answer this question. Moreover, in conjunction with metamaterial design, the causality constraint
can delineate the optimal sound-absorbing structure for achieving the best possible absorption per-
formance within a designated frequency band and with the minimum thickness. A design strategy
for attaining such structures is described below.

4.1. Causal Nature of the Acoustic Response and the Thickness Constraint

Material response functions for electromagnetic and acoustic waves must satisfy the causality
principle (96, pp. 265–67). Consider a layer of material backed by a reflecting wall. In response
to an incident sound wave, the reflected sound modulation pressure, pr(t), is a superposition of
the direct reflection of the incoming sound pressure on the interface at this instant, p i(t), and the
reflection in response to the incident wave at an earlier time, p i(t − τ ), with τ > 0. Hence

pr(t) =
∫ ∞

0
K (τ )p i(t − τ )dτ , 34.

where K (τ ) is the response kernel in the time domain. Through Fourier transform p i/r(ω) =∫∞
−∞ p i/r(t)e iωtdt, the reflection coefficient for each frequency may be expressed as

R(ω) ≡ pr(ω)
p i(ω)

=
∫ ∞

0
K (τ )e iωtdτ. 35.

From Equation 35, R(ω) is an analytic function of complex ω in the upper half of the complex
ω plane. In terms of the wavelength λ = 2πv0/ω, that means R(λ) is without singularities in the
lower half-plane of complex λ but may have zeros that represent total absorptions of incoming
energy. Here the imaginary part of λ signifies dissipation.

For electromagnetic waves, the causal nature of the material response function results in an
inequality that relates a given absorption performance to the sample thickness (97, 98). Adapted
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to acoustics, this relation (for sound waves propagating in air) can be expressed in the following
form for a flat absorbing material (or structure) with thickness d sitting on a reflecting substrate:

d ≥ 1
4π2

Beff

B0

∣∣∣∣
∫ ∞

0
ln[1 − A(λ)]dλ

∣∣∣∣ = dmin, 36.

where λ denotes the sound wavelength in air, A(λ) is the absorption coefficient spectrum, Beff de-
notes the effective bulk modulus of a sound-absorbing structure in the static limit, and B0 is the bulk
modulus of air. A detailed derivation of Equation 36 is given in Supplemental Appendix A. We
define a sound-absorbing structure to be optimal if equality or near-equality is attained in the above
relation. Some obvious implications immediately follow from Equation 36. For example, 100%
absorption within a finite frequency range is not possible for any finite thickness sample. Also, high
absorption at low frequencies would dominate the contribution to sample thickness. However,
A(λ) ∼ 1 at a particular low frequency is entirely possible for a very subwavelength sample thick-
ness, provided that the absorption peak is narrow, as shown in Section 3.6 for hybrid resonance.

4.2. Causal Optimality of Sound-Absorbing Structures

It would be interesting to assess various sound-absorbing structures’ degree of causal optimality in
terms of Equation 36. Take the glass wool shown in Figure 1 as the first example. By keeping the
porosity, φ, unchanged and varying its static permeability, κ0, we wish to see whether causal opti-
mality can be achieved for a sample of glass wool that is 5.6 cm in thickness. Varying κ0 is equivalent
to changing the cross-sectional dimension of the pores, with narrower pores leading to smaller κ0.
By substituting the absorption spectrum predicted by Equation 12 into Equation 36, we plot in
Figure 9a the value of dmin as a function of κ0. It is seen that a critical permeability κc exists below
which the causal integral gives the minimum sample thickness dmin equal to that of the sample,
d = 5.6 cm. In other words, for κ0 > κc, the sample thickness is always larger than dmin, implying
that better absorption can be achieved by reducing permeability. However, if the static permeabil-
ity is reduced to much below κc, then the absorption spectrum becomes more flattened; i.e., high
absorption in some frequency regimes is reduced in favor of broadening the absorption spectrum.

A similar critical condition exists for the MPP whose structure is illustrated in Figure 2. On the
basis of the absorption spectrum as predicted by Equation 13, the casual integral on the right-hand
side of Equation 36 can yield a value of dmin as a function of pore diameter l . Here the sample is
6 cm in thickness. The results are plotted in Figure 9e. There is clearly a critical lc below which
causal optimality is achieved. Panels f–h of Figure 9 show the absorption spectra at three different
values of l . Together these spectra indicate that causal optimality does not necessarily mean high
absorption. Rather, there is always a trade-off between high absorption and the bandwidth of the
absorption spectrum for a fixed thickness.

As a third example, we show that metamaterial DM hybrid resonant absorbers have similar
features. Here the dissipative parameter β is chosen to be the variable in a hybrid resonator that
is 21.7 mm in thickness. In Figure 9i, the dmin as evaluated by the predicted absorption spectrum
(based on Equation 30) is plotted as a function of β. The critical dissipative parameter is predicted
to be βc = 5.14 Hz, which is the value for achieving perfect absorption. For β < βc, the peak
absorption is less than 1, and Equation 36 is an inequality; for β > βc, the peak absorption is less
than 1 as well, but the spectrum has a broader bandwidth so that dmin = d . Such behaviors are
clearly seen in Figure 9i–l.

The above clearly shows that causal optimality does not always guarantee high absorption.
Instead, there is a trade-off between the bandwidth of the absorption spectrum, the sample thick-
ness, and the absorption coefficient. Hence to use the causality constraint to delineate the ultimate
sound-absorbing structures, one must specify two out of the three parameters, with the third
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Figure 9
Porous and hybrid absorbers as inspected from the causal constraint perspective. (a) The minimum thickness dmin as determined by the
causal integral (Equation 36), in which the absorption spectrum is that predicted by Equation 12 for the porous materials shown in
Figure 1. Here the static permeability κ0 is treated as a variable. The sample thickness d = 5.6 cm. The other parameter values in the
absorption spectra calculations are the same as those for Figure 1. There is a critical permeability value below which causal optimality
(defined as d = dmin) is attained. (b–d ) The relevant absorption spectra for the three different permeability values marked in panel a.
For κ2, dmin/d � 84%, and the absorption spectrum shown in panel d is only slightly lower than that shown in panel c for κc. The main
difference lies in the slightly lower absorption in the low-frequency regime and in the 2,000-Hz regime. For the spectrum shown in
panel b for κ1, the causal integral is the same as that for κc, but low-frequency absorption is improved at the expense of higher-
frequency absorption. (e) The minimum thickness dmin evaluated by using the absorption spectrum based on Equation 13 for the
micro-perforated panel (MPP) absorber, shown in Figure 2 with a MPP sample thickness of 6 cm. The other parameter values in the
absorption spectra calculations are the same as those for Figure 2. Here the hole diameters l are treated as the variable. ( f–h) The
absorption spectra for the three different diameters marked in panel e. For l2, absorption is low. As the hole diameter decreases to lc,
absorption increases appreciably. With further decreases in hole diameter, the maximum absorption decreases, but absorption becomes
more even distributed as a function of frequency. (i ) The minimal thickness dmin evaluated by using the absorption spectrum predicted
by Equation 30 for the hybrid decorated membrane (DM) shown in Figure 7, with a sample thickness of 21.7 mm. Here the dissipation
coefficient β is treated as the variable. ( j–l ) There is a critical βc below which the absorption is low and beyond which the maximum
drops but the absorption spectrum broadens. This is illustrated for the three values of β marked in panel i.

one to be optimized. To facilitate this process, the following two questions can be used, in con-
junction with the causal optimality, to delineate the target optimal sound-absorbing structure.
The first question is: For a target absorption spectrum, A(λ), what is the minimum sample thick-
ness required? The second is: Given a sample thickness, what is the structure that can achieve
the best absorption performance over a given frequency band? The following section describes
a custom-designed strategy for achieving the target absorption spectrum with the minimum al-
lowed thickness. The same strategy can be used, with some additional optimization techniques,
to achieve the goal set by the second question.
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5. DESIGN STRATEGY FOR ATTAINING OPTIMAL
SOUND-ABSORBING STRUCTURES

Because traditional sound-absorbing materials cannot offer the freedom to tune the absorption
frequency spectrum, realizing an optimal sound-absorbing structure as defined by the above two
questions must involve acoustic metamaterials in the design strategy. Below we describe such a
strategy (39, 39a) and the example of realizing broadband absorption, with near-perfect absorption
starting at a low-frequency cutoff, by using a designed acoustic material as backing to a thin layer
of a traditional sound-absorbing material, such as an acoustic sponge.

5.1. Theoretical Basis for a Custom-Designed Strategy

Similar to that for DM as shown in Equation 17, the impedance for an acoustic metamaterial with
multiple resonances is given by Z = i/(ωg), or

Z = iρ0d
ω

(∑
n

αn

�2
n − ω2 − 2iβω

)−1

. 37.

Here ρ0 is the density of air; ω is the angular frequency; �n denotes the nth resonance frequency;
αn is its dimensionless oscillator strength, given by αn = 4dφ�n/(Nπv0) for FP channels so as to
be consistent with Equation 33; and β � ω describes the weak system dissipation for the acoustic
metamaterial. For Equation 37 to be accurate, the lateral size of the metamaterial units (if they are
assumed to be periodically arranged) must be very subwavelength in scale so that the diffraction
effects can be neglected.

To design an absorber structure for a target absorption spectrum, A(ω), placed against a reflect-
ing surface, let us consider an idealized case in which resonances have a continuum distribution
with mode density D(ω) per unit frequency. In that case, Equation 37 can be converted to an
integral,

Z � lim
β→0

iρ0d
ω

(∫ ∞

�1

α(�)D(�)
�2 − ω2 − 2iβω

d�

)−1

. 38.

We have set a lower cutoff for the integral, �1, so as to exclude the zero frequency from our
consideration. The oscillatory nature of the real part of the integrand in Equation 38 implies that
the integrated result approaches zero very quickly for ω > �1. Hence for the design strategy, only
the imaginary part is considered. By defining μ(�) = α(�)D(�), then

lim
β→0

Im
[

μ(�)
�2 − ω2 − 2iωβ

]
= lim

β→0

2ωβμ(�)
4ω2β2 + (ω2 − �2)2

= πμ(�)δ(ω2 − �2), 39.

with δ(ω2 − �2) being the Dirac delta function. Equation 38 can be converted into

Z � ρ0d
πω

[∫ ∞

0
μ(�)δ(ω2 − �2)d�

]−1

= 2ρ0d
πμ(ω)

, 40.

or

μ(ω) = α(ω)D(ω) = 2ρ0d
π Z(ω)

. 41.

Because by definition D(ω) = 
n/
ω, i.e., the number of modes within a frequency range 
ω,
Equation 41 can be expressed as a differential equation for the mode distribution �(n):

d�

dn
= πα(�)Z(�)

2ρ0d
, 42.
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where n is treated as a continuous variable. By further substituting α = 4dφ�/(Nπv0) into Equa-
tion 42 for FP channels, we obtain

d�

dn
= 2φ

N
Z(�)

Z0
�. 43.

This differential equation can be solved with the initial condition � = �1 at n = 1, in conjunction
with the input Z(ω) obtained from the target absorption spectrum A(ω) for ω > �1; i.e.,

Z(ω) = Z0

[
2 − A(ω) + 2

√
1 − A(ω)

]
/A(ω). 44.

To be specific, we choose FP λ/4 resonators to realize the designed structure. For an array of FP
channels, the mode distribution inherently implies a minimum thickness of the sample because
�n = πv0/(2�n), and by volume conservation the minimum thickness of the sample is given by
d̄ = φ

∑N
n=1 �n/N , provided that each channel’s cross section is the same. Requiring d̄ = dmin as

evaluated from Equation 36 leads to a unique value of φ. This is shown explicitly in the example
below.

5.2. Idealized Model for Realizing a Broadband Optimal Metamaterial Absorber

For a BOMA, the desired target impedance is flat in frequency and is close to the air impedance
Z0 = ρ0v0 starting at a lower cutoff frequency �1. From Equation 41, that means μ = 2ρ0d/(π Z0)
for ω > �1 and μ = 0 for � < �1. With this condition, Equation 38 can be evaluated to yield

Z = π Z0

π − 2i tanh−1(�1/ω)
. 45.

Figure 10a shows the behavior for the real and imaginary parts of Z. The imaginary part, owing to
the oscillatory nature of the integrand in Equation 38, rapidly decays to zero for ω > �1, as noted
above. The real part of the impedance approaches the impedance-matching condition Z/Z0 = 1

Ω1 Ω1

Z/
Z 0

1

2

0

a

Angular frequency, ω Angular frequency, ω

Real
Imaginary

0.5

1

0

b

A
bs

or
pt

io
n,

 A

Figure 10
Idealized broadband optimal metamaterial absorber with continuously distributed resonance frequencies above a cutoff �1. (a) The
relevant surface impedance is plotted as a function of frequency. Here the imaginary part vanishes quickly above the cutoff
frequency �1, whereas the real part of the impedance approaches the air impedance. (b) The relevant sound absorption coefficient is
plotted as a function of frequency. Above the cutoff, the absorption coefficient is very close to 1 but does not reach 1, as it is constrained
by the causality relation. Also, above the cutoff frequency, only the square of the imaginary part of the impedance enters the absorption
coefficient. Hence the small nonzero Im(Z)’s effect on absorption is even smaller than that indicated in panel a.
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beyond �1. The absorption spectrum can be calculated by using the formula

A = 1 −
∣∣∣∣ (Z/Z0) − 1
(Z/Z0) + 1

∣∣∣∣
2

= 1 −
∣∣∣∣∣ tanh−1(�1/ω)

π − i tanh−1(�1/ω)

∣∣∣∣∣
2

. 46.

The absorption predicted by Equation 46 is plotted in Figure 10b. In this idealized case, the
acoustic metamaterial is sufficient to achieve near-perfect broadband absorption, requiring only
an infinitesimal dissipation coefficient. By substituting A(λ) as expressed by Equation 46 into
Equation 36, with λ = 2πv0/ω and Beff = B0, we obtain d ≥ 2v0/(π�1) = dmin. The lesson from
this idealized case is that flat impedance as a function of frequency requires the mode density to
be inversely proportional to the oscillator strength; i.e., μ should be frequency independent.

6. REALIZATION OF BROADBAND ABSORBERS WITH DISCRETE
ARRAYS OF RESONATORS

To realize a BOMA with a lower-frequency cutoff as delineated by the idealized model, Yang et al.
(39, 39a) reported a cuboid structure comprising 16 tightly folded FP channels each with a square
cross section that is ∼1.038 cm on the side, separated from each other with a 1-mm-thick wall;
hence porosity φ = 0.85. The folding, designed by computer simulations, can be seen for the
channels shown in Figure 11a. In that case, the average channel length is given by d̄ = 10.58 cm.
In the actual sample with folded channels, the cuboid has a thickness of d = 11.06 cm. As shown
in Figure 12b, with a 1-cm sponge in front of the metamaterial unit, such an absorber structure
can achieve near-equality in the casual relation (Equation 36), with a flat, near-perfect absorption
spectrum starting at 400 Hz. In particular, the right-hand side of Equation 36 yields 11.5 cm,
whereas the actual sample thickness is 12 cm. If the channel folding can be improved so that the
limit of d̄ = 10.58 cm is reached, then the total thickness would be 11.58 cm; i.e., Equation 36
would essentially become an equality. Details on how this is achieved are briefly given below.

6.1. Surface Response of Metamaterials with Discrete Resonances

To design the first-order resonance frequencies of the FP channels, we set �1 = 2π ×372.8 Hz to
be the lowest resonance frequency, with the resonance frequency of each channel increasing with
increasing n. By solving Equation 43 with Z(�)/Z0 set equal to 1, we obtain �n = �1 exp[2φ(n −
1)/N ]. Figure 11b shows the relevant αn for the 11 of N = 16 resonance frequencies with
�16 = 2π × 1,835 Hz.

Because the first-order FP resonance frequency of the nth channel is given by �n = πv0/(2�n),
we have �n = πv0 exp[2φ(1 − n)/N ]/(2�1), and

d̄ = lim
N →∞

φ

N

N∑
n=1

�n = πv0

4�1

(
1 − e−2φ

)
. 47.

By requiring d̄ = dmin = 2v0/(π�1) evaluated from the causality constraint, for BOMA, there is
an optimal value for φ given by

φ = −1
2

log
(

1 − 8
π2

)
= 0.832. 48.

This value is closely approached by the actual sample with φ = 0.85.
Figure 11c shows the measured impedance of the designed metamaterial unit. The measured

impedances oscillate around Z0 with peaks and valleys. This oscillation is expected because there
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Figure 11
The structure and features of the broadband optimal metamaterial absorber. (a) Schematic illustration of the metamaterial unit
consisting of 16 Fabry-Pérot (FP) channels, arrayed in a 4 × 4 square lattice, with the longer FP channels folded to form a compact,
cuboid sample. The channel’s number denotes its order in the sequence of decreasing lengths. Blue channels are coiled by three
foldings, pink channels are coiled by two foldings, and the orange channels are straight. The transparent cyan block represents the
sponge to be placed on top of the channels’ surface. An image of the unit is shown in the lower left panel. (b) Eleven of the 16
oscillator-strength αn of the FP channels’ λ/4 resonances, plotted as a function of frequency. The frequency positions are designed in
accordance with the solution to Equation 43. (c) The measured (open circles) and calculated (solid lines) surface impedance of the
metamaterial unit, Zbare (blue), and that with a 1-cm-thick sponge placed on top (red ). The theory predictions are based on
Equation 53, in which the red curve was calculated by replacing ρ0 with ρsponge. (d ) The evanescent wave is illustrated by showing
sound pressures at 0.91 mm above the front surface of the metamaterial, obtained by simulation at 610 Hz (the position is indicated by
the red arrow in panel c). This frequency coincides with the antiresonance frequency between the FP resonances of the fifth and sixth
channels (blue and red squares, respectively).

are 16 discrete resonances, and the impedance peaks can be associated with the antiresonances
that are in between the neighboring resonances. By treating each FP channel to be independent
from others and in parallel with each other, the impedance of the unit, denoted by Zbare, can be
written as

Zbare = i
ω

(
1

16

16∑
n=1

gn

)−1

, 49.

with gn = tan(ω�
√

ρ0/B0)/(ωZ0). Zbare displays oscillations in a similar fashion as the measured
results. However, if a 1-cm layer of acoustic sponge is placed on top of the unit, then the impedance
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is shown as in Figure 11c. The oscillations almost completely vanish. In the following, we show
that the origin of this effect is due to the evanescent waves that laterally couple the vns at the
mouths of different FP channels and the waves’ interaction with a highly dissipative medium.

6.2. Impedance Renormalization by Evanescent Waves

For sound with a wavelength λ much larger than the metamaterial unit’s cross-sectional scale L,
the impedance measured at far field is given by Z = p̄/v̄, where v̄ = ∑16

n=1 vn/16. However, locally
we must have

vn = −iωgn( p̄ + δpn), 50.

where δpn represents the value of δp(x) at the nth FP channel location. We note that
∑16

n=1 δpn = 0,
yet

∑16
n=1 gnδpn �= 0. Therefore, lateral inhomogeneity can clearly contribute to the renormaliza-

tion of the bare impedance. Under a uniformly applied pressure p̄ on the surface, the response
vn consists of two parts: One part is −iωgn p̄ , and the other part is the response arising from
evanescent waves; i.e.,

vn = −iω

(
gn + ω2ρ0g2

n�nn

1 − ω2ρ0gn�nn
+
∑

m

�nm

)
p̄ . 51.

There is a relationship between δpn and vn, derived in Supplemental Appendix B:

δpn = iωρ0

∑
m

�nmvm, 52a.

�nm = 16
∑

α

sin2(αxπ/4) sin2(αyπ/4)
π4α2

xα
2
y |kα| × exp[i kα · (xm − xn)], 52b.

with xn being the coordinate of the center of the nth channel at its mouth, δpn = δp(xn), vm =
v(xm), and |kα| = (2π/L)

√
α2

x + α2
y � 2π/λ with αx , αy = ±1, ±2, · · · . In Equation 51, the first

term in the parentheses represents the bare response of the metamaterial, and the rest of the terms
represent the effects arising from evanescent waves. The last term is from the coupling between
different channels through evanescent waves, which is much weaker than the second term. By
summing over n on both sides of the equation, the renormalized impedance is given by

Z = (1/Zbare + 1/δZ)−1 , 53a.

with

δZ = 16i
ω

(∑
n

ω2ρ0g2
n�nn

1 − ω2ρ0gn�nn
+
∑

n

∑
m

�nm

)−1

. 53b.

The resonance of the independent FP channels is identifiable by the frequencies at which gns
diverge. From Equation 51 and the definition of impedance, the renormalized resonances should
be at those frequencies that yield divergence of the coefficient in front of p̄ . If we add together
the first two terms inside the parentheses of Equation 51 and ignore the small contributions from
�nm, the result is a renormalized Green function given by

g (e)
n = 1

g−1
n − ω2ρ0�nn

; 54.

hence the resonance should occur at a frequency slightly below �n, where the real part of g−1
n =

ω2ρ0�nn. Figures 11c and 12a show that the predictions of Equation 53 can give an excellent
quantitative account of the experimental results.

www.annualreviews.org • Sound Absorption Structures 109

Supplemental Material

A
nn

u.
 R

ev
. M

at
er

. R
es

. 2
01

7.
47

:8
3-

11
4.

 D
ow

nl
oa

de
d 

fr
om

 w
w

w
.a

nn
ua

lr
ev

ie
w

s.
or

g
 A

cc
es

s 
pr

ov
id

ed
 b

y 
20

3.
18

6.
7.

11
3 

on
 0

7/
11

/1
7.

 F
or

 p
er

so
na

l u
se

 o
nl

y.
 

http://www.annualreviews.org/doi/suppl/10.1146/annurev-matsci-070616-124032


MR47CH05-Sheng ARI 7 June 2017 8:25

a

300 600 900 1,200

0

0.2

0.4

0.6

0.8

1.0

A
bs

or
pt

io
n,

 A

Frequency, f (Hz)

b

0.9

1.0

600 900 1,200

312 Hz

300 600 900 1,200

Frequency, f (Hz)

Bare metamaterial Metamaterial with sponge

Figure 12
Absorption behavior of the designed broadband optimal metamaterial absorber. (a) The absorption spectrum of the bare metamaterial
unit with 16 Fabry-Pérot channels. The spectrum is choppy, an inherent characteristic for metamaterials comprising multiple, discrete
resonances. The open circles are measured data, and the solid line denotes the theory prediction based on Equation 53, with the
relevant parameter values given in the text. (b) The absorption for the metamaterial unit with a 1-cm sponge covering in front. The
solid curve is the theoretical prediction based on Equation 53, with ρ0 replaced with ρsponge, which has an imaginary dissipative
component that is two orders of magnitude larger than that for ρ0. The rather flat and near-perfect absorption spectrum is the
combined result of impedance renormalization by the evanescent waves, plus their interaction with a high dissipative medium. Such an
effect was previously observed and qualitatively explained for a profiled acoustic diffuser structure (99). For comparison, the absorption
spectrum of the idealized case is delineated by the dashed lines (see Figure 10). Panels a and b adapted from References 39 and 39a.

By adding a layer of acoustic sponge in front of the metamaterial, the air density ρ0 should be
replaced with the effective density of sponge ρsponge in Equation 54. Because ρsponge has a very large
imaginary part, the renormalized resonances become highly damped so that, at both the resonances
and antiresonances of the combined system, the real part of

∑16
n=1 g (e)

n /16 is zero, leaving only a
nonzero imaginary part. As a result, there is a positive real part for Z that is nearly flat as a function
of frequency, owing to the designed mode density rule discussed above.

By setting β = 7.1 Hz in Equation 49, the renormalized impedance with Equation 53b predicts
the surface impedance and absorption for a bare metamaterial sample (see Figure 12a). To predict
the absorption spectrum of the combined sample, comprising a 1-cm sponge in front of the de-
signed metamaterial, the effective density of the sponge was set as ρsponge = [1.4 + i (1, 420Hz)/ω]ρ0

(following Equation 9). The results are shown in Figure 12b, which indeed displays good agree-
ment with the target spectrum as derived from the idealized model and with the theory prediction
based on Equations 53 and 54.

7. CONCLUDING REMARKS AND OUTLOOK

This review surveys sound-absorbing structures ranging from conventional materials with porous
microstructures to acoustic metamaterials and to the most recently reported structures designed
by custom-set targets. The role of constraints imposed by geometry, symmetry, and causality is
especially emphasized, as such constraints determine what is attainable. Further development of
sound-absorbing structures should push these boundaries by altering the basis of the constraints.
Such developments could involve, for example, changing the nature of the absorbing structures
from passive to a combination of passive and active or altering the geometric and symmetry of the
structures to fit some particular applications. The phase space of the possibilities is enormous in
terms of opportunities for basic research and applications, and one can only be optimistic about
future developments.
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anischen Spannungserscheinungen. Sitzungsber. Akad. Wiss. Math. Naturwiss. KI Abt. IIa 182:125–38
50. Biot MA. 1941. General theory of three-dimensional consolidation. J. Appl. Phys. 12:155–64

112 Yang · Sheng

A
nn

u.
 R

ev
. M

at
er

. R
es

. 2
01

7.
47

:8
3-

11
4.

 D
ow

nl
oa

de
d 

fr
om

 w
w

w
.a

nn
ua

lr
ev

ie
w

s.
or

g
 A

cc
es

s 
pr

ov
id

ed
 b

y 
20

3.
18

6.
7.

11
3 

on
 0

7/
11

/1
7.

 F
or

 p
er

so
na

l u
se

 o
nl

y.
 

https://doi.org/10.1039/c7mh00129k


MR47CH05-Sheng ARI 7 June 2017 8:25

51. Biot MA. 1956. Theory of deformation of a porous viscoelastic anisotropic solid. J. Appl. Phys. 27:459–67
52. Biot MA. 1956. Theory of propagation of elastic waves in a fluid-saturated porous solid. I. Low-frequency

range. J. Acoust. Soc. Am. 28:168–78
53. Biot MA. 1956. Theory of propagation of elastic waves in a fluid-saturated porous solid. II. Higher

frequency range. J. Acoust. Soc. Am. 28:179–91
54. Delany M, Bazley E. 1970. Acoustical properties of fibrous absorbent materials. Appl. Acoust. 3:105–16
55. Allard JF, Champoux Y. 1992. New empirical equations for sound propagation in rigid frame fibrous

materials. J. Acoust. Soc. Am. 91:3346–53
56. Lafarge D, Nemati N. 2013. Nonlocal Maxwellian theory of sound propagation in fluid-saturated rigid-

framed porous media. Wave Motion 50:1016–35
57. Nemati N, Lafarge D. 2014. Check on a nonlocal Maxwellian theory of sound propagation in fluid-

saturated rigid-framed porous media. Wave Motion 51:716–28
58. Maa DY. 1998. Potential of microperforated panel absorber. J. Acoust. Soc. Am. 104:2861–66
59. Bolt RH. 1947. On the design of perforated facings for acoustic materials. J. Acoust. Soc. Am. 19:917–21
60. Callaway D, Ramer L. 1952. The use of perforated facings in designing low frequency resonant absorbers.

J. Acoust. Soc. Am. 24:309–12
61. Ingard U. 1953. On the theory and design of acoustic resonators. J. Acoust. Soc. Am. 25:1037–61
62. Ingard U. 1954. Perforated facing and sound absorption. J. Acoust. Soc. Am. 26:151–54
63. Morse PM, Ingard KU. 1968. Theoretical Acoustics. New York: McGraw Hill
64. Maa DY. 1975. Theory and design of microperforated panel sound-absorbing constructions. Sci. Sin.

18:55–71
65. Raleigh JWD. 1929. Theory of Sound. II. New York: MacMillan. 327 pp.
66. Crandall IB. 1926. Theory of Vibration System and Sound. New York: Van Nostrand. 229 pp.
67. Liu J, Herrin D. 2010. Enhancing micro-perforated panel attenuation by partitioning the adjoining

cavity. Appl. Acoust. 71:120–27
68. Wang C, Huang L. 2011. On the acoustic properties of parallel arrangement of multiple micro-perforated

panel absorbers with different cavity depths. J. Acoust. Soc. Am. 130:208–18
69. Wang C, Huang L, Zhang Y. 2014. Oblique incidence sound absorption of parallel arrangement of

multiple micro-perforated panel absorbers in a periodic pattern. J. Sound Vib. 333:6828–42
70. Park SH. 2013. Acoustic properties of micro-perforated panel absorbers backed by Helmholtz resonators

for the improvement of low-frequency sound absorption. J. Sound Vib. 332:4895–911
71. Yang Z, Mei J, Yang M, Chan N, Sheng P. 2008. Membrane-type acoustic metamaterial with negative

dynamic mass. Phys. Rev. Lett. 101:204301
72. Yang M, Ma G, Wu Y, Yang Z, Sheng P. 2014. Homogenization scheme for acoustic metamaterials.

Phys. Rev. B 89:064309
73. Bliokh KY, Bliokh YP, Freilikher V, Savelev S, Nori F. 2008. Unusual resonators: plasmonics, metama-

terials, and random media. Rev. Mod. Phys. 80:1201–13
74. Xu Y, Li Y, Lee RK, Yariv A. 2000. Scattering-theory analysis of waveguide-resonator coupling. Phys.

Rev. E 62:7389–404
75. Chen Y, Huang G, Zhou X, Hu G, Sun CT. 2014. Analytical coupled vibroacoustic modeling of

membrane-type acoustic metamaterials: membrane model. J. Acoust. Soc. Am. 136:969–79
76. Chen Y, Huang G, Zhou X, Hu G, Sun CT. 2014. Analytical coupled vibroacoustic modeling of

membrane-type acoustic metamaterials: plate model. J. Acoust. Soc. Am. 136:2926–34
77. Ivansson SM. 2012. Anechoic coatings obtained from two-and three-dimensional monopole resonance

diffraction gratings. J. Acoust. Soc. Am. 131:2622–37
78. Wen J, Zhao H, Lv L, Yuan B, Wang G, Wen X. 2011. Effects of locally resonant modes on underwater

sound absorption in viscoelastic materials. J. Acoust. Soc. Am. 130:1201–208
79. Meng H, Wen J, Zhao H, Lv L, Wen X. 2012. Analysis of absorption performances of anechoic layers

with steel plate backing. J. Acoust. Soc. Am. 132:69–75
80. Achilleos V, Richoux O, Theocharis G. 2016. Coherent perfect absorption induced by the nonlinearity

of a Helmholtz resonator. arXiv:1601.03912 [physics.class-ph]
81. Godwin R. 1972. Optical mechanism for enhanced absorption of laser energy incident on solid targets.

Phys. Rev. Lett. 28:85–87

www.annualreviews.org • Sound Absorption Structures 113

A
nn

u.
 R

ev
. M

at
er

. R
es

. 2
01

7.
47

:8
3-

11
4.

 D
ow

nl
oa

de
d 

fr
om

 w
w

w
.a

nn
ua

lr
ev

ie
w

s.
or

g
 A

cc
es

s 
pr

ov
id

ed
 b

y 
20

3.
18

6.
7.

11
3 

on
 0

7/
11

/1
7.

 F
or

 p
er

so
na

l u
se

 o
nl

y.
 



MR47CH05-Sheng ARI 7 June 2017 8:25

82. Freidberg J, Mitchell R, Morse RL, Rudsinski L. 1972. Resonant absorption of laser light by plasma
targets. Phys. Rev. Lett. 28:795–99

83. Kindel J, Lee K, Lindman E. 1975. Surface-wave absorption. Phys. Rev. Lett. 34:134–38
84. Yang M, Ma G, Yang Z, Sheng P. 2015. Subwavelength perfect acoustic absorption in membrane-type

metamaterials: a geometric perspective. EPJ Appl. Metamater. 2:10
85. Piper JR, Liu V, Fan S. 2014. Total absorption by degenerate critical coupling. Appl. Phys. Lett.

104:251110
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