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Recent Brillouin scattering experiments have revealed the surprising existence of two acoustic modes
in colloidal suspensions of solid spheres. Through an analytic Green’s-function calculation and numeri-
cal simulations, we show that the higher-frequency mode is associated with the solid-sphere antireso-
nances, and the lower-frequency mode arises from the coupling of internal resonances between neighbor-
ing spheres. Our theory yields excellent agreement with the measured dispersion relations and offers and
explanation for the observed frequency gaps in the excitation spectra.

PACS numbers: 82.70.Dd, 03.40.Kf, 62.65.+k, 68.45.Nj

It is the conventional wisdom that an isotopic, homo-
geneous elastic solid has one longitudinal and two shear
modes, and a fluid has only one longitudinal acoustic
mode. For inhomogeneous materials, however, Biot! has
predicted that it is possible to have two longitudinal
modes in a fluid-saturated porous medium where the fas-
ter wave travels predominantly in the solid frame and the
slow wave travels predominantly in the liquid. These
predictions were indeed confirmed experimentally.?
Here the key element is that both the solid and the fluid
phases must form continuous networks so as to provide
paths of propagation for the two modes. Hence in col-
loidal suspensions, where only the fluid phase is continu-
ous, it is the general expectation that only one longi-
tudinal-acoustic mode exists. At low frequencies, such
expectation has been supported by both theoretical calcu-
lations** and experimental observation.?

Recent Brillouin scattering experiments® on colloidal
suspensions, consisting of monodisperse polymethyl-
methacrylate (PMMA) spheres (370 or 680 nm in diam-
eter) dispersed in oil, have yielded the surprising results
that show whereas in the low-frequency regime there is
indeed only one acoustic mode, at angular frequencies
higher than zc;/d, where ¢, is the fluid wave speed and d
the sphere diameter, there exist two distinct longitudinal
modes whose characteristics vary with the concentration
of the solid spheres. These experimental results directly
challenge our understanding of one of the most basic to-
pics in classical physics. In addition, since the occur-
rence of the two modes coincides with the regime of
strong resonant scattering, even the existence of propa-
gating modes is a surprise and contrary to the conven-
tional view that only diffusive transport® exists in the
strong-scattering regime.

In this Letter, we use a Green’s-function calculation
and numerical simulations to clarify the physical origin
of the two acoustic modes in colloidal suspensions. It is
shown that the two acoustic excitations are quasimodes
with finite lifetimes. Whereas the high-frequency mode
is associated with the antiresonances of a single sphere in
liquid, the low-frequency mode arises from coupling of
internal resonances between neighboring spheres. The
latter is interpretable as a coupled interfacial Stone-

ley wave’ which propagates between adjacent spheres
through the decaying portion of the excitation in the
fluid. Excellent agreement is obtained between theory
and experiment.

A colloidal suspension is characterized by the disper-
sion microgeometry where each spherical solid particle is
individually enveloped by the fluid. This microgeometry
is to be contrasted with the alternate possibilities in
which the particles can cluster and touch. To carry out
Green’s-function calculations, we take into account this
strong short-range correlation between the solid and fluid
phases by considering as the basic scattering unit a coat-
ed sphere, where the fluid coating thickness s is deter-
mined by the solid particle concentration ¢=(1+2s/
d) 73 To calculate the effective macroscopic properties
of tiie system, the coated sphere is embedded in a homo-
genized effective medium composed of similar units of
coated spheres, with the effective-medium speed(s) ¢ of
the medium to be determined by some self-consistent
condition. In the coherent-potential approximation®
(CPA), such a condition is achieved by requiring the
vanishing of the forward-scattering amplitude f(0)
through the adjustment® of . The condition is noted to
be self-consistent in the following sense. If we let G
denote the exact Green’s function for an acoustic wave in
the colloidal system, then?®

G=G()+G()TG(), (1)

where Gy is the Green’s function for the homogeneous
effective medium and T denotes the exact total scatter-
ing operator (including all the multiple scattering be-
tween particles). By expressing Go=(p2—¢?2) ~!, with
g =w/c¢ and p the momentum variable, the CPA condi-
tion for Eq. (1) is (T) =0 through the adjustment of gq.
When that happens, {G) =G, and gq is identified as the
wave vector of the excitation. Since (T)=nt in the
weak-scattering limit, where ¢ is the single-coated-sphere
scattering operator and n the sphere density, f(0) =14,
=0 is therefore the condition not only for determining g,
but also for justifying the weak-scattering assumption
so that the problem may be cast in the single-scatterer
Sform in the first place.

In this work, a generalized version of the CPA condi-
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tion is used to identify the excitation modes in colloidal
suspensions. That is, instead of requiring (7) =0, we
wish to identify the g value(s) at which the single-
coated-sphere scattering is at a local minimum for a
wave of given frequency w. The fact that the scattering
does not vanish means (G)=(p2—g2?—%) 7', where the
self-energy Z==nt to the first order in scattering strength.
Here the real part of X renormalizes g2, and the imagi-
nary part of £ gives the mean free path, or lifetime, of
the quasimode(s).

To calculate the Green’s function for a single coated
sphere embedded in an effective medium, we start from
the elastic wave equation’ for each of the three homo-
geneous regions:

2
— =Vt (cZ—cHV(V-u), (2)

where u is the displacement, ¢, is the longitudinal and c,
the shear wave velocities. For the fluid coating and the
effective medium, ¢, =0. By decomposing u=—Vy
+VXA, with the vector potential A being further ex-
pressed as A =VXr&, we get a pair of Helmholtz equa-
tions for y and £. Here v is directly proportional to the
density variation, V-u. Since in Brillouin scattering the
light is coupled to thermal excitations through refrac-
tive-index changes induced by density variations, the
relevant Green’s function is that for measuring the y
response to a point scalar source, i.e.,

[V +0?/c}()]g,(r,r) =5t —1"), (3
where ¢, (r) =c¢, =2.7x10° cm/sec for r <d/2, ¢,(r) =¢,
=1.2x10° cm/sec for d/2 <d/2+s, and c,(r) =w/q for
r=s+d/2. For the ¢ field, on the other hand, we have
(V 4+ w?¥/ct)ge(r,r') =0 for r <d/2, where ¢, =1.1x10°
cm/sec, and g; =0 otherwise. The g, and g: are coupled
by the boundary conditions, i.e., continuity of normal
displacement and normal stress, and tangential stress
equals zero at » =d/2; and the continuity of normal dis-
placement and stress at r =d/2+s. Here we have taken
the fluid to be inviscid. The effect of viscosity is investi-
gated by numerical simulations to be described later.
The Green’s function g,(r,r') is obtained by solving
three boundary-value problems where the source point r'
is located in each of the three spatial regions (sphere,
coating, and the effective medium). By Fourier trans-
forming g,(r,1'), we get g,(p1,p2,¢;®), where the depen-
dence on g and o is explicitly noted. Since
g2=Go+GotGy, the scattering operator ¢t for a single
coated sphere may thus be obtained. In accordance with
the discussion above, the final result of our calculation is
the density of states (DOS), —Im(G)/x, evaluated with
the condition of elastic scattering so that |p;| =|p2| =p
=gq. Since (G)=(p?—¢q?—2) '=(p?—g’—m) ", at
p=q we have G= — (nt) ~! so that the maxima of DOS
correspond directly to minima in scattering.

In Figs. 1(a) and 1(b) we plot the DOS as a function
of dimensionless frequency, wd/c;, and gd for ¢ =0.38
and 0.51, respectively. It should be noted that there are
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Density of states (DOS) plotted as a function of
wd/c; and qd. The magnitude of DOS is delineated by color,
where high is indicated by red and low is indicated by blue.
Yellow is intermediate. The dispersion relation of the fluid
would be a straight line with slope 1. Experimental data are
shown as solid circles. The bars indicate their frequency
widths. The arrows on the sides indicate the frequency posi-
tions of the scattering cross-section peaks for a single sphere in
fluid. (a) ¢=0.38 and (b) ¢ =0.51.

FIG. 1.

no adjustable parameters in our calculations. Two bands
of ridges are clearly seen in red and yellow. They corre-
spond remarkably well to the experimentally observed
dispersion relations for the two acoustic modes, shown as
black points with bars indicating the measured frequency
width. While not shown, our calculations also indicate
that (1) below ¢=0.2 the two dispersion relations merge
and become indistinguishable from the fluid dispersion
relation, and (2) regardless of ¢, at high ¢ (= 20) the
high-frequency mode tends to converge to the fluid
dispersion relation. Both are in agreement with experi-
mental observations. The black arrows on the sides indi-
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cate the frequency positions of the peaks in scattering
cross section for a single sphere in fluid. They are the
key to understanding the physical origin of the two
modes as shown below.

For the high-frequency mode, the positions of the ar-
rows correspond directly with the gaps in the calculated
dispersion relations. The first gap is clearly seen in the
experimental results for both ¢ =0.38 and 0.51 and the
second gap and hint of a third are also visible; although
for the higher gaps their frequency positions do not agree
with the theory as well. What this indicates is that the
high-frequency mode results from the antiresonance con-
dition for the single-sphere scattering. The fact that the
minima are nonzero implies that the excitations are
quasimodes with finite lifetimes.

For the low-frequency mode, on the other hand, the
frequency positions of the scattering peaks as indicated
by the arrows are noted to coincide with the peaks of the
DOS, and in Fig. 1(a) the calculated gap in its disper-
sion relation is seen to correspond reasonably well with
the experimentally observed one. The low-frequency
mode is therefore the direct result of single-sphere reso-
nances, in contrast to the high-frequency mode. The
minima of the scattering, as evidenced by the maxima of
DOS, are the consequence of interaction between neigh-
boring spheres and the resulting split of a single reso-
nance mode into two, with a (nonzero) scattering
minimum in between. As seen from the point of view of
an individual sphere, the interaction with neighboring
spheres may be represented by some particular value of
the wave impedance at the coating-effective-medium in-
terface. Since the effective-medium g is treated as a
variable, we are thus able to pick up the scattering
minimum by scanning its value.

The relevant single-sphere resonances discussed above
depend crucially on the shear modulus of the solid
sphere. They are analogous to the “surface modes™ of
small metallic spheres'® that may be viewed as an exten-
sion of the surface plasmon to the spherical geometry.
Here the relevant flat-surface excitation is the Stoneley
mode for the solid-liquid interface (which disappears if
the solid shear modulus vanishes). Since the high-
frequency mode depends on the antiresonance condition
whereas the low-frequency mode depends on the reso-
nance condition (with interaction), they are expected to
exhibit distinct behaviors as the shear modulus varies.
Figure 2 demonstrates the effects of the shear modulus
on the two modes. At a fixed frequency, the DOS is
plotted as a function of g. Two peaks are clearly seen.
As the shear modulus is progressively decreased, the
high-frequency mode (low-gq peak) shows only minor
perturbations, but the low-frequency mode not only
shifts to higher ¢ (lower frequency for a fixed ¢) but also
diminishes in its amplitude, indicating that the shear
modulus is responsible for the strength of the low-
frequency mode. A valid physical picture that emerges
is therefore one of “surface Stoneley modes” coupled
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FIG. 2. DOS at a given frequency plotted as a function of
qd. The two peaks correspond to the two quasimodes. The
dashed and dotted lines correspond to calculations where the
shear modulus of the solid sphere is progressively decreased
from its physical value to 0.64 and 0.46 times of its physical
value.

through their decaying portions in the fluid. Further
support for this picture is found in the fact that both in
theory and in experiment the speed of the low-frequency
mode approaches that of the Stoneley wave (Csoneley
=0.86x10> cm/sec) at the large-g limit,” where the
surface-curvature effect becomes negligible. In contrast,
for the high-frequency mode the disappearance of
shear-induced resonances only implies the disappearance
of gaps in its dispersion relation.

It should be noted that the observed frequency widths
always seem to be larger than those calculated, and the
higher-frequency gaps do not agree well with the theo-
retical positions. This could be due to the effect of
viscosity as well as to enhanced scattering induced by
disorder, which has been homogenized in our calculation.
Also, the low-frequency mode is noted to have a dip in
its dispersion relation for the ¢ =0.51 case that is not
reproduced by theory. This is clearly a short-range-
order effect, which is also absent in our present version of
the calculation.

To further check our theory and the effects of fluid
viscosity, we use finite differencing to simulate the wave
behavior in two spatial dimensions. Here the relevant
equations are the elastic wave equation for the solid re-
gion and the linearized Navier-Stokes equation for the
fluid region, with the compressibility condition V-v
= —k ~'9p/dt, where v is the displacement velocity, «
the fluid bulk modulus, and p the pressure. The bound-
ary conditions of displacement velocity continuity and
traction continuity are applied across interfaces.!' A
line time-harmonic source with frequency w is placed on
one side of a 600x600 grid. Solid circles are randomly
placed on the grid, with twenty points across the diame-
ter of each circle. The discretized partial differential
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FIG. 3. Amplitude of V-v for the two modes plotted along a
line perpendicular to the direction of wave propagation. The
frequency used is wd/c;=7.5. The dashed line denotes the
low-frequency mode. The solid line denotes the high-frequency
mode. Regions of solid and liquid are indicated by .S and L, re-
spectively, at the bottom of the figure. The low-frequency
mode is noted to have a cusp at the liquid-solid interface.

equations are numerically integrated forward in time.
After a suitably long integration time, the integration is
stopped and the spatial distribution of V-v is Fourier
transformed into the q domain. The Fourier amplitudes
can then be plotted as a function of |q| for a given w.
Two peaks are clearly seen, thus directly verifying the
existence of the two modes in a two-dimensional system.
The dispersion relations of the two modes are also quali-
tatively similar to that shown in Fig. 1, and the effect of
decreasing the shear modulus is exactly the same as that
shown in Fig. 2. We have further simulated systems
with polydispersity. Similar results were obtained, indi-
cating the general robust nature of the phenomenon.

The effect of fluid viscosity has been examined. We
found that unless the viscosity is unphysically large, its
presence only causes minor corrections to the positions
and widths of the two peaks.'? We can thus rule out
viscous coupling as a basic cause for any one of the two
observed modes.

Numerical simulation enables us to obtain a micro-
scopic picture of the two modes. Each of the two peaks
in the |q| plot can be separately Fourier transformed to
the spatial domain. Figure 3 gives a view of the V- v am-
plitude for the two modes in a line perpendicular (y
direction) to the direction of wave propagation (x direc-
tion). In this case the line cuts through the center of two
circles. It is seen that the amplitudes of both modes are

higher in the fluid than in the solid. This is consistent
with our observation that both modes result from scatter-
ing minima. Also, whereas the amplitude of the high-
frequency mode crosses the solid-liquid interface smooth-
ly, the low-frequency-mode amplitude exhibits a cusp at
the interface, indicating its Stoneley-wave origin.

At present, further considerations are given to the role
of short-range order and the acoustic-wave-localization
characteristics. The interesting possibility that similar
mode structure might be observed for electromagnetic
waves propagating in metallic suspensions is also being
pursued.
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FIG. 1. Density of states (DOS) plotted as a function of
wd/c; and gd. The magnitude of DOS is delineated by color,
where high is indicated by red and low is indicated by blue.
Yellow is intermediate. The dispersion relation of the fluid
would be a straight line with slope 1. Experimental data are
shown as solid circles. The bars indicate their frequency
widths. The arrows on the sides indicate the frequency posi-
tions of the scattering cross-section peaks for a single sphere in

fluid. (a) $=0.38 and (b) ¢=0.51.



