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Optimal sound-absorbing structures†

Min Yang, a Shuyu Chen,b Caixing Fuab and Ping Sheng *ac

The causal nature of the acoustic response dictates an inequality

that relates the two most important aspects of sound absorption:

the absorption spectrum and the sample thickness. We use the

causality constraint to delineate what is ultimately possible for

sound absorbing structures, and denote those which can attain

near-equality for the causality constraint to be ‘‘optimal.’’ Anchored

by the causality relation, a design strategy is presented for realizing

structures with target-set absorption spectra and a sample thick-

ness close to the minimum value as dictated by causality. By using

this approach, we have realized a 10.86 cm-thick structure

that exhibits a broadband, near-perfect flat absorption spectrum

starting at around 400 Hz, while the minimum sample thickness

from the causality constraint is 10.36 cm. To illustrate the versatility

of the approach, two additional optimal structures with different

target absorption spectra are presented. This ‘‘absorption by design’’

strategy would enable the tailoring of customized solutions to

difficult room acoustic and noise remediation problems.

Sound absorption is important for room acoustics and remedia-
tion of noise that can arise from machines, rail cars, or cooling
fans of computer server arrays in search engines or cloud
computing. The traditional means of acoustic absorption, such
as porous and fibrous,1–3 or gradient index materials,4 can be
either bulky or structurally weak. Micro-perforated panels (MPP)
with a tuned cavity depth behind the panels are effective for
indoor sound absorption within a certain frequency range,5–7

but are not broadly applicable. During the past decade, locally
resonant artificial structures,8–14 acoustic metamaterials,15,16

and metasurfaces17,18 have shown diverse functionalities in the
manipulation of sound such as negative refraction,19–21 subwave-
length imaging,22–24 cloaking,25,26 one-way transmittance,27,28 and

even highly efficient sound absorption within a compact
volume.29–43 However, due to the dispersive nature of the reso-
nances, these applications are generally narrowband in character. It
is thus reasonable to ask whether there is a way to define the ‘‘best’’
absorber performance and its associated limitations. In particular,
the question regarding the limiting minimum thickness for a given
absorption performance would be of special interest, since in the
absence of the thickness consideration the problem of sound
absorption becomes trivial. Defining the limit can inform us of
the potential that may still exist for better absorption performance,
so as to induce efforts for improvement.

Causal optimality in sound absorption

Material response functions for the electromagnetic and acoustic
waves must satisfy the causality principle.44 For the electro-
magnetic waves, the causal nature of the material response
function was found to result in an inequality that relates a given
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Conceptual insights
Conventional sound absorbing materials have fixed absorption spectra
which can only be adjusted by varying the sample thickness. The effective
absorbers for low frequency sound are usually bulky. In recent years
acoustic metamaterials have diversified the functionalities of sound
manipulation, including sound absorption. However, they are inherently
constrained by the narrow frequency band character and hence are some-
what limited in their usefulness. It would therefore be most desirable if a
sound absorber can be designed to fit the noise spectrum, with the
minimum allowed thickness. Such sound absorbing structures can now
be realized through a design recipe that incorporates the causality con-
straint on the acoustic response. The strategy involves the use of acoustic
metamaterials with multiple resonances at calculated frequencies to attain
the target absorption spectrum. A crucial parameter of the design is then
fixed by requiring the resonance mode density to satisfy the causality
constraint, in the form of a minimum sample thickness requirement. In
this work we demonstrate this sound absorber design strategy by imple-
menting three examples. In all cases the absorption performance in the
target frequency range is without peer, with a sample thickness that is
guaranteed to be the minimum allowed by the law of nature.
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absorption spectrum to the sample thickness.45,46 Adapted
to acoustics, this relation (for sound waves propagating in air)
can be expressed in the following form for a flat absorbing
material (or a structure) with thickness d sitting on a reflecting
substrate:

d � 1

4p2
Beff

B0

ð1
0

ln½1� AðlÞ�dl
����

���� ¼ dmin; (1)

where l denotes the sound wavelength in air, A(l) is the
absorption coefficient, Beff denotes the effective bulk modulus
of the sound absorbing structure in the static limit, and B0

is the bulk modulus of air. A detailed derivation of eqn (1) is
given in the ESI.† We define a sound absorbing structure to
be optimal if equality or near-equality can be attained in
the above relation. Some obvious implications immediately
follow from eqn (1). For example, the total absorption within
a finite frequency range is not possible for any sample of finite
thickness. Also, high absorption at low frequencies would dominate
the contribution to sample thickness. However, A(l) B 1 at a
low frequency is entirely possible for a subwavelength sample
thickness,30,31 provided the absorption peak is narrow.

In the limit of equality, eqn (1) can be satisfied with tradeoffs
between three parameters: the sample thickness, frequency band-
width, and the magnitude of the absorption coefficient within the
frequency band. By specifying two out of three parameters, the
other one can be optimized. Here we present a design strategy that
can realize the target A(l) spectrum with the minimum required
sample thickness. In particular, a sound absorbing structure is
presented that can achieve a flat, near-perfect absorption spectrum
starting at 400 Hz. While the actual sample thickness is 10.86 cm,
the right-hand side of eqn (1) is shown to yield 10.55 cm. In the
ESI,† we show that a similar optimal sample, with d = 5.93 cm,
can display the same flat, near-perfect absorption spectrum
above 752 Hz. A third optimal sample is shown to reproduce a
rather artificial made-up target A(l) that has a ‘‘notch’’ in the
middle of a near-perfect flat absorption spectrum; it can thereby
selectively reflect sound within a certain frequency range. In all
the designs the causal optimality is built-in, as the means to
determine a crucial geometric parameter.

Strategy for absorption by design

Consider a designed acoustic metamaterial, with N resonances,
that are constrained by an overall objective A(l) that is
related to the target sample impedance Z by the relation
A = 1 � |(Z/Z0 � 1)/(Z/Z0 + 1)|2. The overall impedance of the
metamaterial can be expressed as30,47

Z ¼ i
Z0d

ov0

XN
n

an
On

2 � o2 � ibo

" #�1
; (2)

where Z � p/v denotes the surface impedance, p being the
sound pressure modulation and v the displacement velocity
in response to the pressure at the surface of the metamaterial,
v0 = 343 m s�1 is the speed of sound in air, Z0 = r0v0 is the air
impedance, r0 being the air density, o is the angular frequency,

On denotes the nth resonance frequency, and b { o describes
the weak system dissipation for the acoustic metamaterial. In
this work, we choose Fabry–Pérot (FP) resonators for realizing
the acoustic metamaterial structure, and in that case the dimen-
sionless oscillator strength an = 4dfOn/(pv0N) for the 1st order FP
resonances, which will be used for the design strategy presented
below. Here the parameter f is the ratio of the surface area
occupied by FP channels’ cross sections to the total surface area
exposed to sounds. It is a geometric measure of the resonant
channels’ coupling to the incident sound. As can be seen below,
the parameter f ties together the causality constraint with the
sample design parameters. Also, from the ESI† it can be shown
that Beff = B0/f. It should be noted that for eqn (2) to be an
accurate description, the lateral size of the metamaterials’ unit
must be very subwavelength in scale so that the diffraction
effects can be neglected. This is indeed a reasonable approxi-
mation in the present work.

In the idealized case where we have a large N so that
the summation in eqn (2) can be approximated by an integral
with ON - N, the summation in eqn (2) can be replaced by
integration:

ZðoÞ ’ i lim
b!0

Z0d

ov0

ð1
0

aðOÞDðOÞ
O2 � o2 � ibo

dO
� ��1

; (3a)

where D(O) denotes the mode density per unit frequency; it is
an important function that must be determined in accordance
with the target absorption spectrum. In eqn (3), the imaginary part
of the impedance is generally negligible, owing to the oscillatory
nature of the real part of the integrand in the square bracket.
In the limit of b - 0, the imaginary part of the integrand is
accurately a delta function, hence we have

ZðoÞ’ Z0d

pov0

ð1
0

aðOÞDðOÞd o2�O2
� �

dO
� ��1

¼2Z0d

pv0
½aðoÞDðoÞ��1:

(3b)

By definition we have D(O) = Dn/DO, hence from eqn (3b)
DO/Dn = pv0a(O)Z(O)/(2Z0d). As a(O) = 4dfO/(Npv0), it follows
that DO/Dn = (2fO/N)[Z(O)/Z0]. By allowing Dn/N - d %n in the
limit of N -N, with %n = (n � 1)/N, we have

dO
d�n
¼ 2f

ZðOÞ
Z0

� �
O; (4)

where %n is treated as a continuous variable. Eqn (4) relates the
necessary mode distribution to the target impedance. Below
we specialize to the example of a broadband absorber for
illustrating the design strategy. In that case we want to have a
flat Z = Z0 when O 4 Oc and Z0/Z = 0 when O o Oc. Eqn (4) can
be solved under the initial condition of O = Oc at %n = 0, so that
O %n = Oc exp[2f %n]. It can be easily seen that a(O)D(O) = 2d/(pv0)
is a constant for O 4 Oc, and the integral in eqn (3) can be
obtained to yield

Z

Z0
¼ p

p� 2i tanh �1 Oc=oð Þ: (5)

The behavior for the real and imaginary parts of Z is shown in
Fig. 1a. The imaginary part, owing to the oscillatory nature of
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the integrand in eqn (3), rapidly decays to zero for o 4 Oc.
However, the real part of the impedance is seen to approach the
impedance matching condition Z/Z0 = 1 beyond Oc. The absorp-
tion spectrum can be calculated from eqn (5):

A ¼ 1� tanh �1 Oc=oð Þ
p� i tanh �1 Oc=oð Þ

����
����
2

: (6)

This is plotted in Fig. 1b. In this idealized case, just the acoustic
metamaterial alone can already achieve near-perfect broadband
absorption, requiring only an infinitesimal dissipation coefficient.

Causality constraint and the optimal /
for attaining minimum thickness

As the parameter f appears explicitly in O %n, its value is required
to realize the optimal design. By substituting A(l) as expressed
by eqn (6) into eqn (1), with l = 2pv0/o and Beff = B0/f as
noted above, we obtain dmin = 2v0/(fOcp). Since each first order
FP resonance frequency is associated with a channel length
ln = pv0/(2On), it follows from volume conservation of the FP
channels that the optimal thickness of the sample, assuming
that the longer channels can be folded so as to form a compact

volume, is given by �d ¼
PN
n¼1

‘n=N ¼ ½1� expð�2fÞ�pv0= 4fOcð Þ.

By setting dmin = %d, a value of fc = 0.832 is obtained in this
particular case. In this manner the causal optimality is expli-
citly built into the design algorithm to minimize the sample
thickness, which is always crucial for comparison between
different absorption samples as well as for their practical
applications.

It should be noted that in the above, the folding of the
channels should not change the front surface area exposed to
the incident wave, i.e., the value of f should remain unchanged
by channel folding.

The value of f has two separate effects. One is in the
determination of O %n and hence the mode density, which is
the most important aspect. Since O %n depends only on channel
length, this aspect is not directly dependent on the actual
definition of f as the area fraction of FP channels’ cross
section. The second effect of f is more directly related to its
definition since the fraction of the solid surface, 1 � f, can
affect the surface impedance. However, this second aspect can
easily be shown to have only a minimal effect on the overall
absorption (see Fig. S6 in the ESI†).

It should also be noted that since dmin is evaluated with the
target absorption spectrum, the condition of dmin = %d is also a
consistency condition for optimally achieving the target absorp-
tion spectrum.

Higher order FP resonances, which become numerous as the
frequency increases, can present an adjustment to the initial
design. A detailed algorithm, which takes into account all the
higher order FP resonances, is presented in the ESI.† The
altered mode density, with a distribution that is super-linear
in %n for lnO %n, can in turn provide an adjusted foptimal = 0.982 in
the present case. In all the implementations described below,
the exact design algorithm was employed. As the actual value
of f in our samples is determined by the thickness of the
walls separating the FP channels, it is not possible to realize
foptimal = 0.982 in practice. However, as long as the mode
distribution and hence the FP channel lengths are designed
in accordance with the foptimal value, the actual value of f = 0.8
only degrades the absorption result slightly (see Fig. S6 in the
ESI†). However, if a value of f differing from foptimal is used in
the FP channel length design, then it can be easily shown by
simulations that the resulting absorption spectrum would be
degraded from the target spectrum.

Metamaterial unit and its
characteristics

To implement the designed structure, we let N = 4 � 4 = 16 FP
channels compactly arrayed into an acoustic metamaterial in
the shape of a cuboid with a square cross section, L = 2.285 cm
on one side. A single unit is shown in Fig. 2a. Each FP channel
has a square cross section that is B4.925 mm on the side,
separated from each other with a 0.7 mm thick wall. This
implementation gives a value of f = 0.80, which is smaller than
the optimal value. However, the cn’s are designed in accordance
with foptimal = 0.982. The position of each channel in the unit is
shown in Fig. 2a, where the length of each channel decreases
with increasing n. We fold the longer channels in order to obtain
a compact structure that can approach %d. The folding, designed
by computer simulations, can be seen for the blue-, pink-, and
orange-colored channels as shown in Fig. 2a. In our particular
case %d = 10.27 cm, whereas the actual sample has a thickness
d = 10.56 cm. In Fig. 2b (in red) 14 (of the 16) 1st-order FP
resonance frequencies and their oscillator strengths (the highest
O16 = 4834 � 2p Hz) are shown, with the associated second and
third resonances shown in blue and green. The arrangement of

Fig. 1 Broadband sound absorption and the optimally designed surface
impedance. Here we consider an idealized acoustic metamaterial with
continuously distributed resonance frequencies above a cutoff Oc. If the
density of the mode D(O) satisfies a(O)D(O) = 2d/(pv0) with a(O) being the
oscillator strength, then the surface impedance Z has the behavior as
shown in (a), in which the real part quickly approaches the air impedance
Z0 above the cutoff Oc, whereas the imaginary part decays towards zero.
As the imaginary part of Z contributes to the magnitude of reflection only
in the form of [Im(Z/Z0)]2, its effect on absorption rapidly diminishes
beyond Oc. In this idealized case the acoustic metamaterial by itself can
exhibit a near-perfect absorption spectrum above Oc, as shown in (b).
Substituting such an absorption spectrum into eqn (1) leads to an inequality
d Z dmin = 2v0/(Ocp). For Oc/2p = 345 Hz and the absorption spectrum
shown in (b), dmin = 10.25 cm.
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the 16 channels within the metamaterial unit (shown in Fig. 2a)
is optimized subject to the geometric requirements of channel
folding. Reflection R has been measured by arranging four
units (a photo image is shown in Fig. 2a) in a square, placed
against a reflecting wall (see the illustration in Fig. 3a). From
the measured R the sample impedance Z/Z0 = (1 + R)/(1 � R) can
be deduced. They are shown by the blue circles in Fig. 2c. It can
be seen that they oscillate around Z/Z0 = 1. This is expected,
since we have only 16 discrete resonances; here the peaks can
be associated with the anti-resonances.13

By treating each FP channel to be independent from the
others, the impedance of the metamaterial unit can be written as

Z ¼ i

o
1

16

X16
n¼1

gn

 !�1
; (7)

in which gn represents the exact Green function for the FP

resonator, gn ¼ f tan o‘n
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ ib=oÞr0=B0

p� 	
= oZ0ð Þ (see the

ESI†), with all the higher order FP modes included. For each
resonator, the normal component of the air displacement velo-
city vn at the mouth of the nth channel is given by vn = �iognp.

It can be easily appreciated that Z should display oscillations as
shown by the measured results. However, if a 3 mm layer of acoustic
sponge is placed on top of the unit, then the measured impedance is
shown by the red circles in Fig. 2c. All the oscillations almost
completely vanish. Such behavior was previously observed,48 but
without the sample thickness or absorption-by-design considera-
tions. The latter are the foci of this work. In particular, it should be
noted that without the pre-designed mode density, the flat absorp-
tion feature cannot be obtained even with the addition of the
sponge; hence design is still the key. Below we show this ‘‘absorption
valley-filling’’ effect by the acoustic sponge is due to the surface
impedance renormalization effect by the evanescent waves, and
their interaction with a highly dissipative medium.

Renormalized impedance from
evanescent waves and the dissipation
effect

For frequencies that are much less than 15 kHz, we have L { l.
In this regime, not only the angular effect of the incident wave

Fig. 2 Metamaterial unit and its features. (a) Schematics of the metamaterial unit consisting of 16 Fabry-Pérot (FP) channels, arrayed in a 4 � 4 square
lattice. The channel’s number denotes its order in the sequence of decreasing lengths. Blue channels are coiled by 3 foldings, pink channels are coiled by
2 foldings, orange channels are coiled by 1 folding, and the green channels are straight. The transparent cyan block represents the sponge placed on
channels’ top surface. A photo image of a sample comprising 4 units arranged in a mirror-symmetric pattern is shown in the lower left panel. (b) The
oscillator strength an of the FP channels’ resonances is plotted as a function of frequency, up to 3000 Hz. The plot shares the same horizontal axis with
(c). The red line is for the 1st-order FP resonance, the blue line is for the 2nd-order, and the green line for the 3rd-order. The points indicate the resonant
frequencies, designed so that the mode density (including the higher order FP resonances) is inversely proportional to the magnitude of an. (c) The
surface impedance of the metamaterial unit (blue) and that with 3 mm thick sponge placed on top (red), both plotted as functions of frequency. The
circles are deduced from the measured reflection coefficient while the curves are the theory predictions based on eqn (8) and (9). The red arrow denotes
the frequency at which the simulations were carried out on the sound pressure field, shown in the right panel below. (d) Right panel: The simulated sound
pressure field at 0.22 mm above the front surface of the metamaterial unit at 612 Hz, which is the anti-resonance frequency between the FP resonances
of the 5th and 6th channels (blue and red squares), shown on the left panel. The color is indicative of the pressure amplitude normalized to that of the
incident wave. At anti-resonance, there is no coupling to the propagating modes; only an evanescent mode exists as explained in the text.
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would be minimal, but also the observed impedance of the unit
should be the homogenized effective value. At z = 0, the unit’s
surface has inhomogeneous local impedances; hence, the
pressure should be expressed as p(x), where x = (x,y) denotes
the lateral coordinate. By writing p(x) = %p + dp(x), where %p
denotes the value of p(x) averaged over the surface area of the
unit and dp(x) represents the leftover component; it can be
appreciated that the dp(x) only couples to the evanescent waves
that decay exponentially away from z = 0. This is because from

the dispersion relation we have |kJ|
2 + k>

2 = (2p/l)2; and since
the kJ components from the Fourier transform of dp(x) must be
larger than 2p/l (since L { l), it follows that k>

2 o 0, hence it
is evanescent along the z direction. In contrast, the kJ compo-
nents of %p are peaked at |kJ| = 0; hence, %p couples to the
propagating modes. In Fig. 2d, we illustrate the dp(x) compo-
nent at z = 0.22 mm and 612 Hz by plotting the full wave
simulation results from a normally incident plane wave, carried
out by using the commercial package COMSOL. This particular
frequency (shown by the red arrow in Fig. 2c) is at the anti-
resonance between the 5th and 6th channels’ FP resonances,
defined as %p = 0 so that there are only evanescent waves.

From the above discussion, we expect the measured impe-

dance to be given by %p/%v, where �v ¼
P16
n¼1

vn=16. However, locally

we must have vn = � iogn(%p + dpn) with dpn denoting the value of
dp(x) at the nth FP channel location. The consideration of
evanescent waves implies that eqn (7) should be replaced by a
renormalized impedance given by

ZðeÞ ¼ i

o
1

16

X16
n¼1

gn 1þ dpn
�p


 �" #�1
: (8)

As derived in the ESI,† the lateral interactions between the
different FP channels through evanescent waves can be accu-
rately captured by the renormalized Green function g(e)

n , which
is related to gn by the Dyson equation with a self-energy term:

(g(e)
n )�1 = gn

�1 � o2r0(1 + ib/o)L, (9)

so that ZðeÞ ¼ i o
P16
n¼1

g
ðeÞ
n =16


 ��1
. Here L ¼ 16

P
a
sin2 axp=4ð Þ

sin2 ayp=4
� ��

p4ax2ay2 kaj j
� �

with kaj j ¼ ð2p=LÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ax2 þ ay2

p
for ax,

ay = �1, �2, �3,. . .. The resonance of g(e)
n should occur

at a frequency slightly below the resonance of gn, where
gn
�1 = o2r0L so that (g(e)

n )�1 = 0. In the ESI,† this shift is
calculated and compared with the experiment, with excellent
agreement. In all the calculations, the value b = 11.83 Hz was
used to model the small air dissipation.2 The solid blue line as
shown in Fig. 2c reflects the excellent agreement between the
calculated impedance Z(e) and the measured results.

As can be seen in Fig. 3b, the measured absorption of the
metamaterial unit is shown by blue circles. The solid curve is
calculated using eqn (8) and (9) to evaluate the Z(e) and the
reflection coefficient R, from which A = 1 � |R|2. Except for two
frequency ranges, a very good agreement between theory and
experiment is seen.

By using the absorption spectrum of the FP channels as
shown in Fig. 3b, the integral of the absorption spectrum in
eqn (1) yields dmin = 6.50 cm o d = 10.09 cm, i.e., the
metamaterial unit’s absorption is sub-optimal in character,
owing to the fact that N = 16 is not large enough. To achieve
the optimal absorption performance with 16 resonators, we
added 3 mm of sponge in front of the metamaterial unit. The
separately measured absorption of a 3 mm thick sponge is also
shown in Fig. 3b by the green circles; the measured result was

Fig. 3 Experimental realization of designed sound absorbing structures
and their characteristics. (a) Schematic illustration for the experimental
setups for the impedance tube measurement. (b) The absorption spectrum
of the acoustic metamaterial sample (blue circles), and that for a 3 mm
sponge backed by a reflecting wall (green circles). The blue and green
curves are calculated from theory with the parameter values given in the
text. Each of the red lines in the top bar represents a designed 1st-order FP
resonance. Each blue line and green line represent, respectively, the 2nd
and 3rd order FP resonances. (c) The measured absorption coefficient
(circles) of the sample, comprising the designed acoustic metamaterial
covered by 3 mm of acoustic sponge, is plotted as a function of frequency.
The solid curve is calculated from theory in which the evanescent waves, in
interaction with dissipative acoustic sponge, play a major role in filling the
valleys in the absorption spectrum seen in (b). For comparison, the
spectrum for the idealized case (N - N), Fig. 1, is shown as a dashed
line. Near perfect absorption above the designed Oc = 2p � 345 Hz can be
seen, with excellent agreement between theory and experiment. (d) The
measured absorption coefficient (circles) of a sample designed to have a
‘‘notch’’ in the absorption spectrum between 562 and 995 Hz. The sample
comprises 16 FP resonators with 3 mm of sponge placed in front. Its
absorption behavior outside the notch region is similar to that shown in (c).
The solid curve is calculated from theory. For comparison, the absorption
spectrum for a continuum of resonances, i.e., N - N is shown by the
dashed line. Different colored lines in the top bar have the same meaning
as that shown in (b).
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modeled by treating the sponge as a uniform medium with a
bulk modulus the same as that of air, justified by the fact that
the sound predominantly travels through the pores. The fitted
sponge mass density is given by rsponge = [1.4 + i(1420 Hz)/o]r0.
Here the real part, 1.4r0, can be interpreted as due to the
tortuosity of the pores, which lengthens the time of travel and
hence an effectively lower sound speed. The imaginary part is
two orders of magnitude larger than that for air, due to the small
size of the pores and the inevitably larger viscous boundary layer
dissipation.2 As shown in the ESI,† for the combined meta-
material unit plus the 3-mm sponge to be casually optimal, the
dissipation coefficient of the sponge has to exceed a critical value
of bc = 946 Hz, which is satisfied in the present case.

The significantly larger imaginary part of the sponge mass
density has a dramatic effect on the real part of the impedance.
This can be seen from eqn (9) by replacing r0(1 + ib/o) by
rsponge. The renormalized resonances become highly damped;
consequently, there is a positive real part for Z(e) that is nearly
flat as a function of frequency; i.e., the thin layer of a dissipative
sponge helped to realize the target absorption spectrum in a
very spectacular manner. This can be seen from the red curve in
Fig. 2c, which was calculated from eqn (8) and (9).

Broadband near-perfect sound
absorbers

In Fig. 3c we show the absorption performance of the combined
system, consisting of 3 mm of sponge in front of our designed
metamaterial unit. While the designed cutoff frequency is 345
Hz, there is an absorption tail below that. Above the cutoff
frequency the absorption reaches 90% at 400 Hz and then
increases to an essentially flat, near-perfect absorption all the
way to higher frequencies. The agreement between theory and
experiment is excellent, up to 3000 Hz. Beyond that, it is shown
in the ESI† that the design rule (which includes all the higher
order FP resonances) guarantees near-perfect absorption to be
maintained, an outcome of FP resonances’ equally-spaced
frequencies of the higher order modes. The right-hand side of
eqn (1) is evaluated to be 10.55 cm, whereas our sample
thickness is 10.86 cm. However, if the channel folding can be
improved so that the limit of %d = 10.27 cm is reached, then
the total thickness would be 10.57 cm, i.e., eqn (1) essentially
becomes an equality.

A broadband absorber with strong
reflection at a selected frequency band

In comparison to conventional sound absorbing materials, our
design strategy can greatly expand the freedom in manipulating
the absorption spectrum. As an additional example, shown
in Fig. 3d, a metamaterial unit with 16 differently designed
FP channels, folded into a 9.03 cm thick cuboid with a 3 mm
sponge in front, is shown to open a notch in the absorption
spectrum between 562 and 995 Hz, in which B70% of the
sound energy is reflected. Such an absorption spectrum can be

useful if wall reflection within the selected frequency band
is desired. This sample is noted to be causally optimal as well
and has a lower designed value of foptimal = 0.81. The contrast
between the reflection and absorption bands can be improved
by utilizing more resonance channels. The limiting spectrum,
with a continuum of resonances and no sponge, is delineated
by the dashed line.

Comparison with conventional
absorbers

It would be helpful to know how the metamaterial absorber
compares with the conventional absorbers, such as the acoustic
sponge and MPP. For this purpose, we use samples with the
same thickness of 6 cm.

By setting Oc = 650 Hz, an optimal structure with thickness
d = 5.63 cm has been fabricated. A photo image of the sample is
shown in Fig. 4b. Its absorption performance, with 3 mm of
sponge in front (making the total sample thickness 5.93 cm),
is shown by the red circles in Fig. 4a. It is very similar to
that shown in Fig. 3c, except now the 90% absorption starts at
752 Hz instead of 400 Hz. In the same figure we also plotted, for
comparison, the absorption of a layer of 6 cm acoustic sponge
supported by a reflecting substrate, as well as the absorption
performance of an MPP with a 6 cm-thick back cavity.6 It is
clear that the three causally optimal structures exhibit absorp-
tion behaviors that are very different. But the main point of
the comparison is that the somewhat better performances of
acoustic sponge and MPP at frequencies lower than 752 Hz are
at the expense of higher frequency performance. Within the
target frequency range, i.e., 4900 Hz, the designed metamaterial
absorber has been noted to show the best performance.

Fig. 4 Absorption comparison between conventional acoustic absorp-
tion materials and the designed broadband metamaterial. (a) Comparison
of the absorption spectra for the broadband metamaterial unit covered by
a 3 mm layer of acoustic sponge, with a total thickness of 5.93 cm (red line
denotes theory, red circles denote experiment); the micro-perforated
plate (MPP) (blue line denotes theory, blue pentagons denote experiment);
and a layer of 6 cm-thick acoustic sponge (green symbols denote
measured data). The MPP comprises a 0.2 mm-thick aluminum plate
perforated by 0.2 mm diameter circular holes with an area fraction of
2%. The perforated aluminum plate is backed by a 6 cm cavity. The blue
curve is evaluated from Maa’s theoretical model (eqn (S32) in ESI†), and the
experimental data are from Maa’s original paper.6 The red and blue bars on
top of the figure indicate the primary and secondary resonance frequen-
cies of the metamaterial absorber. In the frequency range of 4900 Hz, the
designed metamaterial absorber displays an average of 5 dB less reflection
than the acoustic sponge. (b) A photo image of the metamaterial unit with
a thickness of 5.63 cm.
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More details on the comparisons and the MPP are given in
Section VI of the ESI.†

Conclusions

We have conceived and implemented a general recipe for fabricat-
ing sound absorbing structures that display minimum sample
thickness as dictated by the causal nature of the acoustic response
function, with a particular realization that can achieve a near-
perfect absorption spectrum starting at 400 Hz. Besides the broad
application potential of the design strategy that offers tunable
absorption spectra, perhaps the most important message of the
present work is that metamaterials can be made to function in a
true broadband fashion by proper design, aided by the utilization
of the synergistic effect presented by evanescent waves, in inter-
action with a small amount of a highly dissipative medium.

Experimental methods

The designed metamaterial unit was fabricated by using 3D printed
polylactide, with fused deposition modeling (FDM) technology. The
measurements of the absorption coefficient were performed using
the impedance tube method complying with ASTM C384-04(2011)
and ASTM E1050-12. As shown in Fig. 3a, a loudspeaker was
mounted on one end of the tube, with the absorber mounted on
the other end. The impedance tube is 30 cm in length and has a
square cross section that is 4.5 cm on each side. Its cross section
size implies a cutoff frequency between 3000 and 3500 Hz, beyond
which the measured results are inaccurate. Two 1/4-inch condenser
microphones (Brüel & Kjær type-4187) were situated at designated
positions to sense the amplitude and phase of local pressure
modulation. The frequency scan was performed by feeding the
sinusoidal signal to a power amplifier and then to the loudspeaker.
The outputs of the two microphones were measured using two
lock-in amplifiers (Stanford Research SR850) referenced by the
same sinusoidal signal. This ensured highly reliable readings of
pressure amplitudes and phases at each frequency.
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A. Alù, Science, 2014, 343, 516–519.

29 J. Mei, G. Ma, M. Yang, Z. Yang, W. Wen and P. Sheng, Nat.
Commun., 2012, 3, 756.

30 G. Ma, M. Yang, S. Xiao, Z. Yang and P. Sheng, Nat. Mater.,
2014, 13, 873–878.

31 X. Cai, Q. Guo, G. Hu and J. Yang, Appl. Phys. Lett., 2014,
105, 121901.
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I.  Causality constraint on sound absorbing structures 

Consider a layer of composite material backed by a rigid reflective wall (Fig. S1a). In response to an 

incident sound wave, the reflected sound pressure   pr (t)  is the superposition of the direct reflection of 

the incoming sound pressure at that instant,  pi(t)  plus those in response to the incoming sound wave at 

earlier time, ( )ip t t- , with  τ > 0 .  Hence 

  
pr (t) = K

0

∞

∫ (τ ) pi(t −τ )dτ ,         (S1) 

where   K(τ ) is the response kernel in the time domain.  By carrying out Fourier transform

  
pi/r (ω ) = pi/r−∞

∞

∫ (t)eiωtdt , the reflection coefficient for each frequency may be expressed as 

  
R(ω ) ≡

pr (ω )
pi(ω )

= K
0

∞

∫ (τ )eiωτ dτ .        (S2) 

From Eq. (S2),   R(ω )  is an analytic function of complex ω  in the upper half of the complex ω plane. In 

terms of the wavelength   λ = 2πv0 /ω , where   v0  is the speed of sounds in air, that means ( )R l has no 

singularities in the lower half-plane of complex l , but may have zeros that represent total absorptions 

of incoming energy.  Here the imaginary part of λ  reflects dissipation. 

To determine the constraint on the reflection coefficient   R(λ)  by the causality principle, we 

introduce an ancillary function    
!R(λ) after Fano and Rozanov1, 2,  

   
!R(λ) ≡ R(λ)

λ − λn
∗

λ − λnn
∏ ,         (S3) 

where λn , satisfying  R(λn ) = 0 , are the zeros located in the lower half-plane of complexl , and ∗  stands 

for complex conjugation. Since  !R  has neither zeros nor poles at  Im(λ) < 0 ,    ln !R  is an analytic function 

in the lower half-plane of complex l  and the Cauchy theorem is valid, i.e., the integral over a closed 

contour  C  in the lower half-plane of complex λ  should yield zero, where the contour consists of the 

real axis of and the semicircle  C∞ , which belongs to the lower half-plane and has infinite radius as 

shown in Fig. S1b. Hence  
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ln

C∫ !Rdλ = ln
−∞

+∞

∫ !Rdλ + ln
C∞
∫ !Rdλ = 0 .       (S4) 

Note that    |
!R |=| R | at real wavelengths and   ln | R |  is an even function of λ  according to its definition 

Eq. (S2).  Taking the real part of Eq. (S4) yields  

   
Re ln

C∫ !Rdλ = 2 ln
0

∞

∫ | R | dλ + Re ln
C∞
∫ Rdλ +

  
Re ln

C∞
∫

n
∑ λ − λn

∗

λ − λn

dλ = 0 .   (S5) 

 
To calculate the second integral on the right-hand-side of Eq. (S5), we consider the infinite-

wavelength limit of R , i.e., the static limit.  The reflection from a composite material layer can be 

characterized by an effective bulk modulus   Beff  relating to its surface responses3.  The surface 

displacement u under a pressure  p  is therefore given by the relation

 (pressure) = (effective bulk modulus)× (strain) , or   u = pd / Beff  with  d  being the sample thickness.  The 

resulting surface impedance is given by   Z = ip / (ωu) = iZ0Beffλ / (2πB0d)  with   Z0 = B0 / v0  being the air 

impedance and   B0  the bulk modulus of air.  Therefore, the reflection coefficient   R = (Z − Z0 ) / (Z + Z0 )  

is given by 

  
R =

1+ i2πdB0 / (λBeff )
1− i2πdB0 / (λBeff )

.         (S6) 

Since
  
lim
|λ|→∞

ln R = i4πdB0 / (λBeff ) , the contour integral is therefore given by 

  
ln

C∞
∫ Rdλ = lim

|λ|→0
i

0

−π

∫ λ ln Rdθ = 4π 2dB0 / Beff  ,      (S7) 

where θ  is the argument of complexλ .  It should be noted that by taking the limit of | |l ®¥ in the 

above contour integral, one is essentially counting all the poles of   ln R  in the lower half of the complex 

λ plane, with the imaginary part of each pole being relevant to the absorption of each resonance of the 

system. This is evident from the fact that in our previous work3, it has been shown that the static limit 

the effective bulk modulus
  
Beff (λ →∞) = ρ0d

2 α n / Ωnn∑( )−1
 with  Ωn  being the nth resonance 

 
Fig. S1 (a) Schematic for the geometry of composite absorbing layer.  (b) The contour for the integral in Eq. 
(S4). 
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frequency of the system and  α n  the relevant oscillator strength defined in the main text. Hence taking 

the limit of | |l ®¥ implies all the absorptions related to the resonances of the system are taken into 

account. In fact, for the designed structures shown in this work, if we let d d= as defined in Eq. (S19) 

below, then the above formula for eff ( )B l ®¥ is accurately equal to 0 /B j  with porosity air tot/V Vj º  

being the volume fraction of the air phase. This is in agreement with Wood’s formula for the composite 

effective bulk modulus in the static limit, given by   Beff
−1 =ϕB0

−1 + (1−ϕ )Bsolid
−1 . Since   Bsolid >> B0 , 

  Beff = B0 /ϕ follows. In addition, for samples with identical FP channels either straight or folded,j f= =

  Sair / Stot  where   Sair is the area of FP channels’ total surface cross sectional area and   Stot  being the total 

area of the sample surface exposed to incident sound. Hence in this work we have  Beff = B0 /φ .     

For the third integral on the right-hand-side of Eq. (S5), since

  
lim
|λ|→∞

ln[(λ − λn
∗) / (λ − λn )]= i2Im(λn ) / λ , we have 

  
ln

C∞
∫

λ − λn
∗

λ − λn

dλ = lim
|λ|→∞

i
0

−π

∫ λ ln
λ − λn

∗

λ − λn

dθ = 2π Im(λn ) .     (S8) 

Substitution of Eqs. (S7) and (S8) into Eq. (S5) yields  

  
− ln

0

∞

∫ | R(λ) | dλ = 2π 2d(B0 / Beff )+π Im
n
∑ (λn ) .      (S9) 

As 2[1 ( )] | ( ) |A Rl l- = , where ( )A l stands for the absorption coefficient, and all  λn  are in the lower 

half-plane, i.e.,  Im(λn ) < 0 , we therefore have the inequality 

  
dmin =

1
4π 2

Beff

B0

ln
0

∞

∫ [1− A(λ)]dλ ≤ d .       (S10) 

 It follows from Eq. (S9) that the equality in (S10) is attained when   R(λ)  has no zeros in the 

lower half-plane of complex λ .  Such   R(λ)  corresponds to the minimum phase-shift frequency 

dependence1, 2 for which the variation of the phase of the reflection coefficient with λ  does not exceed

 2π , in the domain0 l< < ¥ . 

 

II. Inclusion of higher order FP resonances in the design strategy 

In this section we give the derivation of the design algorithm that includes all the higher order FP 

resonances.  For a FP channel with length  ℓ n , its surface impedance is defined at its mouth,   z = 0 , by 

  Z = p(0) / v(0) , with 
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p(z) = cos ω (z + ℓ n ) (1+ iβ /ω )ρ0 / B0

⎡
⎣

⎤
⎦ , 

   
v(z) = −isin ω (z + ℓ n ) (1+ iβ /ω )ρ0 / B0

⎡
⎣

⎤
⎦ / Z0 . 

For an array of  N  FP channels with various lengths facing the incident sound wave in parallel, their 

total impedance is given by 

 
   
Z = iZ0 φ tan ωℓ n (1+ iβ /ω )ρ0 / B0

⎡
⎣

⎤
⎦

n=1

N

∑⎧
⎨
⎩

⎫
⎬
⎭

−1

  
= i

Z0d
ωv0

α n

(2m−1)2Ωn
2 −ω 2 − iβωm=1

∞

∑
n=1

N

∑
⎡

⎣
⎢

⎤

⎦
⎥

−1

, (S11) 

where φ  is the structure’s surface porosity (fraction of the total surface area occupied by the open 

mouths of the FP channels),    Ωn = πv0 / (2ℓ n )  is the 1st-order FP resonance of the nth FP resonator, the 

terms with   m >1  stand for higher order FP resonances, and oscillator strength

   α n = 2dφ / (ℓ nN ) = 4dφΩn / (πv0N ) .  It is easy to see that Eq. (S11) is equivalent to Eq. (2) in the main 

text if we take only the terms with  m = 1. 

 In the ideal case,   ℓ n  is continuously distributed, i.e.,  Ωn  is a continuous variable, Eq. (S11) can 

be converted into an integral: 

 
   
Z ! i lim

β→0

Z0d
ωv0

α (Ω)D(Ω)
(2m−1)2Ω2 −ω 2 − iβωm=1

∞

∑ dΩ
0

∞

∫
⎡

⎣
⎢

⎤

⎦
⎥

−1

 

    

   

= i lim
β→0

Z0d
ωv0

α ( !ω )D( !ω ) / (2m−1)
m=1

∞∑
!ω 2 −ω 2 − iωβ0

∞

∫ d !ω
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

−1

,      (S12) 

where   !ω = (2m−1)Ω , and   D(Ω)  is the modes density of the 1st-order FP resonances.  For β → 0 , the 

real part of the integral in Eq. (S12) contributes negligibly, owing to the oscillatory nature of the 

integrant. The imaginary part of 
   
limβ→0( !ω 2 −ω 2 − iβω )−1  can be accurately approximated by a delta 

function, hence we have 

   
Z(ω ) !

Z0d
πωv0

α ( "ω )D( "ω )
2m−1

δ (ω 2 − "ω 2 )
m=1

∞

∑ d "ω
0

∞

∫
⎡

⎣
⎢

⎤

⎦
⎥

−1

=
2Z0d
πv0

α (Ω)D(Ω)
2m−1m=1

∞

∑
Ω=ω /(2m−1)

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

−1

. (S13) 

If we omit the higher order FP resonances and consider only the term  m = 1 , then by recalling that

  D(Ω) = Δn / ΔΩ , we have 0 0/ ( ) ( ) / (2 )n v Z dZp aDW D = W W . Since 0( ) 4 / ( )d N va f pW = W , we have

0/ (2 )[ / ]/ ( )n N Z ZfDW D = W W . By letting /n N dnD ® in the limit of N ®¥ , where ( 1) /n n N= - , 

we have thus derived Eq. (4) in the main text.   



5	
  
	
  

To include the higher order FP resonances, we recognize that the additional impedances that 

arise from the higher order resonances are in parallel to that arising from the 1st order FP resonances. 

Since now we have to deal with multiple impedances even from a single FP resonator, we would like to 

denote that impedance related to the 1st order FP resonance to be   
!Z(Ω) . In that case 

 
   

dΩ
dn

=
πv0

2d
!Z(Ω)
Z0

⎡

⎣
⎢

⎤

⎦
⎥α (Ω) .         (S14) 

Substitution of Eq. (S14) into Eq. (S13) and separating out the term m=1 from the m-summation, yields 

an equation for   
!Z(Ω) , 

 
   

!Z(ω )−1 = Z(ω )−1 −
!Z(Ω)−1

2m−1
Ω=ω /(2m−1)m=2

∞

∑ .       (S15) 

The value of   !Z  can be obtained from Eq. (S15) through iterations, based on a given target impedance Z . 

Simultaneously, Eq. (S15) also expresses the fact that the target impedance at frequency w  is now the 

consequence of impedance from the 1st order FP resonance, plus the impedance from all the higher order 

FP resonances, added in parallel. 

 For example, if the target  Z = Z0  for  ω >Ωc  and divergent for ω <Ωc , then the value of   !Z can 

be determined in a piecewise fashion as follows. The piecewise fashion of the result is a natural 

consequence (upon iteration) of the step-function nature of the target impedance. The iteration results 

show that    Z0 / !Z1 = 1 in the first frequency range c c[ ,3 ]WÎ W W ,    Z0 / !Z2 = 2 / 3 in the second frequency 

range c c[3 ,5 ]WÎ W W ,    Z0 / !Z3 = 7 / 15  in the third frequency range c c[5 ,7 ]WÎ W W ,    Z0 / !Z4 = 34 / 105  in 

the fourth frequency range c c[7 ,9 ]WÎ W W ,    Z0 / !Z5 = 269 / 1155  in the fifth frequency range 

c c[9 ,11 ]WÎ W W , etc.  In each frequency interval i, i.e., for c c[(2 1) ,(2 1) ]i iWÎ - W + W , the 1st-order FP 

resonance frequency distribution can be determined by Eq. (14).  That is, with the initial condition 

  Ω = (2i −1)Ωc  when the continuous variable ) /( 1 / i in n N n N N= - = = , where  Ni  denotes the total 

number of 1st-order FP resonances below   (2i −1)Ωc , Eq. (S14) gives

   Ωn = (2i −1)Ωc exp[2φ(n − ni ) !Zi / Z0] . From such 1st order FP resonance frequencies one can easily 

determine the required lengths of the FP resonators in the design.   

 In Fig. S2a we plot the natural logarithm of nW  as a function of  (n−1) / N . Here the value off , 

needed for the evaluation of nW , is taken to be the causally optimal value determined below. The 

function   lnΩn  versus   (n−1) / N  is seen to be piecewise hyper-linear.  By using this result, 

discretization of the resonators in the actual design can be easily determined by locating the frequencies 
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on the vertical axis with the associated (equally-spaced) values of   (n−1) / N  with  N  being the total 

number of FP channels one wants to use.  For the broadband absorber presented in the main text with

  N = 16 , these frequencies are explicitly indicated by the red dotted lines in Fig. S2a.    

 
One important feature for the sequence    Z0 / !Zi  is that it decays to zero very quickly (Fig. S2b), 

i.e., the required 1st-order FP modes density in the high frequency regime is very low. This fact is 

relevant to the high frequency absorption behavior for the broadband absorber presented in the main 

text. That is, since
  

α (Ω)D(Ω) / (2m−1) |Ω=ω /(2m−1)m=1

∞∑ = 2d / (πv0 )  (this can be easily deduced from 

Eqs. (S13), (S14), and (S15)), Eq. (S12) can be integrated to yield  

 
  

Z
Z0

= π
π − 2i tanh−1(Ωc /ω )

.         (S16) 

And the relevant reflection coefficient   R = (Z − Z0 ) / (Z + Z0 )  is given by 

 
  
R =

tanh−1(Ωc /ω )
π − i tanh−1(Ωc /ω )

.         (S17) 

 
Fig. S2  (a) Natural logarithm of the 1st order FP resonance frequency plotted as a function of the variable   

as defined in the text. The discretized frequencies are picked off from the curve with equally-
spaced intervals on the horizontal axis. They are indicated by the red dotted lines. (b) The iterated target 
impedance  in Eq. (S14) for the 1st-order FP resonances in the broadband absorber design, in which the 
contributions of higher order FP modes for each channel are taken into account.  Here  is obtained from 
iterations through Eq. (S15) based on a target impedance that is equals to  above a cutoff frequency  and 

 below the cutoff.  The fast decay of  (to zero) guarantees that  can be automatically 
satisfied by the higher order FP modes if the channels are designed in accordance to the recipe.  
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That is, at high frequencies the reflection is zero, i.e., the absorption coefficient must approach 1. 

Therefore, in the broadband absorber design one can use a relatively small number of FP channels, 

designed for the low frequencies by following the proposed recipe above, and high absorption in the 

high frequencies regime becomes guaranteed.  In particular, this would ensure high absorption above 

5000 Hz for the broadband absorber presented in the main text, where there are no measured data.   

So far, the parameterf remains un-determined. Below we show that its value should not be 

arbitrary. Instead, it serves as the critical link between the designed mode density, the sample thickness, 

and the causal constraint.  

In the broadband absorber, the channel length of the FP resonator is given by 

    
   
ℓ n =

πv0

2Ωn

= πv0

exp[2φ(ni − n) "Zi / Z0]
2(2i −1)Ωc

,       (S18) 

provided its 1st-order resonance is located in the frequency range c c[(2 1) ,(2 1) ]i iWÎ - W + W . Since the 

channel length can vary, we wish to know the minimum thickness of the sample by optimally folding the 

FP channels, without changing the overall area exposed to the incident wave. This minimum thickness 

d can be obtained through volume conservation of the FP channels. Here we evaluate d by focusing on 

only the air channels of the FP resonators. Since the FP channels’ cross sections occupy a fraction f  of 

the surface area, d  is given by  

 
   
d = lim

N→∞

ℓ n

Nn=1

N

∑
  
= πv0 lim

N→∞

1
Ω

dn
dΩ

dΩ
Ωc

Ωe (φ )

∫ (2N ) ,      (S19) 

where the upper limit of the integral,
  
Ωe (φ) = lim

N→∞
Ω(n = N ,φ) , is determined by the total number of 1st 

order mode number N, which is equal to the FP channel number.  The numerical evaluation of Eq. (S19), 

with N=16, gives  d = [0.6395−859.74exp(−12.82φ)]v0 / (φΩc ) .  By requiring   d = dmin = 2v0 / (φΩcπ )  

given in the main text, we obtain the causally optimal value 0.982optimalf = , with the upper limit 

 Ωe = 28.4Ωc (indicated in Fig. S2a by the blue dotted line). Since in experimental implementation the 

value of f is determined by the wall thickness in our design, such a high value of optimalf is not realizable 

in practice. However, a lower value of the actual f is seen to only degrade the absorption somewhat, as 

long as the mode distribution (and hence the length of the channels) is designed in accordance with the 

ideal value optimalf . The degradation effect can be seen in Fig. S6, where the designed sample has a lower 

surface coverage 0.8f = , leading to a degradation of reflection from its ideal value by about 5 dB, even 

though the actual value of the absorption coefficient is still in the range of 97-99%.   
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As another example, other than the broadband absorber presented in the main text, we have also 

considered a target absorption spectrum which starts with near-perfect absorption from 345 Hz and has a 

notch in the frequency interval [562 Hz, 995 Hz] where the absorption is close to zero. The target 

impedance is given by  Z(ω ) = Z0[2− A(ω )+ 2 1− A(ω )] / A(ω ) . Based on this target impedance the 

impedance    
!Z(ω )  can be obtained from Eq. (S15) through iterations.  Substitution of   !Z  into Eq. (S14) 

gives the designed resonance frequencies   Ωn(N ,φ)  as a function of total channel number  N  and the 

parameterφ . The associated FP channel length   ℓ n can then be determined.  The minimum thickness of 

the absorber,   dmin = 8.73  cm, is determined from the casual integral (S10) of the absorption spectrum 

shown by the dashed line in Fig. 3c in the main text, which is based on the integral of Eq. (S12) with

 N →∞ . In this case the value 0.81optimalf =  is determined from
   
dmin = d = lim

N→∞
ℓ n / N

n=1

N∑ .  The 

experimentally measured absorption for this design, with  N = 16 , is presented in the main text as Fig. 3c.  

Here   d = 8.85  cm, and the real sample thickness is 9.03 cm due to the non-ideal folding of the channels. 

The result shown in Fig. 3c in the main text has a 3-mm layer of sponge placed in front; hence the total 

thickness of the sample is 9.33 cm.  

  

III. Derivation of self-energy due to cross-channel coupling by evanescent waves 

Since the surface impedance of the metamaterial unit is laterally inhomogeneous, it follows that the 

sound pressure field   p(x) , where  x  denotes the lateral coordinate at the plane  z = 0 , must necessarily be 

inhomogeneous as well.  By decomposing the pressure field as    p(x) = p +δ p(x) , where p is the 

surface-averaged value, it has been shown in the main text that    δ p(x)  is only coupled to the evanescent 

waves that decay exponential away from   z = 0 . In contrast, p couples to the far-field propagating 

modes. Therefore, the measured surface impedance should be given by /Z p v=  with   v = du / dt  being 

the surface-averaged z component of the air displacement velocity. Reflection coefficient is given by

0 0( ) / ( )R Z Z Z Z= - + .   

We expand    δ p(x)  in terms of the normalized Fourier basis function    fα (x) = exp[ikα i x] / L , 

where ( , )x ya a=a  is discretized by the condition that the area integral of fa over the surface of the 

metamaterial unit must vanish, due to the fact that the same condition applies to   δ p(x) . That means

    
| kα |= (2π / L) α x

2 +α y
2 , with

   
α x ,α y = ±1,±2,!:  

   
δ p(x, z) = δ

α
∑ pα fα (x)e− kα

2 −k0
2 z ,        (S20) 
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where pd a denotes the expansion coefficient, and 0 2 /k p l= . The exponential variation of    δ p(x, z)

means that it can couple to the z component of the air displacement velocity through Newton’s law, 

  ∂δ p / ∂z = −iωρ0δv , so that  

 
    
δv(x) = δv(x, z = 0) = −i

ωρ0

δ
α
∑ pα | kα |2 −k0

2 fα (x) .     (S21) 

By multiplying both sides of Eq. (S21) by    f ′α
* (x) and integrating over the surface of the metamaterial 

unit’s surface, we can solve for pd a : 

  

    
δ pα = iωρ0

v(x) fα
*(x)dx

surface
∫

| kα |2 −k0
2

,       (S22) 

where   v(x) = v +δv(x) . It should be noted that in the above, the integral of    v(x) fα
*(x)  is the same as 

the integral of   δv(x) fα
*(x) , since the integral of    vfα (x) is zero.  By substituting Eq. (S22) into Eq. (S20) 

and then interchanging the order of summation and integration, we obtain  

   
δ p(x) = δ p(x ,z = 0)= iωρ0 Λ(x,x′)v(x′)dx′

surface
∫ ,     (S23) 

where
    Λ(x,x′) ≡ fα

*( ′x ) fα (x) / | kα |2 −k0
2

α∑ .  Since    | kα |≫ k0 , we can approximate 
    | kα |2 −k0

2 by 

   | kα | . By discretizing the 2D coordinate  x  by its 16 values,  xn , that denotes the center position of the 

nth FP channel, and replacing   dx′ by 2 /16L  and the integral by summation, we have: 

  
δ pn = iωρ0 Λnmvm

m=1

16

∑ ,          (S24) 

   
Λnm = 16

L2

fασ n
∫ (x)dx fα

∗

σm
∫ ( ′x )d ′x

kα

 

       
   
= 16

sin2(α xπ / 4)sin2(α yπ / 4)

π 4α x
2α y

2 kαα
∑ exp ikα • (xm − xn )⎡⎣ ⎤⎦ ,     (S25) 

where  σ n  denotes the cross-sectional area of the   nth  FP channel, and   vm = v(xm ) ,    δ pn = δ p(xn ) . 

 According to the definition of Green function, at the mouth of the  n th FP channel, we have 

   vn = −iωgn( p +δ pn ) .           (S26) 

Substitution of Eq. (S24) into Eq. (S26) gives 
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vn = −iω gn +ω

2ρ0 gn
m
∑ Λnmgm +!

⎛
⎝⎜

⎞
⎠⎟

p   

     
   
= −iω gn +ω

2ρ0gn
2Λnn +ω

4ρ0
2gn

3Λnn
2 +!( ) +ω 2ρ0 gn

m≠n
∑ Λnmgm +!

⎡

⎣
⎢

⎤

⎦
⎥ p   

     
  
= −iω

gn

1−ω 2ρ0gnΛnn

+ Πnm
m
∑

⎛

⎝⎜
⎞

⎠⎟
p .       (S27) 

We have rearranged the series by separating the terms involving only Λnn , since nn nmL >> L (m n¹ ) by 

orders of magnitude.  Numerically, the last term in the bracket is also small and hence only constitutes 

small adjustment to the results.  According to the Eq. (8) in the main text, the renormalized impedance is 

given by
  
Z (e) = 16 p vnn=1

16∑ .  Substitution of Eq. (S27) (with the  
Πnmm∑ term neglected) into this 

expression for (e)Z gives 

  
Z (e) = i ω

16
gn

(e)

n=1

16

∑⎛
⎝⎜

⎞
⎠⎟

−1

,           (S28) 

where the effective Green function can be expressed in the form of the Dyson equation with a self-

energy term:   

 
  

gn
(e)( )−1

= gn
−1 −ω 2ρ0Λ .          (S29) 

Here Λ ≡ Λnn . Below we show this self-energy can predict the resonance frequency shifts of the FP 

resonators. 

 

IV. Shift of the resonance frequencies due to the renormalization effect by evanescent waves 

The exact Green function for a single FP channel with length  ℓ n ,   g = i / (ωZ ) , can be derived from Eq. 

(S11) as 

   
gn =

φ
ωZ0

tan ωℓ n (1+ iβ /ω )ρ0 / B0
⎡
⎣

⎤
⎦ .       (S30) 

Here the coefficient  β = 14.2  Hz is an effective parameter characterizing air's viscosity in FP channels. 

Its value is obtained by fitting the experimental data.  

The renormalized impedance   Z (e)  of the FP resonators array can then be obtained by substituting 

Eq. (S30) into Eqs. (S27) and (S28).  Since the resonance modes are best detected by the imaginary part 

of the Green function, which in the present case is given by
  
Im(G) = Im i ωZ (e)( )⎡

⎣
⎤
⎦ , we have plotted the 

dimensionless quantity   Im(G)ΩcZ0  in Fig. S3. Here  Ωc = 2π × 345  Hz is the cutoff frequency. 
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As shown in Fig. S3, for the metamaterial unit the theoretically predicted positions of the newly 

emerged resonances (solid curve) fit the experiment (open circles) very well, and they all have a clear 

downward shift from the original FP resonances,    Ωn = πv0 / (2ℓ n ) , denoted by the vertical dotted lines. 

Physically, the downshift can be understood as due to the extra air mass participating in the resonant 

motion at the mouth of the FP channel, arising from the evanescent waves.  

 

V. Critical dissipation for casual optimality 

In the main text, the causal optimality of the 16-units broadband absorber is achieved by placing a layer 

of 3 mm acoustic sponge in front of it.  Here we discuss the property requirement for the sponge.  The 

description of sponge’s properties   ρeff = ρ0[1.4+ i(1420 Hz) /ω ]  is a simplified form for the effective 

medium theory of porous medium that assumes the solid skeleton of sponge to be rigid while sounds 

propagates in the pores.  Adapted from Ref [5], according to the model of Johnson et al.6,  ρeff = ρ0α (ω )  

with  α (ω )  being the dynamic tortuosity, given by 

 
2

0 0 0

0 0 0

2( ) 1
v

i ih wr a ka w a
k h
j

wr j
¥

¥

æ ö
= + - ç ÷Lè ø

.       (S31) 

Here, α∞  is the tortuosity of a porous medium that is 1.4 in our case,  η0  is the viscosity of air, j  is the 

sponge porosity, and  κ 0  is its static permeability. 
  
Λv = 2 vinviscid

2

V f
∫ dV / vinviscid

2

S f
∫ dS  is the viscous 

characteristic length with   vinviscid  being the air velocity field in the absence of viscosity, and the two 

integrals are carried on the volume of pores and the surface of solid skeleton, separately.  If the 

 
Fig. S3  The imaginary part of the Green function for the metamaterial unit, plotted as a function of frequency. 
The metamaterial unit consists of 16 FP channels in a  square lattice, shown in Fig. 2a of the main text.  
Here the solid curve is the prediction from the theory including the evanescent waves and the viscosity of air. 
The open circles are results deduced from experimental reflection measurements, where we have used the 
formula . It is seen that the peak positions, which indicate the 
renormalized resonances, are all down-shifted from the dotted lines that mark the original FP resonance 
frequencies ( ’s).  Excellent theory-experiment agreement is seen. 
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frequency is not very high,  α (ω )  can be approximated by   α∞ + iβ /ω  with β =η0φ / (ρ0κ 0 ) .  And the 

dissipation property for a sponge is sensitive to the ratio between its porosity and static permeability. 

 
 In order for the addition of 3 mm sponge to the acoustic metamaterial unit to achieve causal 

optimality, we have calculated the casual integral, Eq. (S10), for absorption spectra with different 

sponge cover characterized by different values ofβ . The results are shown in Fig. S4, where the vertical 

axis is the ratio of dmin divided by the total thickness of the sample. Here h=3 mm is the sponge 

thickness, and d is the minimum thickness of the cuboid sample achievable by perfect folding of the 

longer FP channels. The value of min / ( ) 1d d h+ = indicates causal optimality. In Fig. S4 this ratio, with 

mind calculated by Eq. (S10), is plotted as a function ofβ . It is seen that there is the existence of a 

critical  βc = 946  Hz.  For those sponges with β < βc , casual optimality cannot be satisfied. However, the 

acoustic sponge used in our sample is safely in the range of cb b> .  

 

VI. Comparison with conventional acoustic materials 

In this section, we compare our metamaterial absorber with the conventional acoustic absorption 

materials, the micro-perforated panel (MPP) absorber and acoustic sponge. Owing to measurement 

accuracy, we choose to compare our 6-cm absorption structure with similar thickness MPP absorber and 

acoustic sponge. 

The MPP absorber4 and acoustic sponge are two very effective sound absorbers. However, the 

MPP has proven to be excellent only at multiple distinct frequencies, and such an absorption spectrum 

 

Fig. S4  The minimum thickness  of the broadband absorber in the main text, with  mm sponge in 
front, as dictated by the casual integral, Eq. (S10), in which the absorption spectrum is that predicted by the 
renormalized impedance  in Eqs. (S27) and (S28) with  replaced by .  Here the dissipation 

coefficient  for the front sponge has been treated as a variable. It is seen that there is a critical value 

 Hz above which the causal optimality (defined as ) is attained.  The blue arrow denotes the 
dissipation of the sponge used in the experiment. 
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can also achieve causal optimality, provided the MPP’s perforated hole diameter is small enough (see 

Fig. S5b). 

 
 As shown in Fig. S5a, consider a panel that is   t = 0.2  mm thick, with perforated holes that are 

arranged in a square lattice with a lattice constant   b = 2.5  mm. The panel is backed by a chamber with 

  d = 6  cm4. Maa’s theoretical model4 has proven to be very accurate for characterizing MPP’s 

absorption. For uniform circular perforations with diameter  l  the absorption is given by4 

 
  
A(ω ) = 4r

(1+ r)2 + [ωm− cot(ωd / v0 )2]
.       (S32) 

Here,  

 
  
r =

32η0t
σρ0v0l

kr , kr = 1+ k 2

32
⎡

⎣
⎢

⎤

⎦
⎥

1/2

+ 2
32

k l
t

, 

 
  
m = t

σ v0

km , km = 1+ 1+ k 2

2
⎡

⎣
⎢

⎤

⎦
⎥

−1/2

+ 0.85 l
t

, 

 
Fig. S5  (a) A schematic drawing for the MPP absorber.  (b) The minimal thickness  determined by the 
causal integral of the absorption spectrum, Eq. (S10), for a MPP with perforation diameter , panel thickness 

 mm, lattice constant  mm, and back chamber depth  cm.  The blue arrow indicates the 
perforation’s diameter of =0.2 mm, whose relevant absorption spectrum (blue line and symbols) is shown in 
(c).  (c) Comparison of the absorption spectra for the MPP (blue line (theory) and symbols (experiment)) with 

 mm and a total thickness of ~6 cm; the broadband metamaterial unit covered by a 3-mm layer of 
acoustic sponge, with a total thickness of 5.93 cm (red line (theory) and symbols (experiment)), and a layer of 
6 cm-thick acoustic sponge (green symbols (measured data)).  The blue curve is from Maa’s theoretical model 
Eq. (S32), and the pentagons are the experimental data from Maa’s original paper (4).  (d) A photo image of 
the metamaterial unit with a thickness of 5.63 cm. With the addition of 3 mm of acoustic sponge in front, the 
absorber has a total thickness similar to the MPP.   
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and 

   k = l ωρ0 / (4η0 ), σ = l2π / (4b2 ) , 

where the quantity 0 0/ ( )h wr  is usually denoted the viscous boundary layer thickness.  Here  η0 is 

related to the effective air dissipation parameter b  in the main text, through the solution of the sound 

wave propagation in the FP channel.  

In Fig. S5c, the solid blue line is the theory prediction of the MPP absorption with the parameter 

values given above, and   l = 0.2 mm. The open circles are the experimental results4. The causal integral, 

Eq. (S10), gives    dmin ! d = 6  cm, i.e., causal optimality is satisfied.  In Fig. S5b, we plot the mind  

calculated from the predicted absorption spectra.  It turns out that a critical perforation diameter 

   lc ! 0.025  mm exists, and for   l > lc  causal optimality is not satisfied.  It is somewhat surprising that the 

critical value of the perforation hole diameter agrees so well with the “best” diameter of the holes as 

determined from an entirely different perspective4. 

 
 To compare with the particular MPP absorber whose absorption spectrum is shown in Fig. S5c, 

we have redesigned our broadband metamaterial absorber by setting the cutoff frequency  Ωc = 650  Hz, 

and folded the 16 FP channels into a 5.63 cm thick cuboid.  The value of 0.8f =  for the sample is the 

same as that for the broadband absorber presented in the main text, even though the FP channels were 

designed with 0.982optimalf = .  A photo image of the sample is shown in Fig. S5d.  Four of such units 

 
Fig. S6  Reflection loss (dB) comparison for the 6 cm thick acoustic sponge and 5.93 cm thick metamaterial 
absorber shown in Fig. S5c.  The red curve represents the theory prediction of our metamaterial absorber, and 
the open circles are from experiment. The poorer experimental absorption can be attributed to the lower 
achievable value of as compared to its optimal value . Its effect can be easily assessed by the 

formula . If is 20% larger than , i.e.,  as expected 
by the lower value of , then the absorption would be lowered by 0.8%. The green stars are the 
experimentally measured data of acoustic sponge. To reach the absorption level of our design structure within 
the target range, the sponge thickness would need to be increased by at least 50%. If thin walls can be realized 
technically so that the theory prediction can be realized, then the advantage of the metamaterial absorber in the 
target frequency range (solid line) is seen to be quite substantial. 
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were arranged into a square with the cross section that fits the cross section of the impedance tube (see 

Fig. S5d). The metamaterial unit was covered by a layer of 3 mm thick acoustic sponge, so that the total 

thickness of the absorber, 5.93 cm, is similar to that of the MPP in Maa’s work4.  The absorption 

spectrum of this metamaterial absorber is shown in Fig. S5c (red symbols for the experiment, red line 

the theory prediction). It is seen that near-perfect flat absorption starts around 752 Hz.  The causal 

integral of this spectrum gives   dmin = 5.86  cm, very close to the actual thickness of the sample.  In the 

same figure, we also compared the absorption of a layer of 6 cm sponge with rigid substrate.  The 

sponge absorption coefficient is noted to be also causally optimal.  It is clear that the three causally 

optimal structures exhibit absorption behaviors that are very different. The MPP starts its maximum 

absorption at a lower frequency,  ~ 640  Hz, but quickly drops to nearly zero before its next resonance. 

And although the sponge exhibits a broadband absorption, it trades off poorer performance in higher 

frequencies as compared to the designed metamaterial absorber, against a somewhat better absorption at 

lower frequencies. This comparison emphasizes the fact that, in the causal inequality, low frequency 

behavior dominates the contribution to the sample thickness. Here, the somewhat better low frequency 

absorption of the MPP or sponge is at the cost of degrading the absorption over large ranges of higher 

frequencies. The novelty of our approach lies in making the absorption spectrum tunable, while 

integrating the causal optimality as part of the design. 

 In engineering practice, decibel (dB) is a more relevant unit.  In Fig. S6 we compare the 

absorption by 6 cm of sponge against that by the 5.93 cm thick metamaterial, by their reflection loss 

characterized in decibels.  It is seen from Fig. S6 that in the target frequency regime, i.e., above 800 Hz, 

our metamaterial absorber has an advantage of ~5 to 10 dB in reducing the reflection through 

absorption. To reach the same level of absorption within the target frequency range, the sponge 

thickness needs to be increased by a factor of at least 50%. If the thin walls can be technically realized in 

our metamaterial unit, then the advantage over conventional absorbers can be fairly substantial within 

the target range, i.e, between 10-15 dB if the solid red line is used for comparison in Fig. S6. 
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