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In this work, we treat the Poisson-Nernst-Planck (PNP) equations as the basis for a consistent framework
of the electrokinetic effects. The static limit of the PNP equations is shown to be the charge-conserving
Poisson-Boltzmann (CCPB) equation, with guaranteed charge neutrality within the computational domain.
We propose a surface potential trap model that attributes an energy cost to the interfacial charge
dissociation. In conjunction with the CCPB, the surface potential trap can cause a surface-specific adsorbed
charge layer σ. By defining a chemical potential μ that arises from the charge neutrality constraint, a
reformulated CCPB can be reduced to the form of the Poisson-Boltzmann equation, whose prediction of the
Debye screening layer profile is in excellent agreement with that of the Poisson-Boltzmann equation when
the channel width is much larger than the Debye length. However, important differences emerge when the
channel width is small, so the Debye screening layers from the opposite sides of the channel overlap
with each other. In particular, the theory automatically yields a variation of σ that is generally known as
the “charge regulation” behavior, attendant with predictions of force variation as a function of nanoscale
separation between two charged surfaces that are in good agreement with the experiments, with no
adjustable or additional parameters. We give a generalized definition of the ζ potential that reflects the
strength of the electrokinetic effect; its variations with the concentration of surface-specific and surface-
nonspecific salt ions are shown to be in good agreement with the experiments. To delineate the behavior of
the electro-osmotic (EO) effect, the coupled PNP and Navier-Stokes equations are solved numerically
under an applied electric field tangential to the fluid-solid interface. The EO effect is shown to exhibit an
intrinsic time dependence that is noninertial in its origin. Under a step-function applied electric field, a
pulse of fluid flow is followed by relaxation to a new ion distribution, owing to the diffusive counter
current. We have numerically evaluated the Onsager coefficients associated with the EO effect, L21, and its
reverse streaming potential effect, L12, and show that L12 ¼ L21 in accordance with the Onsager relation.
We conclude by noting some of the challenges ahead.
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I. INTRODUCTION

Electrokinetics (EK) is a classic subject that dates back
nearly two centuries [1]. It involves the interaction of ions
in the fluid with the solid surface, and their dynamics under
an applied electric field tangential to the fluid-solid inter-
face. The EK effect includes four main topics: electro-
osmosis (EO), streaming potential (SP), electrophoresis,

and sedimentation potential [2–5]. In the past two decades,
the EK effect has experienced a strong revival mainly
owing to its various potential applications, e.g., an EO
pump with no moving parts that can propel electrolytes and
particles in the microscale [6–23], as well as manipulate
biological cells [24–31]. With the advent of microfluidic
technology [32–45], many EK effect-based microfluidic
devices have been fabricated, providing not only the
opportunity to study the basic mechanisms of the EK
effect, but also the push to extend its applications into many
diverse interdisciplinary areas.
It is well known that the formation of the electric double

layer (EDL) at the fluid-solid interface, as initially studied
by Gouy and Chapman [2,46–68], is the crucial element of
the EK effect. A thin layer of charge is generated at the
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interface, thereby leading to the formation of a diffuse
screening layer of mobile counter ions, usually denoted the
Debye layer. An important fact is that there is a net amount
of charge in the Debye layer; hence, in the presence of an
externally applied electric field parallel to the interface,
there can be a body force to drag the fluid along. For the
thin layer of surface charge attached to the interface, it can
experience a force in the opposite direction. However,
either through the hydrodynamic no-slip boundary con-
dition or physical attachment to the solid, its movement is
either small or nonexistent. That layer is usually denoted
the “Stern layer” [63], which is usually further divided into
a layer formed by surface-specific adsorbed ions, plus a
layer adsorbed from the bulk, with its thickness accounted
for by the ion size [68]. The dividing plane between the
two is usually denoted the inner Helmholtz plane (iHp),
whereas the plane separating the Stern layer and the diffuse
layer is denoted the outer Helmholtz plane (oHp).
The mechanism of EDL has been reviewed by several

authors [69–72]. In the standard mathematical description of
the EDL model, the Poisson-Boltzmann (PB) equation is
used to delineate the charge and potential distributions in the
Debye layer. Traditionally, in solving the PB equation, a
constant ζ (zeta) potential is assumed at the boundary. By
coupling the solution of the PB equation to the Navier-Stokes
(NS) equation, the electro-osmotic effect, i.e., that an electric
field can lead to fluid flow, is easily modeled [48–67].
There are some well-known issues associated with the PB

equation and the related EK effect description. First of all,
the PB equation dictates a reference (electrical) potential to
be associated with local charge neutrality within the fluid
domain (see below). This can become an issue when the
separation between two charged surfaces is on the nanoscale,
i.e., when there is an overlap between the EDLs generated
from the two opposite surfaces so that there is
no local charge neutrality anywhere in the fluid domain.
Second, since charge neutrality is not preserved in the
computational domain, overall charge neutrality requires
auxiliary conditions to be put in by hand; i.e., compensating
charges need to be placed outside the computational domain
to restore overall charge neutrality. The resulting treatment is
therefore not mathematically self-contained. This can be a
problem in treating nanoscale or time-varying electrokinet-
ics, for example, since the interfacial charge layer would
necessarily respond to the local fluid conditions, either as a
function of time or as a function of separation between two
charged surfaces, thereby requiring constant hands-on cor-
rections for achieving charge neutrality. Even if such adjust-
ments can be done, they may not necessarily be consistent
with the principle of free-energy minimization. Third, by
treating the ζ potential as a constant input boundary
condition, one ignores the fact that it has been observed
to vary with bulk ion density, and hence, theoretically, it
should be a derived (calculated) quantity rather than an input.
Such correlated variation also emphasizes the need for

having both the ions and counterions be within the computa-
tional domain so that their interaction can be treated in a
mathematically self-consistent manner. Fourth, the time-
varying EO effect has been widely observed but rarely
reported or addressed [73,74]. In particular, no theoretical
study has been carried out to investigate whether there can be
an intrinsic (noninertial) time dependence to the EO effect,
even though from physical considerations the inevitable
existence of diffusive counterion currents must give rise to a
relaxation process.
More recently, there have been a number of experiments

showing that when the fluid-channel width, i.e., the planar
separation, is in the nanometer regime (smaller than the
Debye length), the predictions of the classical theory need
to be further examined [75–82], owing to the different
predictions offered by the constant potential boundary
condition (CP) and the constant (surface) charge boundary
condition (CC) in this regime. Experimental evidences,
mainly obtained from atomic-force-microscope measure-
ments, have indicated a variation of the surface charge
density when the channel width decreases below the Debye
length, which does not agree with the predictions resulting
from either the CP or the CC boundary condition. This
discrepancy is generally attributed to the “charge regula-
tion” phenomenon, denoting the fact that the interfacial
charge layer must vary as a function of local environment.
Theoretically, the experimental results can be interpreted by
using a parameter that interpolates the surface charge
density implied by the CC and CP boundary conditions
[83–86]. However, the physical meaning of the interpola-
tion parameter is not clear.
Such developments, in conjunction with the well-known

problems stated above, motivate us to reformulate the
mathematical theory by starting from a rigorous basis—
the Poisson-Nernst-Planck (PNP) equations together with
the NS equation—as an attempt for deriving a consistent
description of the EDL and its dynamics under the
constraint of overall charge neutrality. Since the description
of the EDL and the EK effect necessarily involves a fluid
channel bounded by solid surfaces, in this work we choose
the geometry of a cylindrical fluid channel with radius a in
most of our considerations. The exception is in the evalua-
tion of force between two charged surfaces, which must
involve a planar surface as necessitated by the experimental
geometry. Also, an important concept used in our math-
ematical modeling is the “computational domain.” It is
defined as the spatial region delineated by the boundary on
which the mathematical boundary condition is imposed. It
is also the spatial region in which the relevant partial
differential equations apply.
In what follows, Sec. II introduces the PNP equations

with the PB model presented as their static limit. The
physical picture of Gouy-Chapman is briefly reviewed. We
show in Sec. III that the static limit of the PNP equations is
given by the charge-conserved Poisson Boltzmann (CCPB)
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equation, which guarantees overall charge neutrality within
the computational domain. In Sec. IV, we propose a surface
potential trap model to be used in conjunction with the
CCPB or the PNP equations. This model enables charge
separation within the computational domain and the con-
sequent formation of a surface-specific adsorbed charge
density σ [87]. In Sec. IV, we show that in the presence of
charge separation, the charge neutrality constraint leads to
the definition of a chemical potential μ for the ions. The
CCPB equation can then be reduced to the form of the
PB equation, with μ and σ determined self-consistently
within the same framework. The ζ potential, being respon-
sible for the EK effect and hence requiring the existence of a
nonuniform electrical potential arising from charge separa-
tion, is defined as the volume-averaged potential variation;
its variations with the concentration of surface-specific (i.e.,
pH values) and nonspecific salt ions (i.e., pC values) are
shown to be in good agreement with the experiments in
Sec. V. In particular, we show that the predictions of our
model and those from the classical PB equation agree to a
high degree of accuracy when the fluid-channel width is
large. However, important differences emerge when the
fluid-channel width decreases below the Debye screening
length. In particular, the variation of σ in this regime, which
is the focus of the charge regulation phenomena, emerges
naturally as a prediction of the theory without any additional
parameters. In Sec. VI, we show that attendant with the σ
variation, the theory predicts a force between two charged
surfaces that is in good agreement with the experiments. In
Sec. VII, we address the EO effect and its (noninertial) time
variation. Under a step-function driving field, the EO effect
is manifest as a pulse of fluid flow followed by relaxation to
a smaller flux, implying an intrinsic time dependence arising
from the tendency to establish a new equilibrium, owing to
the diffusive countercurrent. In Sec. VIII, we numerically
evaluate the Onsager coefficients associated with the EO
effect, L21, and its reverse SP effect, L12. The results show
that our model satisfies the Onsager relation L21 ¼ L12. We
conclude in Sec. IX with a summary of the main points, and
note the challenges ahead.

II. POISSON-NERNST-PLANCK EQUATIONS
AND THEIR STATIC LIMIT

A. Poisson-Nernst-Planck equations

In a charge-neutral fluid with a given density of positive
ions pðxÞ and negative ions nðxÞ, where x denotes the
spatial coordinate, the overall spatial average of both p and
n must be the same, denoted by no. The dynamics of the
ions and their interaction should satisfy the charge con-
tinuity equation and the Poisson equation. This is expressed
in a rigorous manner by the PNP equations [88–93]:

dn
dt

þ∇⋅Jn ¼ 0; (1a)

dp
dt

þ∇⋅Jp ¼ 0; (1b)

Jn ¼ −Dn

�
∇n − ze

kBT
n∇φ

�
; (1c)

Jp ¼ −Dp

�
∇pþ ze

kBT
p∇φ

�
; (1d)

∇2φ ¼ − zeðp − nÞ
ε

: (1e)

Here, the parameter z denotes the valence of the ions (taken
to be 1 in this work), e is the electronic charge, ε the
dielectric constant of the liquid, kB the Boltzmann constant,
and T ¼ 300 K in this work. DnðDpÞ is the diffusion
coefficient for negative (positive) ions, which is related to
the ionic mobility μnðμpÞ through the Einstein relation:
DnðpÞ=μnðpÞ ¼ kBT=e, JnðJpÞ is the negative (positive) ion
flux; here each of the two ion currents is seen to comprise the
sum of two terms—one for the diffusive flux and the other
for the drift (or convective) flux. We shall assume that Dp ¼
Dn ¼ D in this work. Equations (1a)–(1d) describe the
charge continuity condition for both the positive and
negative ions, while Eq. (1e) is the Poisson equation relating
the net ion charge density to the electrical potential φ; its
form results from the minimization of the total electrical
energy of the system. The PNP equations can be solved
numerically; an analytical solution to the one-dimensional
PNP equations was proposed only recently [94–97]. The
PNP equations were used to study ion transport dynamics
[98–103]; here, they are regarded as the basis of electroki-
netics when coupled with the proper fluid-solid interfacial
boundary conditions.
In this work, we treat the simplified problem in which the

system is electrically neutral with an overall ion density that
is a constant, i.e.,

R
V pðxÞdx ¼ R

V nðxÞdx ¼ noV, where V
denotes the volume of the system, and the ions are
represented by point particles, each carrying a single
electronic charge, with no chemical distinctions. An
exception is made with respect to the distinction between
the ions that can participate in the surface-specific adsorp-
tion at the fluid-solid interface and the non-surface-specific
ions that do not adsorb onto the fluid-solid interface
(Sec. IV). The conditions of electrical neutrality and
constant ion density are noted to be easily compatible with
the PNP equations and the relevant boundary conditions.
For the description of the EK effect, the PNP equations

must be coupled to the Navier-Stokes (NS) equation that
governs the hydrodynamics of fluid flow:

ρm

�∂u
∂t þ u⋅ð∇uÞ

�
¼ −∇Pþ η∇2u − eðp − nÞ∇φ;

(1f)

SELF-CONSISTENT APPROACH TO GLOBAL CHARGE … PHYS. REV. X 4, 011042 (2014)

011042-3



∇⋅u ¼ 0; (1g)

where ρm is the fluid mass density, u denotes fluid velocity,
P denotes pressure, and η is the shear viscosity.
Equation (1g) is the incompressibility condition of the
fluid. When u ≠ 0, dn=dt and dp=dt in Eqs. (1a) and (1b)
should be understood to denote, respectively, ∂n=∂tþ
u⋅ð∇nÞ and ∂p=∂tþ u⋅ð∇pÞ.
Some of the kinematic boundary conditions for the PNP

and NS equations may be easily stated as follows. At the
fluid-solid interface, we should have u ¼ 0, and Jn⋅n ¼ 0,
Jp⋅n ¼ 0, where n denotes the interfacial normal. These
conditions guarantee the conservation of both p and n and
hence the overall charge neutrality. The electrical boundary
conditions at the fluid-solid interface are the most impor-
tant since they give rise to the EDL and hence the
electrokinetic phenomena. Traditionally, this can be either
the Dirichlet-type boundary condition in which a constant
potential is specified, or a Neumann-type boundary con-
dition in which the normal electric field is given. In order to
clarify the physical underpinnings of the relevant boundary
conditions, in what follows we first treat the static limit of
the PNP equations, i.e., the time-independent, zero-current
(Jn, Jp, u ¼ 0) solution, for the purpose of delineating the
EDL. This is done in two steps—first by showing how
the PB equation can be obtained from the static limit of the
PNP equations as well as the inconsistencies that can arise,
followed by a simple resolution of the inconsistencies with
the attendant implications.

B. Static limit of the PNP equations—the
Poisson-Boltzmann model

The PB equation can be obtained from the PNP
equations by setting Jn, Jp, u ¼ 0. In that limit, we have

∇n − e
kBT

n∇φ ¼ 0; (2a)

∇pþ e
kBT

p∇φ ¼ 0. (2b)

Equations (2a) and (2b) can be integrated to yield

n ¼ α exp½þeφ=kBT�; (2c)

p ¼ β exp½−eφ=kBT�: (2d)

In other words, the Boltzmann distribution of the ionic
densities is the result of detailed balance between the drift
current and the diffusive countercurrent. Here, α and β are
the integration constants. By setting α ¼ β ¼ n∞, where
n∞ denotes the average ion density in the bulk limit, and
substituting this solution into the Poisson equation,
∇2φ ¼ −eðp − nÞ=ε, we obtain

ρ ¼ eðp − nÞ ¼ −2en∞ sinh

�
eφ
kBT

�
; (3a)

and

∇2φ̄ ¼ 1

λ2D
sinhðφ̄Þ; (3b)

where φ̄ ¼ eφ=kBT, with λD ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
εkBT=ð2e2n∞Þ

p
being the

Debye length. Here, the distinction between n∞ and no is
necessitated by the consideration of surface charge density,
to be detailed below, which can make the two quantities
differ in the regime of finite or small fluid channels.
Equation (3b) is known as the Poisson-Boltzmann equa-
tion; it represents the traditional starting point of a
mathematical treatment of the diffuse screening layer that
was first proposed by Gouy and Chapman. The PB model
consists of Eq. (3b) together with the required boundary
condition(s) for its solution. There are two usual types of
boundary conditions. (1) The Dirichlet-type boundary
condition is where a constant value of the electrical
potential (CP), generally denoted the zeta (ζ) potential,
is specified at the fluid-solid interface. This is supple-
mented by the condition ∂⊥φ ¼ 0 at the center of the fluid
channel (or at infinity), where the subscript ⊥ denotes the
spatial derivative to be normal to the channel axis. (2) The
Neumann-type boundary condition is where a constant
value of the normal electric field is specified at the fluid-
solid interface, plus the same condition at the channel
center (or infinity). This is sometimes also denoted the
Gouy-Chapman boundary condition, or the constant charge
boundary condition (CC) [46,52–58].
It should be especially noted that the condition

α ¼ β ¼ n∞, together with Eqs. (2c) and (2d), implies
that local charge neutrality is directly linked with the
condition of φ ¼ 0. Hence, in Eq. (3b), the potential has
an absolute reference, located in the fluid where there is
local charge neutrality. When this cannot be achieved
within a specific model problem, e.g., in a nanoscale fluid
channel, it is usually necessary to invoke an infinite
reservoir, with guaranteed charge neutrality, so that the
value of the ζ potential can be well defined relative to such
a reference.
With a constant ζ potential at the fluid-solid interface, the

solution to Eq. (3b) is known to be an exponential-type
decay of the electrical potential, with a decay length given
by λD. For water with n∞ ¼ 950=μm3 (pH ¼ 8:2),
λD ¼ 0.24 μm. In order to facilitate discussion, in what
follows we consider a cylindrical channel with radius a.
Unless otherwise specified, the cylindrical channel is
assumed to be either infinite in length or long enough so
that the end effects can be ignored. In this case, the
translational invariance along the channel axis implies that
global charge neutrality is equivalent to charge neutrality at
every cross section of the channel.
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For a channel with a → ∞, it is generally possible to
associate the center of the channel with charge neutrality,
and hence φ ¼ 0. A constant, nonzero ζ potential at the
cylindrical boundary therefore implicitly implies a potential
difference between the center and the boundary and hence a
nonzero normal electric field. This is consistent with the
fact that the solution to Eq. (3b) must have a net charge [see
Eq. (4) below], simply obtainable by integrating the right-
hand side of Eq. (3a), with the solution φ profile, from the
center (where φ ¼ 0) to the boundary (where φ ¼ ζ). This
net charge will generate a normal electric field as required
by the Gauss law.

C. Physical picture of Gouy-Chapman

As the PB equation with a constant ζ potential is seen to
violate overall charge neutrality within the computational
domain, the usual way of fixing the problem is to add a
uniform surface charge layer just outside the computational
domain, which can exactly cancel the net charge generated
by the solution of the PB equation. Since a layer of uniform
surface charge does not give rise to any interior electric
field, such an addition will not affect the solution profile.
This is the Gouy-Chapman (CC) approach, which specifies
the normal electric field at the boundary that is equivalent to
the net charge in the Debye layer, equivalent in magnitude
to a surface charge density placed just outside the computa-
tional domain. It is therefore clear that the two boundary
conditions, the Dirichlet type (CP) and the Neumann type
(CC), are essentially equivalent and will give rise to
identical screening layer profiles, provided the supplemen-
tal Gouy-Chapman surface charge density sðGCÞ is related to
ζ by the following relation in the λD=a → 0 limit:

sðGCÞ ¼ 4en∞λD sinh

�
eζ

2kBT

�
þOðλD=aÞ: (4)

It is seen that besides n∞, the boundary value ζ also plays a
role in determining the magnitude (and sign) of the surface
charge density. In Fig. 1, we give a schematic illustration of
the ion distribution.
While the Dirichlet and Neumann boundary conditions

are essentially equivalent when a ≫ λD, we shall see below
that as a decreases below λD, the two boundary conditions
can yield different predictions if their respective boundary
values remain fixed [Fig. 3(c)]. This is because the center of
the fluid channel can no longer remain at zero potential
when the two Debye layers overlap. Hence, the integration
of the right-hand side of the PB equation, representing the
net charge in the fluid, has to decrease if the boundary
potential value remains fixed at ζ (since the potential
difference between the center and the boundary decreases).
From the Guy-Chapman picture, the corresponding surface
charge density must also decrease so as to preserve overall
charge neutrality. Hence, the CP boundary condition
implies a decreasing surface charge density when the

channel width decreases, whereas the CC boundary con-
dition has a fixed surface charge density by definition.
Which one is correct? Or are both incorrect? Experimental
evidence points to the latter. A significant advantage of the
present work, shown below, is that it accurately reproduces
the traditional results when the channel width is large,
while the predictions for the nanoscale channel width can
also agree with the experimental observations without
additional or adjustable parameters.
EO flow can result from coupling the PB equation to the

NS equation. This is shown in Appendix A. We also show
that the Onsager relation holds for the PB equation under
the traditional approximations.

III. THE CHARGE-CONSERVING POISSON
BOLTZMANN EQUATION

A. Inconsistencies between the PB
equation and the PNP equations

There are two inconsistencies between the PNP equa-
tions and the PB equation. First, since the electrical
potential in the PNP equations appears only in the form
of ∇φ, it follows that the solution must be independent of
any constant reference potential, i.e., the PNP equations do
not need an absolute potential reference as in the case of the
PB equation. A second inconsistency lies in the charge
conservation that is inherent in the PNP equations, as
pointed out earlier, but there is no such built-in feature
in the PB equation. Even though the overall charge
conservation can be restored by adding a supplemental
surface charge density as in the Gouy-Chapman approach,

FIG. 1. A schematic illustration of the charge density distri-
bution as a function of the radial coordinate r. Here, the blue
shading indicates the trapped negative surface ions, significantly
exaggerated in thickness for the purpose of illustration, and red
shading means the positive counterions that are dominant in the
Debye screening layer. The boundary condition of the PB
equation is noted to be defined at the interface between the blue
and red shadings, i.e., inside the computational domain of the
charge-conserving Poisson-Boltzmann equation.
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the PNP equations inform us that charge conservation
should hold within the computational domain so that the
surface charge density constitutes an integral part of the
system that is actively coupled to the bulk.

B. Charge-conserving Poisson-Boltzmann equation

The two inconsistencies pointed out above can be simply
resolved by observing that, from Eqs. (2c) and (2d), the
overall charge-neutrality condition dictates

α

Z
dx exp½þeφ=kBT� ¼ noV ¼ β

Z
dx exp½−eφ=kBT�;

(5a)

which easily follows from Jn⋅n ¼ 0, Jp⋅n ¼ 0 at the
sample boundary, plus Eqs. (1a) and (1b). Hence, we
see that α ≠ β in general, in contrast to the previous
assumption (α ¼ β ¼ n∞) that led to the PB equation.
From Eq. (5a), it follows that

n ¼ no
exp½þeφ=kBT�

1
V

R
dx exp½þeφ=kBT�

; (5b)

p ¼ no
exp½−eφ=kBT�

1
V

R
dx exp½−eφ=kBT� : (5c)

By substituting the above expressions into the Poisson
equation, we obtain the following integral-differential
equation for a cylindrical channel with radius a:

1

r
∂
∂r

�
r
∂φ
∂r

�
¼ ea2no

2ε

�
expðeφ=kBTÞR

a
0 r expðeφ=kBTÞdr

− expð−eφ=kBTÞR
a
0 r expð−eφ=kBTÞdr

�
: (6)

This charge-conserving Poisson-Boltzmann (CCPB)
equation has been derived previously [104], together with
its numerical solution algorithm. Here, we emphasize and
point out its physical implications, i.e., consistency with the
PNP equations and its relevance to electrokinetics.
It is easy to see that both inconsistencies raised pre-

viously are easily resolved. For the reference potential
issue, an additive φo would give rise to multiplicative
factors, expð�eφo=kBTÞ, that are present simultaneously in
both the numerator and the denominator on the right-hand
side of Eq. (6) and hence cancel. As for charge conserva-
tion, the derivation of CCPB itself has incorporated this
feature, which is evident from the fact that the volume
integral on the right-hand side of Eq. (6) (which represents
the net charge density) yields zero.
In contrast to the PB equation, the CCPB equation

cannot yield an EDL solution with a constant potential
boundary condition. This is perhaps clear from the fact that

the CCPB is insensitive to a constant reference potential, as
pointed out above; hence, a constant potential boundary
condition is equivalent to a zero potential boundary con-
dition, which would clearly yield nothing.
In addition to the above, the CCPB cannot yield an EDL

with the Neumann-type boundary condition either. This can
be seen as follows. Multiply both sides of Eq. (6) by 2πrdr
and integrate from 0 to a. The right-hand side of the
equation yields zero after the integration because of the
charge-neutrality condition. The left-hand side yields
rð∂φ=∂rÞjr¼a − rð∂φ=∂rÞjr¼0 ¼ rð∂φ=∂rÞjr¼a. Hence,
∂φ=∂rjr¼a must be zero. If one specifies a Neumann
boundary condition with ∂φ=∂rjr¼a ≠ 0, then it will be
inconsistent with the CCPB equation and there will be no
solution. However, if ∂φ=∂rjr¼a ¼ 0 is applied, then the
solution is a constant φ throughout; hence, again, no EDL
can be generated.
From these simple deductions, it becomes clear that

under the imposition of the charge-neutrality condition, the
occurrence of EDL can only be realized by charge
separation inside the computational domain. In particular,
the surface charge density must occur inside the fluid-solid
interface, through some form of charge separation mecha-
nism that can break local charge neutrality. This point and
its implications are detailed in the next section.

IV. SURFACE POTENTIAL TRAP
AND THE CHEMICAL POTENTIAL

A. Surface potential trap model

Interfacial boundary conditions should ideally be inde-
pendent of the bulk characteristics, such as n∞. However, it
is well known that in the EO effect, experimental evidence
indicates that the ζ potential varies as a function of n∞

[105,106], e.g., by adding salt. Titration experiments have
shown that the surface charge should be dependent on the
pH and ionic strength [47]. Such correlation between n∞

and ζ implies that the interfacial charge density should be a
derived quantity, i.e., the outcome of the calculation rather
than an input.
As an alternative that can accommodate the variation of

the ζ potential and the surface charge density, as well as
provide a simple mechanism of generating EDL within the
framework of the overall charge neutrality, we propose a
(charge-neutral) surface potential trap model at the fluid-
solid interface to serve as the ingredient for generating a
surface charge layer σ. To motivate this model, let us
consider the silica-water interface as an example. The
conventional picture, as well as the reactive molecular
dynamics simulation results [87], show that there exist
dangling bonds, Si and Si-O, on a freshly cut silica surface.
When the silica surface comes into contact with water, one
neutral water molecule can dissociate into an OH− and an
Hþ, which combine, respectively, with Si and Si-O to form
two silanol (SiOH) groups. The silanol group is understood
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to be unstable in an aqueous environment and can easily lose
or gain a proton, but this proton must stay in the neighbor-
hood of the interface, owing to the electrostatic interaction.
In this manner, an electrical double layer is established. It is
clear that the interfacial ions generated in this fashion,
denoted by σ, are in addition to n∞, which is the result
of the law of mass action (H2O⇌OH− þ Hþ) of the water
molecules.
It should be noted that there has been a tremendous

amount of work in the area of the silica-water interface
[107–111]. It is the intention of this work to address only
the basic issue of interfacial charge separation with a simple
model. More layers of complexities may be added to the
basic theory in the future.
In order to simulate the process of surface charge layer

generation, a (charge-neutral) surface potential trap is
proposed, illustrated in Fig. 2(a). The surface potential
trap should be specific to the type of ions. In the context of
the silanol group example given above, the depth of the trap
is indicative of the (free) energy relevant to the charge
dissociation process. In other words, our model attributes a
constant (free) energy cost to each ion pair generated. This
charge-neutral surface potential trap can be either positive
or negative, depending on the physical properties of the
fluid-solid interface. In the case of the silica-water inter-
face, the surface potential is positive so as to trap negative
ions. For a fixed surface potential trap, it can be easily
shown that the surface change density σ would vary as a
function of a [Fig. 2(b)] and pH values [Fig. 4(a)] because σ
is now located inside the computational domain and must
therefore be in active equilibrium with the bulk. This fact
accounts for the basic distinction of the present model from
the PB (CP) and GC (CC) models; it is a step closer to the
observed reality. The use of the surface potential trap
model, in conjunction with the PNP equations, also enables
a consistent treatment of the time variation in the EO effect
since in such a situation the local charge density can be time
varying, and a fixed surface potential trap can accommo-
date the associated variation in the adsorbed surface charge
density.
To implement the surface potential trap as part of the

“interfacial condition,” let us consider again a cylindrical
channel with radius a. The surface potential trap function
fðrÞ has two parameters, the height of the trap, γ, and its
width Δ:

fðrÞ ¼ γ

2

�
1þ cos

πðr − aÞ
Δ

�
; for a − Δ ≤ r ≤ a;

(7a)

fðrÞ ¼ 0 for 0 ≤ r ≤ a − Δ: (7b)

In what follows, we first consider the potential trap that is
specific to the adsorption and desorption of Hþ from silanol
groups. We shall set Δ to be the length of a dangling bond,

FIG. 2. Illustration of the interfacial potential trap and its
consequences, with comparisons to the other models. (a) The
functional form of the surface potential, given by Eq. (7). Here,
the fluid-solid interface is at r ¼ 2.4 μm. (b) The self-consis-
tently determined surface charge density σ as defined
by Eq. (11), plotted as a function of a (red symbols and curve).
The black symbols and the fitting curve are for s, defined as
the density of the negative ions integrated over the width of the
surface potential trap shown in (a). It is seen that s > σ because
part of s is captured from the bulk. (c) Negative of the chemical
potential, −μ (right scale, red symbols and fitting curve),
determined self-consistently with σ through Eqs. (10b) and
(11), plotted as a function a. The black symbols and fitting
curve denote the zeta potential, ζ (left scale), as defined by
Eq. (15). It is seen that the two quantities agree closely for
a > 10 μm but deviate from each other below that.
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8 Å. It turns out that by fitting γ so as to reproduce the ζ
potential of water with pH 8.2 (n∞OH− ¼ 950=μm3 and
ζ ¼ −76.55 mV, with pH values adjusted by the addition
of NaOH), we obtain γ ¼ 320 mV. This corresponds
roughly to the energy scale of a hydrogen bond; i.e., the
potential trap is capable of breaking a hydrogen bond so as to
release a proton. We note that the functional form of fðrÞ
cannot be arbitrary. In other words, the potential trap must
be related, through the Poisson equation, to a fixed
charge density ρc. Since our potential trap should be
charge neutral, the volume integral of ρc is constrained to
be zero. Particularly, since fðrÞ must satisfy the Poisson
equation

1

r
∂
∂r

�
r
∂fðrÞ
∂r

�
¼ − ρc

ε
; (8)

the integration of ρc over the domain a − Δ ≤ r ≤ a should
yield zero; i.e., the potential trap does not bring any external
net charges into the system. It is easy to demonstrate that the
form of f given by Eq. (7) satisfies this constraint.
The potential distribution in the presence of the sur-

face potential trap can be obtained by setting
ψðrÞ ¼ φðrÞ − fðrÞ, where ψðrÞ denotes the potential
associated with the ions. From Eq. (7b), it is clear that
ψ ¼ φ for r < a − Δ. The potential function ψðrÞ satisfies
the following CCPB equation:

FIG. 3. (a) The distribution of the positive ions for a ¼ 2.4 μm. Almost exact agreement is seen between the predictions of the PB and
CCPB equations. The static limit of the PNP equations is also plotted, which (not surprisingly) agrees exactly with the CCPB. Not
shown are the predictions of the Gouy-Chapman model (CC), which is exactly the same as that for the PB (CP) equation, with the
Neumann boundary condition that corresponds to a surface charge density of s ¼ 2058=μm2. At a ¼ 2.4 μm, the actual value of
s ¼ 2016.8=μm2. (b) The potential profile for the Debye screening layer for a ¼ 2.4 μm. Again, almost exact agreement is seen between
the three cases. (c) The potential profile for the PB (blue line) and CCPB (black line) equations, plus the Gouy-Chapman (red line) model
when a ¼ 10 nm. In contrast to (a) and (b), significant differences are seen for the predicted potential profiles. For the Gouy-Chapman
model (CC), we use the same value of the surface charge density as that for the larger a, i.e., 2058=μm2. For the PB (CP) case, the value of
ζ ¼ −76.55 mV has been used as the boundary condition. In the CCPB case, the use of either −μ ¼ −114.3 mV or σ ¼ s ¼ 450=μm2

would yield the result shown by the black curve in (c). For ease of comparison, in all cases the potential value at the boundary
is shifted to zero.
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1

r
∂
∂r

�
r
∂ψ
∂r

�
¼ ea2no

2ε

�
exp½eðψ þ fÞ=ðkBTÞ�R

a
0 exp½eðψ þ fÞ=ðkBTÞ�rdr

− exp½−eðψ þ fÞ=ðkBTÞ�R
a
0 exp½−eðψ þ fÞ=ðkBTÞ�rdr

�
: (9)

In Fig. 2(a), we illustrate a particular surface potential
trap with a height of 320 mVand a width of 8 Å, situated at
the fluid-solid interface for a cylindrical channel with
a ¼ 2.4 μm. It is noted that fðrÞ ¼ 0 at r ≤ a − Δ
Ultimately, this sets the reference potential value for the
CCPB in this work. Equation (9) can be solved by using
the finite-element COMSOL multiphysics package with
the boundary conditions, as noted previously. The
Neumann condition ∂ψ=∂r ¼ 0 is used at the center of
the cylindrical channel, and the Dirichlet condition ψðaÞ ¼
0 is imposed at the fluid-solid interface. It is shown
below that the solution to the CCPB equation agrees
exactly with the static limit of the PNP equations
[Figs. 3(a) and 3(b)].

B. Reformulation of the CCPB with the definition
and self-consistent determination of chemical

potential and surface charge density

The addition of a surface potential trap breaks the
symmetry between p and n near the fluid-solid interface.
In order to better track the charge conservation as well as
the surface charge density thus generated, we reformulate
CCPB by noting that Eq. (9) can be written alternatively as

1

r
∂
∂r

�
r
∂ψ
∂r

�
¼ en∞

ε
fexp½eðψ − μþ fÞ=kBT�

− exp½−eðψ − μþ fÞ=kBT�g; (10a)

where the chemical potential μ is defined by the charge-
neutrality condition

μ ¼ kBT
2e

ln

�R
a
0 exp½eðψ þ fÞ=kBTÞ�rdrR
a
0 exp½−eðψ þ fÞ=kBT�rdr

�
: (10b)

In Eq. (10a), it should be noted that we use n∞ on the right-
hand side, instead of no as in Eq. (9). The electrical
potential is now referenced to the chemical potential.
However, it is easy to see that when Eqs. (10a) and
(10b) are considered together, the property of reference
potential independence is still preserved. In Appendix B,
we show that Eq. (10b) can be derived from the free energy,
with μ serving as the Lagrange multiplier for the charge-
neutrality constraint.
The additional condition—that the integral of each term

on the right-hand side of Eq. (10a) must be identical to the
integral of the same term in Eq. (9)—yields a dimensionless
constant κ:

2

a2

Za

0

exp½eðψ − μþ fÞ=kBT�rdr ¼

κ ¼ 2

a2

Za

0

exp½−eðψ − μþ fÞ=kBT�rdr; (10c)

with the constraint that n∞κ ¼ no. Since the surface
potential trap inevitably generates a surface charge layer,
there is a relationship between no, n∞, and σ:

no ¼ n∞ þ 2
σ

a
: (11)

It follows that σ ¼ n∞ðκ − 1Þa=2. But the value of
κ depends on μ, which requires σ (as part of no) as
one of the input parameters. Hence, there is a con-
sistency condition that may be expressed succinctly
as σ ¼ n∞afκ½μðσÞ� − 1g=2.

C. Generalization to the case of surface
nonspecific salt ion addition

Salt addition is commonly used to vary the ion concen-
tration. From the retention times in ion-exchange chroma-
tography, a series of binding affinities can be ordered as
Csþ > Kþ > Naþ > Liþ [112,113]. This is easy to
understand from the viewpoint that ions with an increasing
hydration shell are more prone to stay in water. For
simplicity, we assume that the surface-specific salt ions
can be treated just as the water ions. For example, for
NaOH, the OH− ions are of course the same as that from
water, and for the Naþ ions, they can be treated on the same
basis as Hþ since the positive ions are all repulsed by the
surface potential trap.
For those salt ions which do not interact with surface

silanol groups, i.e., surface nonspecific salt ions such as
Naþ=Cl−, the same theoretical framework can be gener-
alized to the following form, based on the observation
that while the salt ions would electrically interact with all
the other ions, they do not feel the effect of a surface
potential trap. Hence, the CCPB equation (9) can be
written as

1

r
∂
∂r

�
r
∂ψ
∂r

�
¼ e

ε
fn∞OH− exp½eðψ − μþ fÞ=kBT�

þn∞Cl− exp½eðψ − μÞ=kBT�

−n∞Hþ exp½−eðψ − μþ fÞ=kBT�

− n∞Naþ exp½−eðψ − μÞ=kBT�g; (12a)

where the chemical potential μ is determined by the
charge-neutrality condition
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μ ¼ kBT
2e

ln

� R
a
0 fn∞OH− exp½eðψ þ fÞ=kBT� þ n∞Cl− exp½eψ=kBT�grdrR

a
0 fn∞Hþ exp½−eðψ þ fÞ=kBT� þ n∞Naþ exp½−eψ=kBT�grdr

�
: (12b)

We note that the charge-neutrality relation between the ion densities of the four species at infinity is given by

n∞OH− þ n∞Cl− ¼ n∞Naþ þ n∞Hþ ¼ n∞: (12c)

The additional condition—that the integral of the negative or positive ion density on the right-hand side of Eq. (12a) must
be identical to the integral of the same term in Eq. (9)—yields the following equation:

2

a2

Za

0

fn∞OH− exp½eðψ − μþ fÞ=kBT� þ n∞Cl− exp½eðψ − μÞ=kBT�grdr ¼ no

¼ 2

a2

Za

0

fn∞Hþ exp½−eðψ − μþ fÞ=kBT� þ n∞Naþ exp½−eðψ − μÞ=kBT�grdr: (12d)

It should be noted that in the above generalization, we
have used the presence or absence of a single surface
potential trap f in the distribution function of the various
ion specifies, in order to differentiate their affinities to the
solid surface. An obvious direction to further generalize the
model is to use different surface potential traps, e.g., one for
each ion species (fHþ for protons, fNaþ for sodium ions,
and fCl− for chlorine ions), to characterize their interfacial
affinities. However, it is the purpose of the present work to
give the simplest version and to demonstrate the model’s
effectiveness even in its minimal edition.
In actual calculations, we first solve Eq. (12a) for ψ (with

given n∞OH− , n∞Cl− , n
∞
Naþ , n

∞
Hþ and a guess for σ), which is

subsequently used in Eq. (12b) to obtain μ. Then,
Eqs. (12d) and (11) are used to check the consistency
between the initial value σ and that deduced from no. If it is
found to be inconsistent, then a new value of σ is
determined from the consistency relation, and iterations
are carried out until consistency is achieved. In this manner,
one obtains σ and μ simultaneously from the input pH and
pC values. The interpretation is that if we hold n∞ to be a
given constant, then the surface potential trap needs to
generate a surface charge density σ (and its counterions) in
order to retain consistency between the input no to Eq. (9),
and the resulting ion density allocation by the CCPB
(through its solution ψ) to the potential trap and the bulk
ion density. The latter must be held at n∞. In Fig. 2(b), we
show the variation of σ as a function of a with n∞ ¼
950=μm3 as the input value (pH ¼ 8.2, adjusted by NaOH).
It is seen that σ is a constant for large a, as it should be, but
decreases significantly when the Debye layers from the two
opposite surfaces overlap. At a ¼ 10 nm, we have
σ ¼ 450=μm2, which is only a quarter of the value at
the a → ∞ limit. Also plotted, in symbols, is the surface
ion density, s, obtained by directly integrating the captured
negative ions in the surface potential trap region (the
amount of positive ions in the trap is less than 1%).
Here, s represents the charge density that should exactly
cancel the net charge in the diffuse Debye screening layer.

It is the total charge in the Stern layer. A difference between
s and σ is seen, owing to the fact that s contains some ions
captured from the bulk, whereas σ represents the surface-
specific adsorbed ions generated by the break-up of neutral
molecules by the surface potential trap. However, when the
radius decreases below λD, s is seen to approach σ.
The surface charge density variation seen in Fig. 2(b),

usually denoted as the charge regulation phenomenon, is
indicative of the fact that the surface charge layer density is
subject to variation when the interfacial environment
changes. Here, the surface charge density is coupled to
the bulk as a consequence of being within the computa-
tional domain [see also Fig. 4(a)]; hence, its variation is
both necessary and guaranteed to conform with the
principle of free energy minimization. Traditionally, the
“correct” variation as implied by the experimental mea-
surements is sometimes obtained by interpolating between
the CC boundary condition and the CP boundary condition,
with an interpolation parameter that is fitted to the
experimental data. Here, the desired behavior emerges
naturally, with no additional parameters. It is shown below
that such surface charge density variation is crucial to
understanding the experimental data obtained at the nano-
meter scale channel width.
In Fig. 2(c), we show the associated variation of −μ

plotted as a function of a, where the minus sign in front of μ
is installed in anticipation of its comparison with the zeta
potential.
Why does σ decrease with decreasing a? Basically, it is a

matter of energetics. Since the interfacial charge separation
is associated with a given energy, with decreasing a (to
below λD), the repulsive interaction between the positive
ions in the screening layer would increase with increasing
no ∼ 2σ=a. The overall free energy minimization is what
dictates the behavior seen in Fig. 2(b).

D. Reduction to the PB equation form

By noting that fðrÞ ¼ 0 for r ≤ a − Δ, Eq. (12a) may be
written in the form
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1

r
∂
∂r

�
r
∂ψ
∂r

�
¼ en∞

ε
fexp½eðψ − μÞ=kBT�

− exp½−eðψ − μÞ=kBT�g (13)

within the reduced domain. Simple manipulation leads to
the form of the PB equation:

1

r
∂
∂r

�
r
∂ψ̄ ðPBÞ

∂r
�

¼ 1

λ2D
sinh

�
ψ̄ ðPBÞ

	
: (14)

Here, ψ̄ ðPBÞ ¼ eðψ − μÞ=kBT, with ψ ðPBÞ ¼ ψ − μ. The
boundary condition, applied at r ¼ a − Δ, should be
ψ ðPBÞ ¼ −μ because we have set ψðaÞ ¼ 0, and therefore
ψða − ΔÞ → 0 as Δ → 0 (in actual calculations, the differ-
ence from zero is at most a fraction of one mV, which is

noted to be of the same magnitude as the traditional
potential difference between the Stern layer and surface
layer). It follows that in our form of the PB equation, −μ
plays the role of the traditional ζ potential. However,
distinct from the traditional PB equation in which the ζ
potential is treated as a constant, here −μ can vary with a
and/or n∞. Since the use of Eq. (14) with the accompanying
−μ boundary condition leads to exactly the same predic-
tions as the CCPB equation, it is fair to say that the
consideration of the charge-neutrality constraint has led to a
redefinition of the boundary condition for the PB equation,
and the actual difference from the traditional approach
becomes important only at the scale of nanometers to a few
μm. We note in passing that the above derivation of the PB
equation also resolves the question, raised previously,
regarding the correct boundary condition when a < λD.

FIG. 4. Correlation of the modeling parameters with the channel radius and pH values. The magnitude of the surface potential
is set at γ ¼ 320 mV. (a) Correlation between the surface charge density and pH values, for two cases of a ¼ 2.4 and 0.01 μm
under pC ¼ 3. In both cases, the value of s tracks σ. (b) Chemical potential μ plotted as a function of pH values, for a set of
different a’s and pC values ranging from 2 to 4. (c) ζ potential plotted as a function of pH values, for a set of different a’s and
pC values ranging from 2 to 4. (d) ζ=pC plotted as a function of pH values for a ¼ 2.4 μm and pC values ranging from 2 to 4.
It is seen that the |ζ| varies linearly with pH values for a > λD. This conforms with the experimentally observed behavior. It is
also seen that |ζ| decreases with channel radius a but increases with increasing pH values. Here the ζ potential is consistently
calculated from Eq. (15).
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E. Generalized definition of the ζ potential

In contrast to the chemical potential that is defined on the
basis of the charge-neutrality constraint, the ζ potential
should be the basis of the EK effects that arises from charge
separation and its associated potential inhomogeneities. For a
cylindrical channel with radius a, it is shown in Appendix A
that when the PB equation is coupled with the NS equation,
with the traditional approximations, both the EO fluid flow
and the related Onsager coefficient are proportional to the
integral of the volume-averaged potential variation:

ζ ¼ 2

a2

Za

0

½ð−μÞ − ψ ðPBÞ�rdr ¼ − 2

a2

Za

0

ψðrÞrdr; (15)

where ψ denotes the solution to the CCPB equation. In
Eq. (15), we have extended our integration to r ¼ a because
the integrand is essentially zero from a-Δ to a. In Fig. 2(c),
the calculated ζ potential is plotted as a function of a. It is
seen that ζ ≅ −μ above 10 μm, but the two deviate from each
other below that.
From Eq. (15), it is easy to see that in the a → ∞ limit,

we must have ζ ¼ −μ because in a large channel, except
close to the boundary where there is charge separation,
most of the channel must be charge neutral. Hence, from
Eq. (10a) [or (12a)], we should have ψ ¼ μ in the bulk, and
the volume average of ψ must equal μ since the interfacial
contribution is negligible in this case. The potential
variation in this case is just −μ (from ψ ¼ μ in the bulk
to ψ ¼ 0 at the interface). It should be noted that ψ ðPBÞ ¼ 0
in the bulk, as expected.

F. Comparison and contrast with the traditional picture

It is satisfying that the physical picture of Gouy-
Chapman (CC) can be reproduced within the computational
domain, under the charge-neutrality constraint. The place
where the PB equation’s potential boundary condition (CP)
must be applied, i.e., at r ¼ a-Δ, is noted to coincide
precisely with that of the traditional theory. In distinction to
the traditional PB model, here−μ is a function of a and n∞;
i.e., the boundary value is a derived quantity rather than a
constant input. This is because in the present case, the PB
equation form is defined only within r ≤ a-Δ; therefore, its
boundary value must represent all the relevant information
within the entire computational domain, reduced down to a
single number. The clarification of the meaning of the
traditional zeta potential as the chemical potential also
shows that the use of the CP boundary condition is only
valid at the large channel limit. But even that is suspect
since the chemical potential can vary with salt addition,
while the usual notion of a boundary condition should be
particular only to interfacial characteristics.
While the surface charge density is determined by the

boundary condition in the PB model [Eq. (4)], in the
present case the boundary value (−μ) and σ are both

determined simultaneously by the surface potential trap and
n∞. In contrast to the traditional theory, here σ is situated
within the computational domain as emphasized previ-
ously, and therefore, it is subject to variation in conjunction
with the bulk input parameters.
The charge regulation phenomenon, denoting the fact that

the surface charge density can vary as a function of
separation and local chemical environment, is seen to emerge
naturally in our model. Taking the silica-water interface for
example [85,86], previous treatments take advantage of the
experimentally supported “1-pK basic Stern model”
[114,115], which describes the various reactions that can
occur at the silica-water interface. They are sensitive to the
chemical nature of the interface and effective at separations
larger than the Debye length. However, in our surface
potential trap model, the surface reaction is depicted by
the free energy cost for surface-active ions’ desorption or
adsorption. To a large extent, our model captures the
essential physics underlying these complex reactions.
The present model differs from the traditional picture

when the Debye layers of two charged surfaces overlap. In
this situation, neither the diffuse layer charge nor the
diffuse layer potential can remain constant, and both
quantities vary with separation as a result of an interplay
between the diffuse layer and the surface. As stated
previously, when separation decreases, the dissociation
reactions occuring at the surface are suppressed because
of the minization of overall free energy.
It is well known that the charge layer adsorbed at the fluid-

solid interface, e.g., in the Gouy-Chapman model, is
regarded as the immobile “Stern layer.” In our model, while
movement normal to the interface is naturally limited by the
surface potential trap, movement parallel to the interface is
not artificially constrained. We show below that when this
model is coupledwith theNS equation, the adsorbed charges
will have nomovement parallel to the interface, owing to the
no-slip boundary condition. Thus, the adsorbed (trapped)
ions in this case can correspond accurately to the Stern layer.
However, since we have not artificially fixed the adsorbed
charges at the interface, the movement parallel to the
interface can be enhanced by the slip hydrodynamic boun-
dary condition, e.g., the Navier boundary condition. While
the slip boundary conditionmight not be common tomanyof
the physical systems, this added degree of freedom never-
theless makes the present model attractive for simulating a
more diverse array of problems.

V. COMPARISON WITH ALTERNATIVE
MODELS AND EXPERIMENTS

A. Comparison between the predictions of the PB,
CCPB, and PNP equations

By using the COMSOL multiphysics finite element
package to numerically evaluate the surface potential trap
model with the input parameters a and n∞ (Δ is set at 8 Å),
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the potential profile of the CCPB can be evaluated. We
show in Figs. 3(a) and 3(b) that when a is large, the positive
ion density and the potential profile show almost exact
agreement between the solutions of the PB equation [with
−μða → ∞Þ as the boundary condition], the CCPB equa-
tion, and the static limit of the PNP equations for
a ¼ 2.4 μm. If we use a Neumann boundary condition
that corresponds to a surface charge density of 2058=μm2,
i.e., the Gouy-Chapman model (CC), the prediction is also
almost identical to that of the PB equation. The excellent
agreement between all the different models holds down to
a ≅ λD, or about 300 nm. However, differences emerge
below that scale. In Fig. 3(c), it is shown that when
a ¼ 10 nm, the predictions of the PB (CP) and CCPB
equations differ quite significantly, especially in the value
of the ζ potential, as can be inferred by the amount of
potential variation [see Eq. (15)]. If we still use the same
surface charge density of 2058=μm2 as in the Neumann
boundary condition for the a ¼ 10 nm case, then the Gouy-
Chapman model (CC) prediction is shown by the red line,
which is above that of the CCPB or the PB (CP). This
difference is due to the lower value of the trapped negative
ion charge density in the CCPB case (or the static limit of
the PNP equations), 450=μm2.
In regard to Fig. 3(b), it may be worthwhile to note the

very simple physics involved. In other words, since the
surface charge density and the diffuse screening layer
essentially form a capacitor, there is necessarily a jump
in potential from ψ ¼ 0 (boundary condition on ψ) at the
fluid-solid interface to ψ ¼ μ in the bulk (required by
charge neutrality as noted previously). The transition
distance is characterized by λD. This picture holds until
the channel width a becomes less than λD; then, the relevant
physics can become more complicated, owing to the
variation in the surface charge density and the incomplete
screening such that the center of the channel is no longer
charge neutral.

B. Variation of surface charge, chemical,
and zeta potentials with pH under different
(surface nonspecific) salt concentrations

Here, we focus on the CCPB equation and its various
parameters. Inputs to the CCPB equation comprise a, pH,
pC, and the surface potential trap height γ. By first
determining σ and μ consistently, the subsequent potential
profile and the values of ζ can be easily obtained. In
Figs. 4(a), 4(b), and 4(c), we show, respectively, the
variations of σ, μ, and ζ as a function of pH values. To
test the empirical equation (ζ ¼ a0 þ a1⋅pC, where a0 and
a1 are functions of the pH, temperature, substrate material,
and counterion type), we normalize the zeta potential with
pC values, as shown in Fig. 4(d). For the theory results,
normalized zeta potentials display a nearly linear variation
as a function of pH with a slope of 6.5 mV=pH (for
pH > 7), comparable to the experimental value of

4–7 mV=pH [106]. Hence, our model can provide a rather
good explanation of the measured zeta potential results,
which have also been addressed by previous models with
varying complexities [116,117]. In Fig. 4(a) (take pC ¼ 3,
for example), it is seen that the variation of σ may be
described by a surprisingly simple expression: ln σ ∼ ln n∞

when a ¼ 2.4 μm. However, this can change when
a ¼ 10 nm. Figure 4(b) also shows that μ increases in
magnitude with increasing pH values and decreasing a. But
the ζ potential, shown in Fig. 4(c), has the opposite
variation with a, owing to the finite width of the Debye
screening layer, so that when a ≤ λD, the potential

FIG. 5. (a) Chemical potential −μ plotted as a function of salt
ion concentration pC under pH 9 for a set of different radii a. (b) ζ
potential plotted as a function of the negative logarithm of salt ion
concentration, pC, under pH 9, for a set of different radii a. In (a),
the different curves represent the effect of different channel
radius. From top downward, the radius are 3, 1, 0.3, 0.1, 0.07,
0.04, 0.03, 0.02, 0.008, and 0.002 μm. The order is reversed in
(b), with the largest radius curve at bottom. It should be noted that
for a channel width of 40 nm to 300 nm, the zeta potential
displays a maximum in its absolute value, just as observed
experimentally.
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difference between the fluid-solid interface and the center
of the channel becomes smaller [118,119]. The EK effect
diminishes as a result. Both ζ and μ can vary by a
significant amount with a decreasing salt addition, owing
to the less prominent screening effect at lower salt
concentrations.

C. Variation of surface charge, chemical,
and zeta potentials with pC

As stated previously, we distinguish between two differ-
ent types of salt. Salt with ions that can be surface-specific
adsorbed can have a very different effect from those salts
whose ions cannot interact with the surface potential trap,
i.e., the non-surface-specific ions. Sodium hydroxide,
NaOH, is a salt whose OH− ions can surface-specific
adsorb onto the silica-water interface and hence can be
treated on the same basis as water ions in regard to the
surface potential trap. Non-surface-specific ions are from
those salts, e.g., KCl or NaCl, whose ions cannot react with
the interfacial dangling bonds; yet they contribute to the
screening effect and can therefore decrease the Debye length.
These two types of salt additions have to be modeled
differently. While in the previous section we model the
effect of pH values, in this section we illustrate the effect of
the added salt (nonspecific type). It will be shown that they
have the opposite effect with respect to the ζ and μ.
It should be cautioned that by increasing the concen-

tration of a surface-specific type of salt, the interface may
eventually experience a saturation effect and charge rever-
sion [106,118,120], which are not contained in the present
model. Hence, the modeled behavior may differ from the
experimental behavior at the limit of very large ion density.
In Fig. 5, we plot the variation of −μ [Fig. 5(a)] and ζ

[Fig. 5(b)] as a function of pC under pH 9. In contrast to the
traditional theory prediction that the magnitude of the zeta
potential should display monotonic variation with decreas-
ing salt concentration (but opposite in direction for the CP

and CC boundary conditions), here, at channel width
smaller than 0.3 μm, the zeta potential displays a peak
in its absolute magnitude. Furthermore, as the channel
width further decreases, the peak position moves towards a
higher salt concentration regime (smaller values of pC).
This is precisely the behavior observed in streaming current
measurements within silica nanochannels [78]. Since the
streaming current is proportional to the zeta potential, the
precisely similar behavior observed there lends great
support to our simple theory. Besides, there is necessarily
a straight-line section of the curve that exhibits a ð−μ; ζÞ ∼
lnC behavior at radius larger than the Debye length, which
has been experimentally observed [106,118]. The slope of
the straight-line section, around ∼18 mV per one decade of
variation in C, is also on the same order as that measured
experimentally, which is around ∼22.5 mV per one decade
of variation in C at pH 9 [121]. However, we note that such
behavior does not hold at very high nonspecific adsorption
salt concentrations since the value of the potential jump
must necessarily tend toward zero. This aspect also agrees
with the experiment. Thus, our rather simple model, with
no adjustable or added parameters, can naturally lead to
predictions that are in very reasonable agreement with
experimental observations.

VI. FORCE BETWEEN TWO CHARGED
SURFACES: COMPARISON BETWEEN

THEORY AND EXPERIMENT

There have been numerous experiments measuring the
force between two charged surfaces. In order to compare
the prediction of our theory with the experimental data, we
start by calculating the free energy of the whole system
composed of two planar surfaces, at given separation. The
pressure is then calculated by numerically differentiating
the free energy per unit area with respect to the separation.
Here, we write the free energy per unit area as

F ¼ kBT
A

Z
Ω

dx

�
nNaþln

nNaþ

no
þ nHþln

nHþ

no
þ nOH−ln

nOH−

no
þ nCl−ln

nCl−

no
þ ε

2kBT
j∇ψ j2 þ efN

kBT

�
. (16)

Here, A is the total area, Ω denotes the relevant domain of
integration, dx denotes volume integration, ε denotes the
dielectric constant, N is the Hþ=OH− ion density in the
potential trap, and f denotes the surface potential trap
function. Since the system is composed of four ion species,
Hþ=OH− and Naþ=Cl−, the free energy naturally com-
prises the mixing entropy as well as the electrostatic
interaction energies.
It should be noted that, experimentally, the force is

directly measured by the experimental apparatus, such as
the AFM, between a flat surface and a spherical particle.
After obtaining the force data, it is usually divided by an

effective radius obtained from the commonly used
Derjaguin approximation, taking account of the relevant
geometry. Here, we calculate the pressure between two
planar surfaces at every separation by differentiating the
free energy per unit area, then sum them together after
multiplying by the differential area element, in accordance
with the varying separations as dictated by the geometry
between a sphere and a flat plane. The resulting force is
then divided by the experimentally used effective radius for
comparison to data.
The free energy shown in Fig. 6 displays repulsion

between two charged surfaces but attraction at a separation
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distance smaller than 1 nm. This latter phenomenon was, in
fact, observed experimentally [122]. At separation smaller
than 2 nm, a strong attraction was observed, the gradient of
which can cause the surfaces to jump together. At larger
separations where the force curves are charaterized by an
exponentially decreasing replusive component, we see in
Figs. 7 and 8 that there is indeed a reasonable agreement
between the predictions of our model and the experiments.
It should be remarked that such agreement has been
obtained without adjusting the theory parameters, such
as the potential trap depth (which should be fixed by the
zeta-potential value in the large-channel limit).

Our theory can also display a similar trend observed
experimentally with a variation of salt concentration and
pH of the solution. In particular, the Debye length at
10−3 M is smaller than that at 10−4 M; hence, the range of
repulsive interaction decreases with increasing electrolyte
concentration.
We have to note that there are uncertainties in the

experimental measurements. For force measurements, the
silica particles are usually subject to plasma cleaning
treatment for a couple of minutes, which may change
the surface chemistry. The experimental results often tend
to overestimate the force at small separations because of
elastic flattening. Besides the surface roughness, measure-
ment technique differences can also contribute to the
uncertainties of the measured results. There can also be
charge reversal at high salt ion concentrations and gel layer
composed of polysilicic acid formed near the surface at low
pH [123]. In spite of such caveats, our model is clearly
adequate to account for those phenomena observed in
dilute electrolyte and pH values ranging from 5 to 9. In
particular, it is rather attractive that the good agreement
with the experiments emerges naturally from first-principle
equations, with no adjustable or additional parameters.

VII. THE ELECTRO-OSMOTIC EFFECT
AND ITS TIME DEPENDENCE

A. Coupling to the Navier-Stokes equation

With the surface potential trap model, the EO effect can
be obtained by applying a constant electric field to the
system of equations comprising the PNP equations coupled

FIG. 8. Comparison between theory prediction and experimen-
tally measured force, both plotted as a function of distance for the
interaction between a radius≈2.5 μm spherical colloidal particle
and Suprasil in 10−4 M NaNO3 of salt solution. Experimental
data are from Ref. [122]. The force has been normalized by the
sphere radius. Both the range of the force and the absolute value
of the force are seen to be in good agreement.

FIG. 7. Comparison between theory and experimentally mea-
sured force, both plotted as a function of distance between a
colloidal particle with radius ≈2.5 μm and Suprasil in 10−3 M
NaNO3 of salt solution. Experimental data are from Ref. [122].
The force has been normalized by sphere radius (in the case of the
interaction between a sphere of radius R and a planar surface, one
has Reff ¼ R). Both the range of the force and the absolute values
of the force are seen to be in good agreement. The method of
force calculation is described in the text.

FIG. 6. The calculated free energy per unit area of silica surfaces
immersed in 1-mM NaNO3 under pH7, plotted as a function of
separation distance between two planar charged surfaces.
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with the NS equation, supplemented by the incompress-
ibility condition for the fluid. For clarity, below we present
the complete set of relevant equations:

∂n=∂tþ u⋅ð∇nÞ þ∇⋅Jn ¼ 0; (17a)

∂p=∂tþ u⋅ð∇pÞ þ∇⋅Jp ¼ 0; (17b)

Jn ¼ −D
�
∇n − e

kBT
n∇ðψ þ f þ gÞ

�
; (17c)

Jp ¼ −D
�
∇pþ e

kBT
p∇ðψ þ f þ gÞ

�
; (17d)

∇2ψ ¼ − eðp − nÞ
ε

; (17e)

ρm

�∂u
∂t þ u⋅ð∇uÞ

�
¼ −∇Pþ η∇2u

− eðp − nÞ∇ðψ þ f þ gÞ; (17f)

∇⋅u ¼ 0. (17g)

Here, g denotes the electrical potential associated with the
applied electric field E, i.e., −∇g ¼ E, which is parallel to
the fluid-solid interface. It is to be noted that while ψ is
associated only with the ions [as evidenced by the right-
hand side of Eq. (17e)], the driving force for the ions is
given by the product of the local charge density and local
electric field, i.e., −eðp − nÞ∇φ, where φ ¼ ψ þ f þ g.
This is in contrast to the traditional treatment of the electro-
osmotic effect in which the driving force in the NS equation
is usually expressed as −eðp − nÞ∇g, i.e., decoupled from
the electrical potential of the ions. There is a recent
exception in which the local electric field is used [124]
in conjunction with the PB equation for the study of the EO
effect. However, such a combination can lead to the
violation of the Onsager relation (see Sec. VIII).

B. Definition of the time-dependent model

To illustrate the EO effect, consider a cylindrical sample
with the relevant sections as shown in Fig. 9. Owing to the
much larger amount of required computational resources,
for the time-dependent simulations we consider a smaller
channel radius of a ¼ 0.48 μm. The surface potential trap
used, over the whole region A to D, has the same
parameters as that shown in Fig. 2 (hence, the chemical
potential is −76.8 mV if the channel radius is larger than
3 μm). To facilitate numerical convergence, however, we

have broadened the surface potential width to 0.96 nm in
this case. An electric field Ez ¼ 1.04 × 103 V=cm is turned
on abruptly at t ¼ 0, at the section denoted BC in Fig. 9, to
simulate the EO pump, while the AB and CD sections are
the inlet and outlet, respectively. The same voltage þV is
applied at the cross-sectional areas A and B, and −V is
applied at the cross-sectional areas C and D. Here, V ¼ El,
with 2l being the length of the BC segment. A uniform
voltage at a given cross section of the cylindrical channel
can be physically realized, for example, by using a
fine mesh electrode fabricated with very thin metallic
wires so that fluid can pass through the mesh with minimal
drag. The relevant parameters are taken in accordance
with those for deionized water: D ¼ 9.32 × 10−9 m2=s,
n∞ ¼ 9.5 × 1020=m3, η ¼ 1 cP, ρm ¼ 1 g=cm3, ε ¼ εrεo
with εr ¼ 80, εo ¼ 8.85 × 10−12 F=m, T ¼ 300 K,
e ¼ 1.6 × 10−19 C, and kB ¼ 1.38 × 10−23 J=K. In the
calculation, l¼ AB ¼ CD ¼ BC=2 ¼ 0:72 μm. In refer-
ence to Fig. 9, V is set at 75 mV. Periodic boundary
conditions are applied at A and D for∇g, f, ψ , and densites
p and n.
Since AD is the sample length, the effective average

electric field over this length is 520 V=cm, half the amount
over the BC section. We set the potential ψ ¼ g at the fluid-
solid interface, r ¼ a. Other conditions are u ¼ 0 at the
fluid-solid interface, and Jn⋅n ¼ 0, Jp⋅n ¼ 0, where n
denotes the interfacial normal.
For numerical calculations, we used the time discrete,

implicit Euler scheme, which allows a larger time step. The
finite element method was used for space discretization,
with a piecewise linear element for the potential and charge
densities. For the Stokes equation, a mixed type P2P1
element was used, which means a quadratic element for
velocity and a piecewise linear element for pressure. In
order to deal with nonlinear coupling, a convex iteration
method was applied. Details of the numerical scheme will
be published elsewhere.
It should be mentioned that in the literature, a scenario is

often delineated in which there can be a region of large
viscosity [47,125] (the stagnant layer) near the fluid-solid
interface, so the effective hydrodynamic boundary may be
at the abrupt interface between the region with large
viscosity and the fluid (i.e., the slip plane). There can be
some consequences of having a stagnant layer. For exam-
ple, if the zeta potential is measured by extrapolating the
fluid velocity (through the Smoluchowski velocity formula)
back to the hydrodynamic boundary, then the implied

FIG. 9. Geometry of the EO-effect simulation.
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surface charge density can be lower than that obtained by
titration experiments [47]. In this work, we regard the fluid
as having uniform viscosity. However, the fluid layer next
to the solid, e.g., the Stern layer, may still be stagnant by
virtue of the nonslip hydrodynamic boundary condition. In
that case, the potential difference between the fluid-solid
interface and the outer Helmholtz plane would be minimal.

C. Electro-osmotic effect and its time dependence

In Fig. 10, we show the existence of the EO effect,
starting immediately after the application of the electric

filed. There is an extremely fast initial reaction to the
electric field, followed by a slower decay with a time scale
that is on the order of 30 μs. This time dependence is
definitely not based on the inertial effect, since at this flow
rate, the inertial effect is still negligible. Instead, it is a
manifestation that, in response to the initial disturbance,
there is a diffusive countercurrent trying to establish a new
equilibrium. The initial reaction time is governed by the
viscosity of the fluid, as well as the size of the system. The
initial flow velocity, averaged over the cross section, is
around 1.31 mm=s.
This initial flow velocity can be compared with the

traditional EO-effect calculation, involving the solution of
the PB equation coupled with the Stokes equation in the
decoupling approximation, i.e., only with the externally
applied electric field as the forcing term, as shown in
Appendix A. In that case, the average flow velocity (with
no time dependence) is given by the expression ðεζ=ηÞEz −
ða2=8ηÞð−dP=dzÞ [73,74], where the (averaged) pressure
gradient is along the axial direction, and the ζ potential
(¼ −29.8 mV) is defined by Eq. (15) by using as the
boundary value −μða → ∞Þ ¼ −76.8 mV. For the param-
eters relevant to the present case and dP=dz ¼ 0, we obtain
the averaged flow velocity of 1.1 mm=s.
In Fig. 10(b), we plot the axial velocities of the screening

positive ions (red curve) and the associated negative ions
(black curve). Here, the two curves are obtained by
separately using the positive ion density or negative ion
density (both obtained by first solving the coupled PNPþ
NS equations numerically) in the NS equation and calcu-
lating the resulting u�, i.e.,

ρm

�∂u�
∂t þ u�⋅ð∇u�Þ

�
¼ −∇Pþ η∇2u�

− ze

�
p
−n

�
∇φ: (18)

Since the system is charge neutral overall, the net integrated
force density on the fluid must be zero. Hence, the EO
effect arises from the difference in the flows resulting from
the body forces exerted by the screening ions (red) and the
counter flow (black). Owing to the hydrodynamic nonslip
boundary condition, the adsorbed layer has to remain
stationary. Hence, it resembles the traditional “Stern layer”
in the static case as mentioned earlier.
In this picture, the momentum associated with the fluid’s

center-of-mass motion is counterbalanced with that of the
solid boundary, which may be regarded as having infinite
mass. However, either by using the Navier hydrodynamic
boundary condition (i.e., by allowing a slip at the fluid-
solid interface [47,125]) or by considering the movement of
a spherical particle with a surface potential, i.e., electro-
phoresis, our model can imply significantly altered physical
pictures. In particular, for the case of the Navier boundary
condition, there is a slip length ls, with ls ¼ 0 denoting no

FIG. 10. The EO effect, calculated with a step-function elec-
trical field. (a) The time dependence of the EO effect, showing a
pulse of fluid flux followed by a quick decay to a smaller value.
(b) The axial velocities of the positive (red line) and negative
(black line) charges, at t ¼ 182 μs. It is seen that the trapped
surface charges essentially remain stationary, mainly owing to the
nonslip hydrodynamic boundary condition. Hence, it resembles a
Stern layer. However, the application of the Navier boundary
condition for the NS equation can modify the picture. Here, the
red line is obtained as the solution of the NS equation with
−ep∇φ as the driving force density, whereas the black line is that
with þen∇φ as the driving force density. Since n has a small
value at the center of the channel, the forcing term is small, and
hence the related velocity is small as well. It is seen that the sum
of the two curves yields a positive EO flow.
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slip and ls → ∞ implying total decoupling from the solid
boundary. It is plausible that there should be a value of ls at
which the EO flux reaches a peak. This is because a small
but nonzero ls should enhance the EO flux, but an infinite
ls would mean that the fluid’s center of mass cannot move,
owing to zero net force on the fluid and its total decoupling
from the solid. Hence, there should be a peak in between.
These issues will be addressed separately.
The time dependence of the EO effect is an inevitable

consequence of Eq. (17), as illustrated in Fig. 10(a). This
should not be surprising since the existence of diffusion
means that there is always a tendency to establish a new
equilibrium after the initial disturbance. This time variation
should be contrasted with the traditional picture that the
time-dependent EO is a consequence of the inertial effect,
which is small. In experiments, it is often observed that the
flow rate can decay with time [73,74]. This is partly due to
electrode screening by the ions, so the applied voltage seen
by the sample actually decreases with time. However, the
time dependence that arises from Eq. (17) is separate from,
and in addition to, the electrode screening effect. It is an
intrinsic manifestation of the EO mechanism. Initially,
when the electric field is abruptly turned on, a convective
current will induce a flow. This is the initial pulse seen in
Fig. 10(a). However, as the flow inevitably shifts the spatial
pattern of charge density and the associated electrical
potential, there can be a diffusive countercurrent trying
to establish a new equilibrium. Thus, the whole process

represents a transition from the initial static state, Jn, Jp,
u ¼ 0, to a final steady state, with a relaxation time scale on
the order of L2=D, where L denotes the sample size. The
very short time scale seen in our simulations can be
attributed to the small size of our sample being considered.
In Fig. 11, we use a 2D color map to illustrate the ion

density distributions at t ¼ 182 μs, i.e., at the end of the
slowly varying region shown in Fig. 10(a). It is seen that
owing to the inevitable coupling between the applied
electric field and the local field associated with the ion
densities, the pðxÞ and nðxÞ are biased along the direction
of the applied field. In this context, the initial pulse of the
fluid flux can be easily identified as the fluid flow carried
along by the convective flow of the ions.
An interesting question is whether there can be a back

flow of fluid flux when the external field is turned off. We
have carried out such a simulation, and the answer is that
the flux simply decays to zero when the external field is
turned off, with essentially no back flow; i.e., the flow
process is time-irreversible.
Since the final state represents a smaller fluid flux, it

follows that the optimal operational mode of the EO effect
should be periodically pulsed [73,74]. However, the time-
domain optimization of the EO effect represents a new
direction that will be pursued separately.

VIII. ONSAGER RELATION

Linear response dictates that the electric current density
Je and the fluid current density Jf be linearly related to the
voltage gradient ∇φ and the pressure gradient ∇P:

�
Je
Jf

�
¼ −

�
L11 L12

L21 L22

��∇φ
∇P

�
; (19)

where L11 is the electrical conductivity and L22 is the
hydrodynamic permeability. The Onsager relation states
that the response matrix must be symmetric [126,127], i.e.,
the cross coefficients L12 ¼ L21 in physical systems. It is
imperative that we examine the Onsager relation for the PB
equation with the constant ζ potential boundary condition,
coupled with the Navier-Stokes equation, and compare that
with the PNP equations with a surface potential trap at the
interface, also coupled with the Navier-Stokes equation.
Consistency with the Onsager relation [74] would reflect
conformation with the linear response dynamics that is
common to a diverse array of physical systems.
Since the EO effect is time dependent, we restrict

ourselves to the instant at t ¼ 0þ (0.04 μs in actual
calculations). Here, L21 ¼ ðQ=πa2Þ=ðEÞ, Q being the
volumetric flow rate, and L12 ¼ ðI=πa2Þ=ðΔP=lÞ, where
I denotes the electrical current andΔP=l the cross-sectional
averaged pressure gradient measured across the BC seg-
ment (Fig. 9). Here, the units of L21 are ðm2=V⋅sÞ, which is
the same as the units of L12, ðA=Pa⋅mÞ. By using the
calculated data only in the initial instant, we are able to

FIG. 11. The distribution of the positive ions (pink) and
negative ions (blue) in the central BC section of the cylindrical
channel (see Fig. 9), with a radius of 0.48 μm. Here, the red
indicates positive ions and blue the negative ions. The magnitude
is evaluated as ln½1þ density=ð950 μm−3Þ�. This distribution is at
t ¼ 182 μs, i.e., at the end of the slowly varying region, as shown
in Fig. 10(a). The direction of the externally applied electric field
is as shown. The charge densities are seen to be biased by the
external field. Along the r direction, only a section close to the
fluid-solid interface is shown.
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confine our considerations to within the BC segment. This
treatment is noted to differ from the usual EO-effect
calculation, which should include the whole AD segment,
and in a sense represents a minimal version of the Onsager
relation. For the present case, the calculated results, for
the PNP equations coupled with the NS equation and a
surface potential trap at the interface, yield L21 ¼ L12 ¼
2.44 × 10−8 ðm2=V⋅sÞ.
For the case of the PB equation, by decoupling the

applied field from the local electric field associated with the
ions (as usually assumed) in the Stokes equation, it is easy
to show analytically (see Appendix A) that L21 ¼ L12 ¼−εζ=η ¼ 2.11 × 10−8 ðm2=V⋅sÞ in the present case, with a
ζ [defined by Eq. (15)] potential value of −29.8 mV,
obtained by using −μða → ∞Þ ¼ −76.8 mV as the boun-
dary condition. However, if the decoupling approximation
leads to consistency with the Onsager relation, then it
would be a great coincidence if the use of a local electric
field (−∇φ) in the Stokes equation leads to the same
consistency. Indeed, if instead of the decoupling approxi-
mation one uses the local electric field, then numerical
evaluation leads to around a ∼20% discrepancy between
L21 and L12. This discrepancy is easily understandable
because if one uses the full local electric field in the Stokes
equation and couples that to the PB equation, then the
potential profile will be altered along the flux direction in
the EO case (as shown in Fig. 11). However, for the reverse
SP case, one applies only a pressure gradient (or a body
force density), and hence the potential profile is uniform
along the flux direction since the fluid flow is not coupled
to the electrical potential in this case. The two cases, EO
and SP, now refer to two different physical settings; their
Onsager coefficients naturally differ as a result. In this
context, it should be noted that for the PNP case, the fluid
velocity u is inherently coupled to the ion potential ψ via
the u⋅ð∇nÞ and u⋅ð∇pÞ terms in Eqs. (17a) and (17b).

IX. SUMMARY AND CONCLUDING REMARKS

We summarize the main points of this work as follows.
(1) The PB equation is inconsistent with the PNP

equations. The consistency requirement leads to
the CCPB equation, which guarantees charge neu-
trality. CCPB cannot generate EDL through either
the Dirichlet or the Neumann type of boundary
condition.

(2) A crucial element of our model is the introduction of
a surface potential trap that attributes an energy cost
to the interfacial charge dissociation process. The
surface potential model enables the generation of a
surface charge density layer and the attendant EDL,
both within the computational domain. As the sur-
face charge layer is coupled to the bulk, its magni-
tude can vary with the channel radius and/or bulk ion
density.

(3) A reformulation of the CCPB leads to the definition
of a chemical potential that arises from the constraint
of overall charge neutrality. The CCPB provides a
framework for the simultaneous, self-consistent
determination of the chemical potential and the
surface charge density.

(4) The CCPB can be reduced to the form of the PB
equation, with the negative of the chemical potential
serving as the electrical boundary condition. The
zeta potential is defined as the quantity that drives
the EK effects. It has the same value as the (negative)
chemical potential in the large fluid-channel limit,
but the two deviate from each other as the fluid-
channel width diminishes.

(5) The predictions of the PB (CP), Gouy-Chapman
(CC), and CCPB (same as the static limit of the PNP
equations) models all agree in the large channel
width limit. But they differ when the fluid-channel
size approaches the nanometer scale.

(6) Predicted zeta potential variations with (added) salt
ion concentration are in good agreement with the
experiments, ranging from the nanoscale to micro-
scale fluid-channel width.

(7) The predicted force between two charged surfaces is
in good agreement with the experiments, both in
terms of the magnitude and the range.

(8) With overall charge neutrality, the net force exerted
by an external electric field is zero. Hence, the
EO effect represents the difference in the flows
induced by the screening ions and the interfacial
counterions.

(9) There is an intrinsic time dependence of the EO
effect that arises from the transition from the initial
equilibrium state to a final steady state, with a
relaxation process bridging the two.

(10) It follows from (9) that an optimal EO effect may be
obtained by a periodically pulsed electric field.

(11) The Onsager relation can be used as a reality check
for the various models. The PNP equations, coupled
with the NS equation with a surface potential as the
boundary condition, are shown to satisfy the Ons-
ager relation.

It is important to note that further-refined, physically
meaningful models may have to include a steric repulsion
effect for the ions [128], especially in the high ion
concentration regime [129,130], the effects arising from
interfacial inhomogeneities, as well as a chemical effect at
the fluid-solid interface [131]. However, the consideration
of these additional effects must be based on a consistent
electrical framework, which is the main theme of this work.
The perspectives present here should therefore be regarded
as a first step towards a consistent and more inclusive
model of electrokinetics.
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APPENDIX A: ELECTRO-OSMOTIC FLOW AND
ONSAGER COEFFICIENTS FROM THE
POISSON-BOLTZMANN EQUATION

In this appendix we present a simple derivation of axial
velocity in a cylindrical channel by using the Poisson-
Boltzmann equation, coupled with the Navier-Stokes equa-
tion. An electric field Ez ¼ −∇g is applied along the axial
direction to drive the flow. Here, the applied electric field is
assumed to not cause any variation in the ionic density
distributions (which is actually incorrect as shown in
Fig. 11). This is denoted the decoupling approximation.
We solve for the steady-state solution under the condition
that the ion density distribution profile along the z direction
remains constant.
In the steady state, the velocity normal to the axis is zero,

with ur ¼ 0. The axial velocity uz in the steady state can be
written as

∂2uz
∂r2 þ 1

r
∂uz
∂r ¼ 1

η

∂P
∂z − ρ

Ez

η
; (A1)

where η is the fluid viscosity and P the pressure. The net
ion charge density ρ is related to the electrical potential
ψ ðPBÞ via the Poisson equation:

∂2ψ ðPBÞ

∂r2 þ 1

r
∂ψ ðPBÞ

∂r ¼ − ρ

ε
; (A2)

with ε being the dielectric constant. Substituting the left-
hand side of Eq. (A2) into Eq. (A1) yields

∂2uz
∂r2 þ 1

r
∂uz
∂r ¼ 1

η

∂P
∂z þ εEz

η

�∂2ψ ðPBÞ

∂r2 þ 1

r
∂ψ ðPBÞ

∂r
�
: (A3)

The solution of Eq. (A3), for uz, can be expressed in
terms of ψ ðPBÞ as

uz ¼ − εEz

η
½ð−μÞ − ψ ðPBÞ� þ a2 − r2

4η

�
− dP
dz

�
: (A4)

Here, −μ is the boundary value of the potential and a is the
channel radius, but for the traditional PB model, of course,
the boundary value should be that at the infinite a limit. The
average axial velocity can be calculated in terms of the
solution potential profile:

uz ¼
1

a2

Za

0

2uzrdr ¼ − 2εEz

η

Z1

0

½ð−μÞ − ψ ðPBÞ�
�
r
a

�
d

�
r
a

�
¼ − εEz

η
ζ; (A5)

with dP=dz ¼ 0. It is seen that ūz is proportional to the ζ potential as defined by Eq. (13).
The linear response theory states that in a dissipative system, the current density Je and volume flow rate Jf can be

linearly induced by the electric field Ez and pressure gradient ð − dP=dzÞ:

�
Je
Jf

�
¼

�
L11 L12

L21 L22

��
Ez

− dP
dz

�
: (A6)

Since Jf ¼ R
a
0 2uzrdr=a2 and Je ¼

R
a
0 2ρuzrdr=a2, we have

L12 ¼
1

2ηa2

Za

0

ða2 − r2Þρrdr; (A7)

L21 ¼ − 2ε

ηa2

Za

0

ðð−μÞ − ψ ðPBÞÞrdr: (A8)

Using Eq. (A2) to express ρ in Eq. (A7) yields
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Thus, the Onsager relation is satisfied, i.e., L12 ¼ L21 ¼−εζ=η in the decoupling approximation, where we
have used the definition of the ζ potential as given
in Eq. (15).

APPENDIX B: VARIATIONAL DERIVATION
OF THE CHEMICAL POTENTIAL

We would like to minimize the free energy of the ions
and their electrostatic interaction energy, which can be
expressed as

F ¼ kBT
Z
Ω

dx

�
nln

n
n∞

þ pln
p
n∞

þ ε

2kBT
j∇φj2

�
.

(B1)

The charge-neutrality constraint can be applied by
using the chemical potential μ as a Lagrange multiplier.
Hence,

F ¼ kBT
Z
Ω

dx

�
nln

n
n∞

þ pln
p
n∞

þ ε

2kBT
j∇φj2

�

þ μe
Z
Ω

dxðp − nÞ: (B2)

The electrostatic term may be integrated by parts to
yield the form of a φ∇2φ term. Then, by using the
Poisson equation as well as the Green function solution
of φ,

φðxÞ ¼ e
ε

Z
Ω

Gðx; yÞðn − pÞðyÞdy; (B3)

we obtain the following expression for F:

F ¼ kBT
Z
Ω

dx

�
nln

n
n∞

þ pln
p
n∞

�

þ e
2ε

Z
Ω

Z
Ω

dxdyðp − nÞðxÞGðx; yÞðn − pÞðyÞ

þ μe
Z
Ω

dxðp − nÞ: (B4)

By taking the variation of F with respect to n and p and
setting it to zero, one obtains

δF
δn

¼ kBT

�
1þ ln

n
n∞

�
− eφþ eμ ¼ 0; (B5)

δF
δp

¼ kBT

�
1þ ln

p
n∞

�
þ eφ − eμ ¼ 0. (B6)

Solving for n and p and setting their volume integrals to
be equal, we obtain μ as given by Eq. (10b).
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