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We review the recent theoretical progress in understanding the
superconductivity observed in ultrathin 4-Angstrom carbon
nanotubes (CNTs) embedded in the linear channels of the
aluminophosphate-five (AlPO4-5, AFI) zeolite crystals. To identify
the ground state of the (5,0) CNT@AFI system, we have carried
out second-order renormalization group (RG) analysis to show
that if arranged in an array structure in the channels of an AFI
crystal, superconductivity can dominate over the Peierls distortion
mechanism to be the favored state. However, if the array is very
thin, then the manifestation would be that of one-dimensional (1D)
superconductivity, displaying finite resistance at finite temperatures.
We give a brief description of the phase slip mechanism underlying
this behavior. With transverse Josephson coupling between the (5,0)
CNT arrays, a 1D to three-dimensional (3D) crossover transition

Carbon-Based Superconductors: Toward High-Tc Superconductivity
Edited by Junji Haruyama

Copyright © 2015 Pan Stanford Publishing Pte. Ltd.

ISBN 978-981-4303-30-9 (Hardcover), 978-981-4303-31-6 (eBook)
www.panstanford.com



2

Theoretical Study of Superconductivity in 4 A CNT Arrays

can occur at a temperature below which 3D superconducting
behaviors appear. By carrying out Monte Carlo (MC) simulations
on a transversely discretized Ginzburg-Landau (GL) model, we
show that both the thermal specific heat and electrical data can be
well explained. In particular, just above the dimensional crossover
transition, the phase correlation function exhibits the signature of a
Berezinskii-Kosterlitz-Thouless transition in good agreement with
the measured temperature dependence of resistance.

1.1 Introduction

Since the first observation of superconductivity in ultrathin
carbon nanotubes (CNTs) embedded in AFI zeolite crystals [1],
there has been much experimental and theoretical works devoted
to this subject. In this chapter, we summarize the recent progress
in the theoretical analysis of superconductivity in 4-Angstrom
CNT arrays. The paper is organized as follows. Section 1.2 gives a
brief introductory description of the relevant material system.
Section 1.3 is devoted to the RG analysis of such CNT@AFI system,
aimed at identifying the zero temperature ground state between
two competing mechanisms—superconductivity and the Peierls
distortion (the charge density wave, or CDW) state. In Section 1.4,
we give a short review on the origin of electrical resistance in 1D
superconductors, based on the physical picture of phase slips as
mathematically formulated by the Langer-Ambegaokar-McCumber-
Halperin theory. In Section 1.5, we use Monte Carlo simulation
of the Ginzburg-Landau model to explain the specific heat and
electronic transport characteristics in the (1D to 3D) dimensional
crossover transition, leading to the observed 3D superconductivity.
We conclude in Section 1.6 with an overview summary of the
salient points.

1.2 The CNT@AFI System

CNTs were first grown inside the channels of porous AFI zeolite
with pyrolysis of the precursor molecules—tripropylamine [2].
AFI is a micro-porous zeolite crystal with aligned linear channels.
The channels are hexagonally close packed in the transverse a-b
plane, each with an inner diameter of 7.3 A and separated by a
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center to center distance of 13.7 A. Inside the channels, a fraction of
the carbon atoms, from the pyrolysis of tripropylamine precursor,
formed single-wall carbon nanotubes that are ~4 A in diameter. This
Is confirmed by high-resolution transmission electron microscopy
observation [2], adsorption spectra [3], and Raman spectra [4-6], in
which the characteristic radial breathing mode, particular to the tube
structure, was observed. A sketch of the AFI zeolite with embedded
CNTs is shown in Fig. 1.1.

Figure1.1 A schematic picture illustrating the structure of AFI zeolite
with embedded 4-Angstrom carbon nanotubes. The lattice
constant is 13.7 A, and the pore diameter is 7.3 A.
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Figure1.2  The three possible 4-Angstrom carbon nanotubes with the
chiral indices of (5,0), (3,3), and (4,2). Adapted from Ref. [4].

Owing to the diameter of AFI channels, only three CNTs with
diameter around 4 A are possible: the armchair (3.3) (d ~ 3.9 A),
the zigzag (5,0) (d ~ 4.0 A), and the chiral (4,2) (d ~ 4.1 A). Their
structures are shown in Fig. 1.2. Many authors have performed
band structure calculations of these three types of CNTs [3,4,7~10]
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The armchair (3,3) nanotube is metallic, and the chiral (4,2)
nanotube is semiconducting, as expected. However, for the zigzag
(5,0) nanotube, the prediction of the zone-folding scheme is not
valid, owing to the mixing of the oand bonds that results from the
large curvature effect. The net result is that the (5,0) nanotube is
metallic. The local density approximation (LDA) band structures of
these three CNTs are shown in Fig. 1.3. Superconductivity observed
in this system is attributed to the (5,0) CNTs.
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Figure 1.3 The LDA band structures of the three 4-Angstrom CNTs. The
zigzag (5,0) and the armchair (3,3) are metallic, while the
chiral (4,2) is semiconducting. Adapted from Ref. [4].

The seminal work of the Berkeley group has shown that the
electron-phonon interaction can increase dramatically with
decreasing radius [11]. Hence, the physical process that is related
to the electron-phonon interaction, such as the phonon-mediated
superconductivity, can occur in CNTs, especially when the radius
is small. However, the electron-phonon interaction can also induce
Peierls distortion in (3,3) and (5,0) CNTs that would lead to a
semiconducting ground state [12-17]. There has been a persistent
debate about which one should be the ground state of these
small-radius CNTs, in spite of the experimental observations of
superconductivity in the CNT@AFI system. This debate has motivated
our RG work, presented in the following section. The outcome of
our analysis is that whereas Peierls distortion would win over
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superconductivity for a single (5,0) CNT, the situation is reversed for
the (5,0) nanotubes when they appear in the form of tightly bundled
arrays. Here the crucial element is the dielectric screening, absent
for a single CNT, which can reduce the electron-electron interaction
and thereby enhance the superconductivity.

Recently, the Meissner state [18], the electrical superconducting
transition [19], and the superconducting thermal specific heat
anomaly [20] were observed in the 4-Angstrom CNT@AF]I. A review
of these experimental evidences, together with a coherent
description, can be found in [21]. In Table 1.1, we list the supercon-
ducting parameters deduced from the different measurements. It
can be seen that the (5,0) CNT@AFI system is an extreme type Il
superconductor, with a relatively short correlation length and an H,,
that is on the order of 100 G.

Table 1.1 Values of the superconducting parameters as deduced from
different measurements

Transport Magnetic Specific heat
measurement measurement measurement
i 15K 15~18 K 14~18 K (exp.)
15 K (best fit)
Tc 6.2K 6~7 K -
He; for the = ~60 to 150 Oe ~100£50 Oe
Meissner state
Hp, for the 3D Hez =15~5T He1=1T Hep =28T
coherent state Hepyy=5~13T
& Ep~5to8nm ~18 nm 14+2nm
& ~6.6t012nm
A - ~1.4pm 1.5+ 0.7 um
K - ~78 ~110

Note: T is the critical temperature that Cooper condensation begins to form along the c-axis.
Below this temperature, the 1D fluctuation superconductivity is observed. T¢ is the 1D to 3D
crossover transition temperature, below which the 3D coherent superconductivity behavior
occurs via BKT-like transition in the a-b plane that is transverse to the c-axis of the CNTs. H¢,
is the lower critical magnetic field, and Hc; is the upper critical magnetic field at which the 3D
superconductivity is suppressed. & is the zero-temperature coherence length. A is the magnetic
penetration length, which is very large because of the porous nature of the system. The Ginzburg-
Landau x~100 is the ratio between A and &, which indicates our CNT@AFI system to be an
extreme type Il superconductor. Adapted from Ref. [21].

The observation of 3D superconducting behavior also presents
another problem, in view of the Hohenberg-Mermin-Wagner
theorem [22,23], which states that there can not be a sharp
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phase transition in dimension d < 2. Here, the small wall-to-wall
separation between the nanotubes, only 9.7 A as stipulated by
the nanogeometry of the AFI zeolite, turns out to be important
in enabling the Josephson coupling between the neighboring
nanotubes. Indeed, simulations based on weak inter-tube
Josephson coupling has shown a 1D to 3D crossover transition to
be inevitable (Section 1.5), with all the attendant characteristics as
observed experimentally.

1.3 RG Treatment of Ultrathin (5,0) CNT Arrays

The ground state of a 1D electronic system is usually regarded
as a Luttinger liquid, which can be shown exactly through the
bosonization method [24-31]. However, the Luttinger liquid
model is based on the fact that there is no attractive interaction
between the electrons. Since the problem of superconductivity
inherently involves electron pairing that results from the attractive
interaction, we have to go beyond the Luttinger liquid model and
carry out the RG calculations to the second order. This is the focus
of this section.

The RG method is very powerful in handling 1D interacting
fermions [32-38]. In 1D fermion systems, the Feynman diagrams
yield divergent integrals, which is hard to handle with the
perturbative method. With the RG method, we can handle such
divergent integrals and calculate and compare the different
response functions, as well as the interacting coupling constants,
with decreasing temperature. With this process, the coupling
constants scale to the so-called fixed points. We can evaluate the
ground state of a certain system with these fixed point values of
the coupling constants. The Luttinger liquid represents just the fix
point obtained from repulsive coupling, with backward-scattering
scaling to zero under this condition. Here, we summarize the
method of RG treatment for the single (5,0) nanotube and a thin
array of (5,0) nanotubes [39-41]. The latter is meant to correspond
with the experimental system. There is an extensive literature on
the RG method [32-38] as applied to 1D electronic systems. Here,
we emphasize the physical descriptions and those aspects that are
special to our treatment. Mathematical details can be found in the
references.

RG Treatment of Ultrathin (5,0) CNT Arrays

1.3.1 Linearization of (5,0) CNT Band and Definition
of Coupling Constants

As seen in Fig. 1.3, for the (5,0) nanotube, there are three bands
crossing the Fermi energy. One is denoted by B band with theg as
Fermi points, while the other two bands are degenerate in energy
and denoted as A and A’, respectively. They have Fermi points tkpa
with kg < kg, and Fermi velocities [Vral < |Vig|. As we are interested
in the low-temperature properties of the system, only the states near
the Fermi level ar¢ important. They are inside a narrow range [Ep —
E, Er + E ). Here, E, is the energy cutoff. In one dimension, there is
an equivalent expression of the previous statement: only the states
with momentum near the “Fermi points” tkps tkpp are important
and need to be considered, which are in the range {[—kgs — ko —kps +
Kel, [Kpa = ko ke + k) and {[~kpp ~ ke —kpg + k], [kpp ~ ke kyg + kJ}
Within this region, the curvature of the energy dispersion curve is
negligible. The linearized energy dispersion around Fermi energy
is shown in Fig. 1.4(a), and the corresponding non-interacting
Hamiltonian can be expressed as

Hy = P
0 a:ETl m=Az,:A’,B %(gkfmakmaakma + g—kkmbljmabkma) (1-1]

:J_UFA[k_kFAJ k ~ ky
" 1“1-“A(’"+kFA) k ~—kgs

e ~Up(k—kpg) K ~ kg
" |k tke) ko~ kg

and

where a* and a are the creation and annihilation operators of
electrons for states near kg, and kip, respectively, while b* and b are
the creation and annihilation operators for—kp, and —kgp, respectively.
The symbol ardenotes the spinindex. In Fig. 1.4(b), the Brillouin zone
(BZ) of the (5,0) CNT is shown as the cutting line in the 2D graphene
BZ. Since the CNTs can be regarded as rolling up of a 2D graphene
sheet, the additional periodic boundary condition perpendicular to
tube axis is imposed in the 2D graphene BZ. Therefore, only the states
that fall on the cutting lines will survive, as shown in Fig. 1.4(b). The
three cutting lines connecting A— and A+, B~ and B+, as well as A’—
and A+ are associated with the energy dispersion lines crossing the
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Fermi energy in the band structure. The six points A+, B+, and A’
denote the corresponding Fermi points.

A A+
\ / B- B+
N i kx
B- A-A A+r A+ B+
A A+
(a) (b)

Figure 1.4  (a) The linearized energy dispersion of (5,0) CNT around the
Fermi energy. The A and A’ bands are degenerate in energy,
with opposite group velocity cempared with the B band.
(b) The cutting lines in graphene’s 2d BZ, which are the
permitted states with periodic condition around nanotube’s
circumference direction.
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Figure1.5 The three types of interactions. (a) Spin parallel backward
scattering-process with the coupling constant g/, (b) Spin
antiparallel backward-scattering process with the coupling
constant g, . (¢) Forward-scattering process with the coupling
constant g,.

-

Consider the interaction between the electrons. Since the Fermi
energy E;is not located at the half-filling level, Umklapp interaction
is negligible. We are interested in processes in which the two
associated electrons are such that one is left-moving and the other
is right-moving. In such a scattering process, the perturbation
expansion integral is divergent as log(w/Ec), where the energy
scale @ can be regarded as temperature. By considering momentum
conservation, for each combination of two bands with opposite
Fermi velocities, there are three different types of electron-
electron interactions that are important in the RG analysis, shown

RG Treatment of Ultrathin (5,0) CNT Arrays

in Fig. 1.5. These coupling constants are denoted as g,,, g1, and
g, as specified in the figure. For the g;-type process, one electron
scatters from the left-moving Fermi point Kgjef-moving (Kpat) Kpp—)
to the right-moving Fermi point Kgyight-moving (Kpa— kppt), while
the other electron scatters from Kg ighi-moving t0 Kpjef-moving: The
momentum transfer is (Kgjefi-moving — KEright-moving), and electrons
change propagating direction after each scattering process. This
is denoted by backward scattering. If the spin of the two scattered
electrons are parallel, then the coupling constants are labeled with
subscript //, while the spin antiparallel cases are labeled by the
subscript L. In the g,-type process, the momentum transfer from one
electron to another is zero, and the propagating direction remains
unchanged. This process is usually denoted as forward scattering.
However, in the g, scattering process one electron must come from
states near K ighi-moving While the other must come from kg)e-moving:
Each combination of left-moving and right-moving pair constitutes
an interaction channel, and in each channel there are g, ,,, g,,, and
g» type couplings. The six channels are shown in Fig. 1.6(a-f) with
the g,-type scattering processes. With these interaction coupling
constants, the Hamiltonian with electron-electron interaction in a
(5,0) CNT can be expressed as

X + +
= 3 z Z(‘E‘llrpmakmarakmar T g-krmbkmabkma/)
a=1l m=4,4"B k

17/
+ E/in:zll—ﬁ k%’q(gn altnab;nﬁapﬂk,; +q,n,/fb k—2k; —q,n,aé‘a,,ﬂ (1,2]

| + 24 Bt
+4, akn((bpnﬁapﬂki+q,n,ﬂbk—2k,—q,n,a§a,—ﬂ+gnakrsz,/ibp+q,/fak~q.a§u,—/f)'

in which n=1-6 denotes the six different interacting channels shown
in Fig. 1.6(a-f), p, q k are the momentum indices. If we consider
the (5,0) CNT to be embedded in array structure that comprises a
central nanotube with six nearest neighbor nanotubes, arranged
hexagonally and separated from each other by 1 nm, then there will
be an additional 12 inter-tube coupling channels with 36 coupling
constants. These additional scattering processes can be denoted by
just replacing the 2 of 4 operators with the corresponding operators
in the nearest-neighbor tube.
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Figure 1.6  (a-f) The six interaction channels in an individual (5,0) CNT.
For each channel, the two electrons are from two bands with
opposite Fermi velocities. There are six different combinations
each, selecting two Fermi points with opposite Fermi velocities
among the six Fermi points, namely A+, A+, and B4, so that
there are six interaction channels in total. The scattering
processes shown are the g, type. Adapted from Ref. [39].

1.3.2 RG Treatment of a Single (5,0) Nanotube

The difficulty in handling 1D interacting electrons is that
the perturbation expansion of the interaction vertex yields a
logarithmically divergent Feynman integral in the long wavelength
limit. The central idea of the RG method is to (differentially) change
the energy cutoff in the Feynman diagram integral to a smaller
value and to collect the resulting effect as a change in the coupling
constants. Since, under the new cutoff, the log(w/E.) function is less
divergent (as @ approaches zero so the logarithm is negative), by
performing this process iteratively one can get a set of evolution
equations for the coupling constants and response functions, denoted
scaling equations. There are several approaches to derive the RG
scaling equations in the 1D Fermion systems. Here, we employ the
multiplicative RG method [32,33]. With this approach, we can easily
derive the RG scaling equations up to any order. This is important
because the first-order RG is not enough to treat systems with the
attractive interaction. It is only by going to the second-order RG will
the meaningful results be obtained.

RG Treatment of Ultrathin (5,0) CNT Arrays

The multiplicative RG is performed as follows for each coupling
constant:

k' Ec

~2( k o
_g,%rn[k—c; E]é‘m;é‘/j},,

jﬁay%dz,_ﬂ (1.3b)

k o

Gm(k,wJ=dm( 3 JG,(,?)(k,a)), (1.3¢)

CEC

where Eq. (1.3a) describes the relationship between the coupling
constants with the original and the scaled energy cutoff. The
dimensionless vertex for each interaction channel T, (n=1-6,i=1//,
11, 2) in Eq. (1.3a) are defined in Eq (1.3b), and the dimensionless
Green function d,, (m = A, A, B) is defined in Eq. (1.3c). With this set
of equations, the coupling constants with new g;’s can be related to
their corresponding original values. Following the diagram expansion
calculation shown in Figs. 1.7 and 18, together with the attendant
multiplicative relation of Eq. (1.3), we obtain the scaling equations for
the coupling constants as temperaturedecreases to zero. If we consider
only the diagrams shown in Fig. 1.7(a,b), the results obtained pertain
to the first-order RG. If we consider the superconductivity problem,
Le, in the presence of phonon-mediated electron-electron attractive
interaction, then the first-order RG suffers from the divergence in the
coupling constants and response functions at finite temperatures.
This is unphysical since that would imply a sharp phase transition can
occur (since a second-order phase transition is always characterized
by the divergence in the response functions of the system) at finite
temperatures for 1D systems, in violation of the Hohenberg-Mermin-
Wagner Theorem. Hence we must go beyond the first-order RG and
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take into account the diagrams shown in Fig. 1.7(c, d). These diagrams

give rise to second-order correction to the RG scaling equations. At

this second-order level the unphysical results are eliminated and
il divergence can only happen at zero temperature. The detailed scaling
1 equations can be found in [39].

' " ok g i )

Figure 1.7 The expansion diagrams of the interaction vertex that are
log divergent. The signs + and — mean that the electron/hole
are right-moving and left-moving, respectively. Adapted from
Ref. [32].

| Figure 1.8  The self-energy correction to the Green function. Adapted from
Ref. [32].

We are interested in determining the possible ground state(s)
of the system. This objective is accomplished by calculating the
response functions of the system. The response function is defined
as the amplitude of the system response with respect to an external
perturbation. The asymptotic behavior of coupling constants
can be used to generate the response functions at temperatures

RG Treatment of Ultrathin (5,0) CNT Arrays

approaching zero. In 3D systems, phase transition is usually
identified with the singularity found in response functions. However,
in 1D, since no phase transitions can occur at finite temperatures,
owing to the Hohenberg-Mermin-Wagner Theorem, hence
response functions should be divergent only at zero temperature.
This condition is only satisfied if we use the second-order RG
correction, with the resulting power law-divergent response
function(s) R(w/E¢) ~ (w/E)% a< 0.

In each interaction channel depicted in Fig. 1.6(a-f), there are
four types of response functions that need to be taken into account,
as they contain logarithmically singular terms up to any order of
perturbative expansion. The four divergent response functions
are the charge density wave-response function (CDW) N(@), i.e.,
the Peierls distortion response function (the response functions
denoted with the over-bar are actually the auxiliary function of
the corresponding response functions, see [32]), the spin-density-
wave response function (SDW) @), the singlet superconductivity
response function (SS) A;(®@), and the triplet superconductivity
response function (TS) A,(@). Since they are all divergent, the
ground state is identified by the one whose response function is
the most singular when temperature decreases to zero. The scaling
equations for the four types of response function are:

dlngn(x)zl{i[g;//+g%1_g%J+...} (1.4a)
X X | T
dln,rn[X)zl{L[_gﬂJr..} (1.4b)
dx X | TVp
dinRs () 1[ 1, 9 |
aXJ)_ 1] 1 e s 1.4
2 X{M[gn e (140

AMAra ) _1f 1 1 4y 21,
dx —X{/TUF‘:—gn +gn:]+"'J (1.4d)

With given initial values of the coupling constants, we can
obtain the most singular response function that characterizes the
ground states (as T approaches zero) by solving Eq. (1.4). Here,
x=log(w/E¢).
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1.3.3 Scaling Results for a Single (5,0) CNT

Following the method described above, we have performed second-
order RG analysis on a single (5,0) CNT, as well as on a thin array of
(5,0) CNTs. The results of the RG analysis are the fixed points and
their corresponding phase diagram. We use physically relevant
initial values of the coupling constants for the RG scaling equations
and track the system behavior when the temperature decreases to
zero. Since the final results clearly depend on the initial values of
the coupling constants, attention must be paid to this aspect of
the problem. We have followed the analysis of Perfetto et al. [40]
to estimate the initial values of the coupling constants. There are
two physical mechanisms in the electron-electron interaction. The
first one is the Coulomb interaction, which is repulsive; hence, the
interaction constant is positive in value. The second one is phonon-
mediated interaction, which is attractive and hence negative in
value. The initial values of the dimensionless coupling constants
represent the sum of these two mechanisms. For an individual
(5,0) CNT, the initial values are (with g+ = g'//):

gu gli

L, 22 _=_0.095+0.573/x,
2nYy 2Mu,

7 2 2 2

9i 9 95 9% _q59/,
2ny, 2NV, 2R, 2o,

gli
=% _=_0.175+0.175/x,
2TV,

1L 11

95 95 __00796+0.0796/x,
2MY, 2T,

92.
26— _0.0796+0.0478/x,
ZT[UA

2 11
95 95 _ _0.0796+0.0079/x.
2TV, 2TU,

It should be noted that these values are dependent on the
dielectric constant x of medium. In vacuum with x =1, the values of
the fixed points are:

2
911605
27 Up
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2nUy 2TV,
2

%, _os,
2V

1L

8. 5. 0/3
2V,

2

% 1571,
2TV,

1L

I 5076
2n o),

All other coupling constants scale to zero. Since the response
functions are power law divergent as R(x) ~ x% the value of
exponent ¢ determines the relative relationship of the different
response functions. From Eq. (1.4), the power law exponent « is
~[91/; + 911 — g2]/mve (as T approaches 0) for the CDW (Peierls
distortion) response function, ~[~g,]/nu;] for the SDW response
function, ~[g;, +g,]/n v for SS response function, and ~[=91/,+921/
nvg for the TS response function. In each interacting channel, there
are four corresponding response functions, and substituting the
fixed point values of the coupling constants into Eq. (1.4), we find
in this particular case the CDW and SDW response functions are the
most divergent. Hence, they represent the ground state.

If the individual (5,0) CNT is embedded in a dielectric medium
with x> 1.15, the fixed point values of the coupling constants are
k-dependent:

11

1L
91 ,95 -0,
2ny, 2my,

gi gt 4
——, ———0.268+15.03/(x~0.064),
2RV, 2MU,

9 4 4
2ny, 2nu,  2mu,

-1,

while all other coupling constants scales to the fixed point value of
~1. In this case, if k¥ > 22, then the SS response function in channels
2 and 6 overcomes the CDW in channels 3 and 4 to become the most
divergent one. If k¥ < 22, then CDW would be the most divergent.
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This result is consistent with the statement that a single (5,0) CNT
will undergo a Peierls transition under usual conditions [12-17].

1.3.4 Scaling Results for a Thin Array of (5,0)

Inour experiments, the (5,0) CNTsare embedded inahexagonal close-
packed array of other (5,0) CNTs, with the AFI zeolite framework
serving as the dielectric medium. In this case, the situation is
quite different. As mentioned above, there are additional inter-
tube electron-electron interactions that can affect both the scaling
equations and the initial values of the coupling constants. We must
take into account new possible intermediate states in the derivation
of the scaling equations not only for the 6 intra-tube channels, but
also for the additional 12 inter-tube channels for a thin array that
comprises one central (5,0) CNT surrounded by six identical (5,0)
CNTs in the hexagonal configuration with a wall-to-wall separation
of 1 nm. For the initial values of the coupling constants, the existence
of other metallic CNTs that are separated from the nearest neighbors
by only 1 nm will greatly screen and reduce the Coulomb repulsive
interaction strength, and thereby qualitatively influence the fixed
points [40]. Without giving the details that can be found in [39],
in the thin array configuration, the screened initial values of the
coupling constants are as follows:

s i S, S - ST
2RUy, 2TV, 2Ty, 2Tl '

-

. o
I _ % _op0032x,
2RYy  2TU,

|
2MV,  2T0,

in which g,{ denotes the inter-tube couplings. In the array
configuration, the initial values of the forward scatterings are about
two orders of magnitude smaller than that in the individual CNT
case. So the fixed points are significantly modified from those of the
individual CNTs. If the dielectric constant k< 1.38, then all response
functions still remain small. If we take the dielectric constant of
AFI framework to be >1.38, e.g, x~6 for aluminophosphate (the
composition of the AFI zeolite), then the fixed points are:

RG Treatment of Ultrathin (5,0) CNT Arrays
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All other coupling constants are noted to scale to —1. Therefore,

in the array configuration, the most divergent response function is
the SS response function, with 0~0.573, -4, -3.427, -3.427, 0.573,
and —4 in the six intra-tube channels as shown in Fig. 1.6(a-f),
respectively. The next divergent one is the CDW response function,
witha~-0.573,-2,~2.573,-2.573,-0.573, and -2, listed in the same
order. A sketch of the CDW and SS response functions in channels
1 and 4 (these two channels are associated with electrons in only the
A band and the B band, respectively) are shown in Fig. 1.9, in which
the SS response in the B band (channel 4) is more divergent than
othersas wapproacheszero. It follows that under the condition of our

experiments, the (5,0) nanotube array should be superconducting at
zero temperature.,
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Figure 1.9 The scaling flow of CDW and SS in the A band and B band. As @
approaches zero, the SS response in the B band is seen to be

the most divergent. Hence, superconductivity is the ground
state for the thin array configuration.
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Figure 1.10 The experimental data of differential resistance under
different current/voltage and temperature. We can see
that at low temperatures, typical 1D superconducting
behavior was observed, but with increasing temperature,
a peak in dV/dl arises at zero bias. This is attributed to
the excitation of the CDW state that can lead to a quasi-
gap around the Fermi level. Adapted from Ref. [39].

An interesting feature shown in Fig. 1.9 is the crossing of the
two scaling curves. What this means is that owing to the initial value
of the coupling constants, the CDW response function represents
the dominant one at higher temperatyres, implying that while the
superconductivity is the ground state, the CDW, ie, the Peierls
distortion state, may be manifest as an excitation of the system. This
feature can be the answer to the observed behavior in the experiments,
shown in Fig. 1.10. In the dV/dI plot, at low temperatures, the behavior
shown is typical for the 1D superconductivity, with a smooth dip at
current/=0. The dip in differential resistance means that there is super-
current inside the system, and the smooth drop versus current/voltage
means that the thermal fluctuations have prevented the system to form
awell-defined super-current region. This is a direct consequence of the
Hohenberg-Mermin-Wagner theorem and is a typical behavior for a
1D superconductor. In the inset of Fig. 1.10 is shown the temperature
dependence of the measured resistance. Again, a smooth decrease
of the resistance, which is independent of the magnetic field, is a
manifestation of the 1D superconductivity. Therefore, we attribute

Appearance of Thermal Fluctuation—Induced Resistance

this result to a very thin CNT array whose cross-sectional dimension
is less than a coherence length. When the temperature increases,
however, a peak is seen to arise. A peak in the differential resistance
is indicative of the appearance of a quasi-gap in DOS. We attribute the
peak at higher temperatures to the appearance of CDW excitations.

1.4 Appearance of Thermal Fluctuation—
Induced Resistance in 1D Superconductors

The RG analysis in the previous section shows the Cooper-pair
condensation to be the most favorable state in the CNT@AFI system
when temperature decreases to zero. However, to better understand
the experimental results, it is necessary to appeal to phenomenolog-
ical theory, which will be the GL theory of superconductivity [42]
plus its 1D version, the Langer-Ambegaokar-McCumber-Halperin
theory [21,43-45]. In this section, we give a brief description on the
appearance of resistance in 1D superconductors, such as that shown in
theinsettoFig.1.10.InSection 1.5, weshall detailhowaweak transverse
Josephson coupling between the (5,0) CNTs can effect a transition to
a 3D superconducting state (at a temperature below that at which the
1D superconducting condensate first appears), together with a sharp
resistive transition and the attendant interesting behaviors.

The basic concept of the GL theory is to define a coarse-grained
complex order parameter, or “wave function” of the system,
Y(F)=|y(F)|explig(F)]  with |y(F)|* =ns(F) being the local
density of superconducting electrons. The free energy of the system

is written as [42]:
2
h = 2
(—,’V—EAM LB s
i c 8n

in which Fy denotes the free energy of normal state, @=a(T -T2),
are phenomenological parameters of the theory, and T denotes the
mean-field transition temperature at which the 1D superconducting
condensate appears. The mass and charge of a Cooper-pair are
m*=2 mand g = 2e, respectively, and A and B=V XA are the vector
potential and magnetic field, respectively. Variationally minimizing
the free energy with respect to wand 4 leads to the GL differential
equations:

; 1
F=Fy+[av a|¢42+§y¢44+ﬁ
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2
2 1 q—j
—V-14| y=0, 16
ay+ Al V+2m*(i ALY (1.6)
= —~  qh o’ 12
j=—VXB=——(y*Vy—-yNy*)- lvl” A. (1.7)

1y 2m*i m*c

If we substitute yA(r)=|y(r)|explig(r)] into Eq. (1.7), we get

Hea e|§//‘2h 2r -

Equation (1.8) shows that besides the vector potential, the
current density inside a superconductor is proportional to the spatial
derivative of the phase ¢(r). This is important for understanding the
origin of resistance in 1D superconductors, shown below.

In a superconductor, the coherence length ¢ is defined as the
length scale that characterizes the spatial variation of the order

70 [1 /2
7¢ -7
coherence length at zero temperature.

In a 1D superconductor, the GL order parameter is only a function
of the x-coordinate. This is because the cross-sectional dimension of
the sample is by definition smaller than a coherence length; therefore,
the order parameter can be regarded as a constant along the two
other directions. Then, the free energy of system can be simplified to
the following form at zero magnetic fietd [21,43-46]:

arameter ie, &= B,
p v, L€, Zm,a‘f S0

, where &, is the

h?
Fly(x)]= ajdx(E;FW p(x)| +e|px)f + §|MX]|4 ) (1.9)

where o denotes the cross-sectional area of the 1D superconductor.
The corresponding time-dependent GL equation, which describes
the time evolution of y; is given by

d 1 OF[y] o 2
B il ok =—Véy-2 -2 +<. 1.10
at‘” o oy tE m* vty ﬂ‘V/‘ o v )

Here, y is a viscosity coefficient, and the { denotes the Langevin
white noise, associated with the fluctuation effect of the heat bath.
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The steady-state solution of this equation, without the noise, can
be obtained by setting the time derivative of y equal to zero. If we
rescale y by \/-«/ /7, x by coherence length £ and time by -/ ¢, and
impose periodic condition, i.e., setting Y(-L/2) = w{L/2), L being the
length of the 1D superconductor, Eq. (1.10) simplifies to

o R TR
0=$w=vzw+w—ﬁw v, (1.11)

which has the solution
g/_/n(x]=\/1—k,2,e“‘nx,k,,=2nn/L. (1.12)

Here, n is an integer called the winding number, and k, serves
as a wave vector. It should be noted thatEq. (1.12) is really not a
plane-wave solution, since the amplitude of e, \/1-kZ, depends
on k, owing to the nonlinear character of Eq. (1.11). By using the
quantum mechanical formula for the current density, the steady-state
solution given by Eq. (1.12) carries a current density J, =(1-k2)k,,
with |k,|<kc =1/4/3 being the upper bound of the permitted wave
vectors. A schematic picture of the current-carrying state with n = 4
is given in Fig. 1.11 [46].

1
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Figure 1.11 A schematic plot of the current-carrying state with a winding
number n = 4. Adapted from Ref. [¢6].
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Each current-carrying steady state is characterized by a winding
number n. Larger the n, larger the current and also higher the free
energy. By using the string method, one can map out the free energy
landscape from one steady-state solution to the next. In Fig. 1.12,
we show the energy landscape for a 1D superconductor along the
path of minimum energy in the functional space. It should be noted
that between two nearest-neighbor current-carrying states, there
exists a barrier preventing the system from slipping from one state
to its neighboring state. In other words, each steady-state solution
is located at a local minimum of the free energy, and when the state
is in such a local minimum, the system displays no resistance, i.e.,
the system is superconducting. However, at finite temperatures,
there will always be the chance of thermal excitation over the small
barrier (whose magnitude is directly proportional to the cross-
sectional area o of the 1D superconductor) separating the different
current-carrying states, e.g., from a higher winding number state to
a lower winding number state. Hence, these current-carrying states
are metastable at finite temperatures.
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Figure 1.12 The free energy landscape of a 1D superconductor plotted as a
function of the winding number n, ranging from -8 to 8. The local
minima denoted by n are current-carrying metastable states,
while the small peaks between two such states is the free energy
barrier. Here, s is a path length parameter in the functional space
of winding number configurations. Adapted from Ref. [46].

Characteristics ofthe Dimensional Crossover Transition

So far, we have described the metastable state y,(x) inside a
1D superconductor, which carries a current density J,, without any
dissipation. However, in the presence of the Langevin white noise
term ¢, thermal fluctuations would cause the system to overcome
the free energy barrier separating two metastable states with
different winding number n, thereby one current-carrying state
can transit into another. In this process, both the free energy as
well as the current would change. If the 1D superconductor is
connected to a constant-current source, as in many experiments,
then the current source will restore the original current state by
pushing the state up in energy. In doing so, work will be done by
an external source; hence, dissipation has occurred, i.e., resistance
appears. Since the resistance is directly proportional to the rate of
transitions between the different current-carrying states, it follows
that higher the temperature, higher the resistance. Also, since the
free energy barrier is lower for the higher current-carrying states,
the transition rate between different current states will be higher
with increasing (external) bias current. Therefore, the resistance
will increase with either increasing temperature or increasing bias
current. This is a physical explanation for the observed resistance in
1D superconducting systems.

1.5 Characteristics of the Dimensional
Crossover Transition

Early measurements on the 4-Angstrom CNT@AFI zeolite crystals
have shown the 1D superconducting characteristics as described
in the previous section [1,20,21]. However, more recently the
improvement in sample quality has enabled the observation of 3D
superconducting characteristics [19,21]. The purpose of this section
is to use the GL theory [42] to show how this can occur and what
the expected characteristic of the 1D to 3D dimensional crossover
transition should be [47]. MC simulation [48] will be used, so as to
go beyond the traditional mean field treatment. Simulation results
will be compared with the experiments, measured in the sample
configuration shown in Fig. 1.13.

Since the 4-Angstrom CNTs are aligned in the array of 1D pores
of the AFI, the wall-wall separation is only 9.6 A, which allows
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a Josephson coupling in the a-b plane. Because the CNTs are

segmented and randomly distributed in the pores of AFI, the system
is inhomogeneous. The Josephson coupling is obviously dependent
on the overlap between the neighboring nanotubes along the c-axis
direction. Stronger couplings can result from significant overlaps,
whereas very weak couplings would be the case with small overlaps.
In our simplified model, the strongly coupled nanotubes are
regarded as constituting a quasi-1D nanowire, and these nanowires
form a 2D triangular lattice in the x-y (a-b) plane with their c-axes
aligned along z-coordinate as shown in Fig. 1.14 [47]. The interaction
between the nanowires is much weaker as compared with that along
the c-axis of the nanowires. This model can capture the essential
characteristics of our samples.

AFl transverse resistance CNTs AFl small current  CNTs
(Including contact resistance)

Two-probe Geometry

Four-probe Geometry

*

Figure1.13 (a) A cartoon picture of the sample configuration in the
experiment. Green denotes the AFI crystal, in which open circles
denote CNTs. Yellow is gold, which is part of the electrode.
Focused ion beam was used to delineate the top electrodes
by etching away the gold to expose the AFI crystal surface.
(b) SEM image of the sample. Red arrow indicates the position
of the c-axis. The thin line in the middle divides the two surface
electrodes. The two troughs on the top and bottom correspond to
the current electrodes in the four-probe measurement geometry.
(c) and (d) are schematic drawings of the two-probe and four-
probe measuring geometries on the side view. Blue dashed lines
denote the current. We can see the two-probe measurement
results include the transverse resistance, but the four-probe
measurement is mainly on the c-axis resistance. Adapted from
Ref. [19].

Characteristics of the Dimensional Crossover Transition

Figure 1.14 A cartoon picture of themodel. The parallel nanowires form a
2D triangular lattice inx-y (a-b) plane. The nearest-neighbor
nanowires interact with each other by weak Josephson

coupling, denoted by the double-headed arrows. Adapted
from Ref. [47].

The above model has been studied extensively in the mean-field
approximation, and a 3D long-range ordered state can be found at
low temperatures [49-57]. However, the behavior near the critical
temperature attracts little attention [51]. In particular, the specific
heat and the phase correlation in the a-b plane, which are crucial
to the interpretation of the experimental data on 4-Angstrom CNTSs,
have not been studied. Hence, in the following, we use MC simulation
on the GL theory to analyze the behavior of the specific heat and the
electronic transport in this model and to compare the results with
the experimental observations [19,20].

In dimensionless form, the GL free energy functional for the
weakly coupled quasi-1D nanowires can be expressed as

£ F » 48 o
L goki;co F l;jjdsr [Z(t‘l)\%f‘z +7,[
+ﬂ=x2‘y'22(—15/,—2;:2//);,—,['}‘2} (1.13)
Es z Jdﬂ«) V—/:](Z)HV_/:/ (Z)\
(i.9)

[1 —cos(d; — & )]

The first term expresses the GL free energy of the individual
nanowires, whereas the second term is the energy of Josephson
coupling between the nearest-neighbor nanowires. The indices i, j
denote the coordinate of a nanowire in the x-y plane, ¥#; ; = ¥ ; /|w|,
v ;(F) = v j(F)|exp(ig ;) istheGLorder parameter, ‘y/ I:,/a'ro/ﬂ
is the zero-temperature mean-field value of |y, where g and Bcare
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two phenomenological parameters, 70 denotes the nominal mean-
field phase transition temperature at which the 1D superconducting
condensate firstappears, t = T/T?, & = a® iy 2;(09”},0{20 /2 ks T is the
zero-temperature condensation energy within the volume £,&,0&,0, in
units of kBTC“; éuﬂ = [2m gTCO is the zero-temperature coherence
length along the u(=x, y, z) d“irection, m,, is the effective mass for one
Cooper pai, 4, =4 &, /®,, A is the vector potential, and @, = hc/2e
is the flux quantum. Here, /,, =2/, /aT? is the ratio between the
Josephson interaction in the transverse direction and the GL free energy
of the individual nanowires. In our model, this ratio is a very small
number as shown below. Because the CN’I; in AFI is an extreme type
I superconductor [20,58], the magnetic energy can be regarded as a
constant in space and neglected. In the GL theory, the expectation value
of a physical quantity Q can be evaluated as the ensemble average

(@)= | DyQexp{-F.[¥] /ksT}
| Dyrexp{~F [w] /ksT}

(1.14)

Here, JDy/ denotes the functional integration.
The specific heat is evaluated by using the Bardeen-Cooper-
Schrieffer (BCS) specific heat expression [58]:

C=ZﬁZkBIg(e)exp(ﬁE)[l+exp(/f5)]‘2[52+§—ﬂ‘;—i]da (1.15)

Here, B = 1/kgT, E=v &>+ A%, g(&)=N(0)1+¢&/&, & is the
Fermi energy, and N(0) is the density of states (DOS) at the Fermi
level. The gap function A(T, B) is evaluated by the GL theory, ie.,

[A/A(0)] = ’<|w|2 /ig//0|2> [20]. In this evaluation, the effect of the

fluctuations is clearly manifested, and it is mainly the amplitude
fluctuations that matter, in contrast to other effects shown below
where phase fluctuations can be dominant. In the above, A(0) is the
gap function at B=0, t=0, and A(0) = gkgT? with g =3 fixed by the
experimental data [20].

In comparison with the GL free energy of the individual nanowire,
the Josephson interaction between nanowires is much smaller and
can be neglected in the calculation of the specific heat. The specific
heat peak arises from the contribution of the individual nanowires.
The gap function A(T,B) can notbe solved analytically from Eq. (1.13).

Characteristics of the Dimensional Crossover Transition

Thus, we discretize the nanowire and use MC simulation to obtain
the gap function. Eq. (1.15) is then used to obtain the specific heat.
The size of each nanowire is given by Ly xL, x L,. We simplify our
model further and take Sx0 =6y =60 =¢ - If the parameters
are set to be L, = L, = 3, L, 2 64, £,y = 13 nm, T =15K, and
& = 3, the results, as well as the experimental data, are shown in
Fig. 1.15. Good agreement is seen. Here, the rounded peak of the
specific heat is a reflection of the large fluctuations in the quasi-1D
nanowires [59], as compared with bulk superconductors. The peak
is also noted to be shifted to lower temperature by the magnetic
field. As the magnetic field can be associated with a length scale, the
good agreement between theory and experiment tells us that each

nanowire comprises an array of nanotubes with a cross-sectional
dimension ~40 nm.

8 T T T

o
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Figure 1.15 Theoretical and experimental results of specific heat in a magnetic
field applied perpendicular to the c-axis of the nanowire. Solid
lines denote the measured specific heat of superconducting carbon
nanotubes embedded in AFL The dots represent the simulated
results in the simplified model with the parameters given in the
text. The simulation results are normalized to the experimental
data at one point of each curve. Adapted from Ref. [47].

Whereas the specific heat peak is mainly from the amplitude
of the order parameter, the electronic transport is dominated by
the phase of the order parameter, especially as the temperature
is lowered from T [44,45,60). Even with a very weak Josephson
interaction between nanowires, a dimensional crossover transition
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can still occur. In order to study the effects of the weak Josephson
coupling, we make the approximation, verified to be rather accurate,
that in considering the phase effect between the nanowires the
amplitude of the order parameter at any given temperature or
magnetic field can be regarded as a constant. This approximation
is especially true at temperatures much lower than T, since the
amplitude fluctuations are inherently small.

Since the transverse phase fluctuations inside the individual
nanowires are necessarily short wavelength in character, they are
suppressed at low temperatures in comparison with the long-
wavelength fluctuations along the c-axis. To a reasonably good
approximation, the nanowires can be regarded as 1D without the
transverse fluctuations in their cross sections. With all the above
simplifications, Eq. (1.13) can be expressed in discretized form as

— F,
FGL = e 0 = 22];[1—(‘05(@,}‘,“1 "¢i,j,k)]
&ksTe 7% (1.16)
* ¥ 2/xy —cos(& jk =& yu )}
(i, 1)
Here, J; = 4d¢ | ¥t, A y)I/¢x06y0 and ] IV/(L‘ )12/ &0

To compare with the experimental data [19] we have applied the
magnetic field along the x-axis, i.e., perpendicular to the c-axis of
the nanowires, and adopted the gauge A=(0, Ay,O) with 4, = —Bz.
It has been tested in the simulation that the weak inter-nanowire
coupling has a negligible effect on the magnetic field dependence of
the model. So we neglect the magnetic field term in Eq. (1.16). The
effect of the magnetic field is manifest in the amplitude, lg/—/(tﬁy)l,
which is also a function of temperature. In the small region near
the critical temperature of the dimensional crossover transition, Isy
and J; can be regarded as constants, approximately, and our model
becomes similar to the anisotropic 3D x-y model. Thus, we define
the following quantities to describe the phase transition:

N
=—]1\7< by exp(i@)~>r (1.17]

=1
I'(7) = (cos(¢ — ) —((cos g )(cos g ) +(sin g Msingy)),  (1.18)

Characteristics of the Dimensional Crossover Transition

2
Ny

1 . 1 1z
Ap=—( 3% exp(1¢m)—N— Y exp(ig)| ). (1.19)

N, m=1 Z1=1

Here, n is the phase-ordering parameter, which measures
the overall phase coherence throughout the system. I'(F) is the
correlation function. A7 describes the phase fluctuations along the
c-axis of the nanowires. It should be noted that our model differs
from the 3D x-y model in that the c-axis behavior can also affect the
system behavior.

MC simulation, with the Wolff algorithm [61], was employed
to evaluate the abovg quantities in accordance with Eq. (1.14).
The modulus, |#(t,A,)|, can be obtained from <| ;?,-,j|> in a
similar way as in the computation of the gap function. The weak
Josephson coupling has virtually no effect on the modulus. The size
of the system is denoted by N = N, x N, X N,. To be self-consistent,
we use the same parameter values as in the computation of the
specific heat. The periodic boundary condition was adopted. For
N,=N,= 60, N, =800, the value of jxy =1/3000(J5,/J; =1/12,000)
was adopted.

In Fig. 1.16(a), a phase-ordering transition in the a-b plane can be
seen at around ¢ = 0.5. The overall phase coherence is built up, first
abruptly and then gradually, below the transition temperature. The
transition is noted to be shifted to lower temperatures by the magnetic
field. It is in good qualitative agreement with the superconducting
behavior observed in the 4-Angstrom CNTs embedded in AFI,
shown in Fig. 1.16(c). It is also seen from Fig. 1.16(c) that below
the transition (at around 5 K), the four-probe data (the magenta-
colored curve) and the two-probe data (the light blue-colored
curve) coincide. Since the difference between the two should be
the transverse resistance in the a-b plane [see Figs. 1.13(c, d)],
this implies the near-disappearance of resistance in the a-b plane. That
is, the system has become 3D in character. Moreover, it is seen from
Fig. 1.16(c) that the four-probe result (magenta curve) displays a kink
followed by a sudden drop in the measured resistance at the transition,
apparently reflecting the transverse coherence so thatin effectthe cross-
sectional area (which would affect the barrier height separating the
metastable current-carrying states, see the discussion in the previous
section) of the 1D system has suddenly increased, thereby suppressing
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the phase slip fluctuations. The decrease in the longitudinal phase
fluctuation along the c-axis is revealed in Fig. 1.16(b). To obtain the
simulation results shown in Fig. 1.16(b), the parameters N, =N, =12,
N,=3200 are set so as to capture more of the long-wavelength (phase)
fluctuations along the z-direction (c-axis). The results with (shown
in red) and without (shown in green) Josephson coupling are seen to
suddenly deviate from each other at the transition temperature. The
phase fluctuations along the c-axis show a sharp drop at the transition.
The red curve in Fig. 1.16(b) corroborates well with the four-probe
data shown in Fig. 1.16(c) (magenta line); whereas the green curve in
Fig. 1.16(b) corroborates well with the four-probe data of the measu-
red 1D behavior (as manifest in the smooth temperature dependence
and magnetic field independence), shown in Fig. 1.16(d).

In order to uncover more details of the dimensional crossover
transition in the a-b plane, we calculate the phase correlation function
in x-y plane, with the focus on the behavior in the neighborhood of
the transition temperature. To be consistent, the same parameters
were used as in the computation of the phase-ordering parameter.
The results are shown in Figs. 1.17(b,d). The correlation function
decays exponentially as a function of distance in the a-b plane
above the transition temperature. However, it decays in a power
law manner below the transition temperature. This is the signature
of a Berezinskii-Kosterlitz-Thouless (BKT) transition [62,63]. To
verify this, in Fig. 1.17(c) we have evaluated the correlation length
above the transition temperature and compared its temperature
dependence with the predicted BKT behavior. Excellent agreement
is seen. Since the temperature dependence of the resistance in a
BKT transition is dictated by the behavior of the phase correlation
length, it is expected that the measured 2-probe resistance, which
is dominated by the transverse resistance in the a-b plane, should
follow similar temperature dependence, and indeed it does, as
shown in Fig. 1.17(a).

It should be mentioned that another manifestation of the BKT
transition is the nonlinear -V characteristics just above the T.
That has indeed been observed experimentally [19] in the electrical
differential resistance measurements and therefore offers additional
supportto theinterpretation that the 1D to 3D dimensional crossover
transition is mediated by a BKT transition in the a-b plane. However,
the theoretical explanation of the nonlinear /-V behavior is beyond
the present model.
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Figure 1.16 (a) Phase-ordering parameteras a function of the temperature

and the magnetic field appliedperpendicular to the c-axis of the
nanowires. The green symbols denote the system without the
weak transverse Josephson coupling between the nanowires,
i.e., 1D system. The red, blue, and chocolate colors denote
the cases with weak Josephson coupling, Ji,/J; = 1/12,000,
but under different applied magnetic field (shown in the
legend). (b) The fluctuations along the z-direction, a77,
plotted as a function of temperature. Green denotes the case
without Josephson coupling, ie., a pure 1D system, whereas
the red denotes the case with the weak Josephson coupling,
Jiw/)z=1/12,000. It is seen thatthe fluctuations are suppressed
below the transition temperature, owing to the dimensional
crossover. (c) The measured resistance (in the sample
configuration shown in Fig 1.13) plotted as a function of
temperature, for different magnetic field applied perpendicular
to the c-axis of the nanotubes. The magenta curve is the data
measured at zero field under the four-probes geometry, and
the others are the two-probe data measured with the two
surface electrodes (see Fig 1.13c). Superconductivity is
obviously suppressed by the magnetic field. The inset gives
a magnified view of the upper section of the two-probe data,

(Continued)
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which shows the magnetoresistance, and which reflects the
appearance of the superconducting condensate, starts at 15 K.
However, between 15 K and 7.5 K the system is basically 1D
in character, hence display finite resistance that can arise
from phase fluctuations as described in Section 1.4. (d) The
resistance measured in the four-probe geometry for a different
sample, which displays a pure 1D character as reflected in
the smooth temperature dependence that corroborate very
well with the green curve shown in (b), as well as in the
magnetic field independence. Adapted from Ref. [19,20,47].
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Figure 1.17 (a) The temperature dependence of resistance measured in

the two-probe geometry, plotted in a manner as predicted by
the BKT transition theory, i.e, fn(R—Rg)e<(T—Tc) /% with
Te=6.17K and Rs = 1.06 kQ. Here, the series resistance Rg was
separately measured. (b) and (d) are the correlation functions
in the x-y plane at different temperatures around the transition.
They are the same data but plotted with different scales so as
to emphasize the different behaviors. The correlation function
decays as an exponential law above the transition but as a
power law below the transition. This is the character of BKT
transition. (c) The temperature dependence of the carrelation
Jength near the transition, plotted in the manner as predicted
by the BKT transition, ¢'=¢j exp[c/,/t—tC }, with t; = 0.479,
(o= 0.381, c = 0.245. Adapted from Ref. [19,47].
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1.6 Concluding Remarks

We have presented a coherent theoretical framework for the
understanding of the experimental results on the observed
superconductivity in 4-Angstrom CNTs. By using both RG technique
as well as simulation on the phenomenological GL. mode], it is shown
that in the array configuration, superconductivity can be the ground
state of the system, winning over the Peierls distortion (CDW).
However, the manifestation of superconductivity can be masked
by phase slip fluctuations that are particular to the 1D systems.
With weak transverse Josephson coupling between the nanotubes,
however, there can be a dimensional crossover transition at a lower
temperature, below which 3D superconducting behaviors appear.
Good agreement is obtained between theory and experimental
observations.

References

a8

10.
i

42,

Z. K. Tang, L. Zhang, N. Wang, X. X. Zhang G, H. Wen, G. D. Li, J. N.
Wang, C. T. Chan and P. Sheng, Science 292, 2462 (2001).

N. Wang, Z. K. Tang, G. D. Li and J. S. Chen, Nature 408, 50 (2000).

Z. M. Li, Z. K. Tang, H. J. Liu, N. Wang, C. T Chan, R. Saito, S. Okada,
G.D.Li,J.S. Chen, N. Nagasawa and S. Tsuda, Phys, Rev. Lett. 87, 127401
(2001).

Z.M.Li, H.]. Liu, ]. T. Ye, C. T. Chan and Z.K. Tang, Appl. Phys. A 78,1121
(2004).

M. Hulman, H. Kuzmany, O. Dubay, G. Kresse, L. Li and Z. K. Tang,
J. Chem. Phys. 119, 3384 (2003).

Z. M. Li, Z. K. Tang, G. G. Siu, 1. Bozovic, Appl. Phys. Lett. 84, 4101
(2004).

H.]. Liu and C. T. Chan, Phys. Rev. B 66, 115416 (2002).

M. Machon, S. Reich, C. Thomsen, D. S. Portaland P. Ordejon, Phys. Rev. B
66, 155410 (2002).

l. Cabria, ]. W. Mintmire and C. T. White, Phys. Rev. B 67, 121406(R)
(2003).

T. Miyake and S. Saito, Phys. Rev. B 68, 155424 (2003).

L. X. Benedict, V. H. Crespi, S. G. Louie and M. L. Cohen, Phys. Rev. B 52,
14935 (1995).

K. P. Bohnen, R. Heid, H. . Liu and C. T. Chan, Phys. Rev. Lett. 93, 245501
(2004).

33



34| Theoretical Study of Superconductivity in 4 A CNT Arrays

1.3.
14.

15,

16

17.
18.

19.

20.

21.
22.

23.
24.
25.
26.

27,
28.

29,
30.

31.
32.
33.
34.
35,
36.
37.
38.

K. P. Bohnen, R. Heid and C. T. Chan, Phys. Rev. B 77, 235407 (2008).
D. Connetable, G. M. Rignanese, |. C. Charlier and X. Blase, Phys. Rev.
Lett. 94, 015503 (2005).

P. M. Singer, P. Wzietek, H. Alloul, F. Simon and H. Kuzmany, Phys. Rev.
Lett. 95, 236403 (2005).

B. Dora, M. Gulacsi, F. Simon and H. Kuzmany, Phys. Rev. Lett. 99, 166402
(2007).

M. V. Fernandez-Serra and X. Blase, Phys. Rev. B77,195115 (2008).

L. Chao, Z. Wang, W. Shi, Y. X. Wang, N. Wang, Z. K. Tang, P.Sheng and R.
Lortz, Phys. Rev. B 83, 184512 (2011).

7. Wang, W. Shi, H. Xie, T. Zhang, N. Wang, Z. K Tang, X. X. Zhang, R. Lortz
and P. Sheng, Phys. Rev. B 81, 174530 (2010).

R. Lortz, Q. C.Zhang, W. Shi, C. Y. Qiu, Z. Wang, H. T. He, P.Sheng, T.Z. Qian,
7. K. Tang, N. Wang, X. X. Zhang, J. N. Wang and C. T. Chan, Proceedings
of the National Academy of Science of the United States of America 106,
7299 (2009).

Z. Wang, W. Shi, R. Lortz and P. Sheng, Nanoscale 4, 21. (2012).
D. Mermin and H. Wagner, Phys. Rev. Lett. 17,1133 (1966).

P. C. Hohenberg, Phys. Rev. 158, 383 (1967).

S. Tomonaga, Prog. Theor. Phys. 5, 544 (1950).

J. M. Luttinger, J. Math. Phys. 4, 1154 (1963).

D. C. Mattis and E. H. Lieb, J. Math. Phys. 6,304 (1965).

J. D. Delft and H. Schoeller, Ann. Phys. (Leipzig) 7, 225 (1998).

A. 0. Gogolin, A. A. Nersesyan and A. M. Tsvelik, Bosonization and
Strongly Correlated Systems (Cambridge University Press Cambridge,
UK, 1998).

J. Voit, Rep. Prog. Phys. 57,977 (1994).

M. Bockrath, D. H. Cobden, J. Lu, A. G. Rinzler, R. E. Smalley, L. Balents
and P. L. McEuen, Nature 397, 598 (1999).

C. L. Kane and M. P. A. Fisher, Phys. Rev. B 46, 15233 (1992).

J. Solyom, Adv. in Phys. 28, 201 (1979).

N. Menyhard and J. Solyom, J. Low Temp. Phys. 12,529 (1973).
R. Shankar, Rev. Mod. Phys. 66, 129 (1994).

C. M. Varma and A. Zawadowski, Phys. Rev. B 32,7399 (1985).
K. Penc and J. Solyom, Phys. Rev. B 41,704 (1990).

. Solyom, J. Low Temp. Phys. 12, 547 (1973).

T. Giamarchi, Quantum Physics in One Dimension (DPMC, University of
Geneva, 2003).

39.

40.
41.
42.
43.
44,
45.
46.
47.

48.

49.
50.
51.
92
B3,
54,
55,
56.
57.
58.

ik
60.

61.
62.
63.

References

T.Zhang, M. Y. Sun, Z. Wang, W. Shi and P. Sheng, Phys. Rev. B 84, 245449
(2011).

J. Gonzalez and E. Perfetto, Phys. Rev. B72, 205406 (2006).

D. Carpentier and E. Orignac, Phys. Rev. B74, 085409 (2006).

V. L. Ginzburg and L. D. Landau, J. Exp. Theor. Phys. 20, 1064 (1950).
W. A. Little, Phys. Rev. 156, 396 (1967).

J. S. Langer and V. Ambegaokar, Phys. Rev.164, 498 (1967).

D. E. McCumber and B. I. Halperin, Phys. Rev. B 1, 1054 (1970).

T. Qian, W. Q. Ren and P. Sheng, Phys. Rev.B72,014512 (2005).

M. Y. Sun, Z. L. Hou, T. Zhang, Z. Wang, W. Shi, R. Lortz and P. Sheng,
submitted.

N. Metropolis, A. W. Rosenbluth, A. H. Teller and E. Teller, . Chem. Phys.
21,1087 (1953).

B. Stoeckly and D. ]. Scalapino, Phys. Rev. B11, 205 (1975).

D.J. Scalapino, Y. Imry and P. Pincus, Phys. Rev. B 11, 2042 (1975).
C.Y.Qiu, T. Z. Qian and P. Sheng, Phys. Rev. B75, 024504 (2007).

K. Kobayashi and D. Stroud, Physica C 471,270 (2011).

H.J. Schulz, C. Bourbonnais, Phys. Rev. B 27,5856 (1983).

L. P. Gorkov, 1. E. Dzyaloshinskii, Zh. Eksp. Teor. Fiz. 67,397 (1974).
R. A. Klemm, H. Gutfreund, Phys. Rev. B 14, 1086 (1976).

P. A. Lee, T. M. Rice, R. A. Klemm, Phys. Rev. B 15, 2984 (1977).

K. B. Efetov, A. I. Larkin, Zh. Eksp. Teor. Fiz. 66, 2219 (1974).

M. Tinkham, Introduction to Superconductivity, 2nd ed. (MGH,
New York, NY, 1996).

D.]. Scalapino, M. Sears and R. A. Ferrell, Phys. Rev. B 6, 3409 (1972).

K. Y. Arutyunov, D. S. Golubev and A. D. Zaikin, Phys. Rep. 464, 1
(2008).

U. Wolff, Phys. Rev. Lett. 62,361 (1989).
V. L. Berezinskii, Sov. Phys. JETP 32, 493 (1971); 34, 610 (1972).
J. M. Kosterlitz and D. ]. Thouless, J. Phys.C6, 1181 (1973).

35





