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Antidot graphene denotes a monolayer of graphene structured by a periodic array of holes. Its energy
dispersion is known to display a gap at the Dirac point. However, since the degeneracy between the A and B
sites is preserved, antidot graphene cannot be described by the 2D massive Dirac equation, which is suitable
for systems with an inherent A=B asymmetry. From inversion and time-reversal-symmetry considerations,
antidot graphene should therefore have zeroBerry curvature. In thiswork,we derive the effectiveHamiltonian
of antidot graphene from its tight-binding wave functions. The resulting Hamiltonian is a 4 × 4matrix with a
nonzero intervalley scattering term, which is responsible for the gap at the Dirac point. Furthermore, nonzero
Berry curvature is obtained from the effective Hamiltonian, owing to the double degeneracy of the
eigenfunctions. The topological manifestation is shown to be robust against randomness perturbations.
Since theBerry curvature is expected to induce a transverse conductance, we have experimentally verified this
feature through nonlocal transport measurements, by fabricating three antidot graphene samples with a
triangular array of holes, a fixed periodicity of 150 nm, and hole diameters of 100, 80, and 60 nm. All three
samples display topological nonlocal conductance, with excellent agreement with the theory predictions.
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I. INTRODUCTION

The advent of graphene [1–3] has attractedmuch attention
because of its novel electronic properties, such as tunable
carrier density [1–4], linear dispersion [2], valleytronics [5],
etc. The additional valley degree of freedom has been
experimentally investigated by breaking the sublattice
symmetry, such as placing graphene on top of hexagonal
boron nitride (h-BN) substrate [6] or gating bilayer graphene
[7,8]. Sublattice asymmetry can be modeled by adding a
mass term mσz to the Weyl Hamiltonian ℏνFσ · k, where ℏ
denotes the Planck’s constant, σ the 2 × 2 Pauli matrices, νF
the Fermi velocity, and k the electron wave vector.
This mass term opens a gap with magnitude 2m at the
Dirac point and induces a nonzero Berry curvature [5,9,10].
Recently, the nonzero Berry curvature was experimentally
investigated by nonlocal measurements of electrical current
[6–8,10–12] precisely on a system that can be described by
the massive 2D Dirac Hamiltonian. The nonlocal measure-
ment technique was originally proposed for measuring the
spin Hall effect [11] and has been applied for studying the
valleytronics in 2D system [6–8,12–14] like graphene.

Creating sublattice asymmetry is not the only way to
open a gap in graphene. To open a gap, one can fabricate a
narrow graphene nanoribbon [15–18] or make a periodic
array of holes, known as antidot graphene [19,20]. The
band structure [19–26] and transport properties [27–34] of
antidot graphene were extensively investigated; however,
the topological properties, such as Berry curvature [35], are
unknown. One might expect its Berry curvature to be zero
since creating holes does not break either sublattice
symmetry (inversion symmetry) or time-reversal symmetry.
However, in this work, we show both theoretically and
experimentally that for antidot graphene, the Berry curva-
ture can be nonzero while preserving inversion and time-
reversal symmetries. This is due to the doubly degenerate
eigenfunctions of antidot graphene.
To clarify the topological properties of antidot gra-

phene, the first step is to obtain its effective Hamiltonian.
Usually, the effective Hamiltonian is ℏνFσ · kþmσz
[36–39], which gives the hyperbolic dispersion relation
that can fit the band structure around the Dirac point
well. Such a Hamiltonian is a 2 × 2 matrix, indicating
that there is no valley mixing. The mσz term models the
potential difference between the two sublattice sites
[39,40]. Since there is no such sublattice asymmetry in
antidot graphene, it follows that the massive 2D Dirac
Hamiltonian ℏνFσ · kþmσz cannot be the effective
Hamiltonian for antidot graphene. In the present work,
we exploited the tight-binding wave functions and band
structures to derive the effective Hamiltonian for antidot
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graphene in the vicinity of the Dirac point. The new
Hamiltonian turns out to be a 4 × 4 matrix that preserves
the sublattice symmetry as expected. A similar m term,
responsible for opening a gap, appears, which describes
the intervalley scattering strength. Since the eigenfunc-
tions are doubly degenerate, nonzero Berry curvature can
exist in this system while preserving both time-reversal
and inversion symmetries.
A nonzero Berry curvature is expected to induce a

transverse conductance [5,9,41,42]. We have experimen-
tally verified the existence of this nonzero Berry curvature
by measuring the nonlocal transverse current [6,11] and
compared the results with the theory prediction. Excellent
agreement is found.
A very important point about the opening of a gap

in the dispersion relation and the accompanying topo-
logical properties of antidot graphene is that they are
robust against randomness perturbations. This accounts
for their experimental observations in plasma-etched
samples.
In what follows, derivation of the effective antidot

graphene Hamiltonian is described in Sec. II, followed
by the evaluation of the Berry curvature in Sec. III.
The measurements of nonlocal transverse electrical resis-
tance arising from the Berry curvature, attendant with the
simulation of the theory prediction, are presented in
Sec. IV. Comparison between the measured data on three
fabricated samples and the theory predictions is given in
Sec. V. Section VI concludes with a brief summary of
results.

II. EFFECTIVE HAMILTONIAN
OF ANTIDOT GRAPHENE

A. Tight-binding model

Consider a triangular lattice of holes (antidots) in
monolayer graphene with lattice constant L as shown in
Fig. 1(a) . The unit cell is hexagonal in shape with a hole at
its center. To model antidot graphene, we define a dimen-
sionless geometrical factor γ ¼ d=L, where d denotes the
hole diameter. Therefore, (L, γ) can be used to describe the
antidot unit cell. The band structure and wave function can
be calculated by using the tight-binding model, where the
Hamiltonian is given by

H ¼ −tX
i;δ

ða†i biþδ þ H:c:Þ: ð1Þ

Here a†i denotes the creation operator on the ith A sublattice
site, biþδ denotes the destruction operator on the iþ δth B
sublattice site, and δ includes the three nearest neighbors to
site i. In Eq. (1), the summation over i goes over the whole
unit cell. We apply the Bloch boundary condition at the
edge of the hexagons. The band structure and wave
function of the antidot graphene system can be obtained

by directly diagonalizing the Hamiltonian represented by
Eq. (1). The obtained band structure is shown by the black
circles in Fig. 1(c) for various γ with a fixed periodicity
L ¼ 13 nm. The band structure is plotted as a function of
the Bloch wave vector k, which ranges from K to Γ, then to
M, and finally back to K. Here, the K, Γ, and M points are
for the hole reciprocal lattices. As the antidots are arranged
in the triangular lattice structure, its first Brillouin zone is
hexagonal in shape, the same as the first Brillouin zone of
the pristine graphene lattice. The Dirac point, i.e., the K
point of the pristine graphene’s reciprocal lattice, folds onto
the Γ point of the hole reciprocal lattice. We can see that a
gap opens at the Dirac point. Both the conduction and
valence bands are doubly degenerate because of the
existence of K and K0 valleys. We have chosen to ignore
some flat bands [43] since they correspond to localized
states and do not contribute to the transport properties.
At the same time, we can also obtain the wave functions
ψ ¼ ðφA;φBÞT , which can be analyzed in the k domain by
carrying out the Fourier transform.

B. Effective Hamiltonian

Since we wish to focus on the low-energy region, the
Fourier coefficients for both φA and φB are largely
determined by two components, i.e., around the K and
K0. In other words,

φA ≈ aKðkÞeiðKþkÞ·r þ aK0 ðkÞeiðK0þkÞ·r; ð2aÞ

and similarly for the wave function on the B site,

φB ≈ bKðkÞeiðKþkÞ·r þ bK0 ðkÞeiðK0þkÞ·r: ð2bÞ

Therefore, the wave function can be represented by a
four-dimensional vector ðaK; aK0 ; bK; bK0 ÞT, with bases
eiðKþkÞ·r and eiðK0þkÞ·r for both A and B atoms, respectively.
It follows that if we define

Ψ ¼ ðψ1 ψ2 ψ3 ψ4 Þ ¼

0
BBBBB@

a1K a2K a3K a4K
a1K0 a2K0 a3K0 a4K0

b1K b2K b3K b4K
b1K0 b2K0 b3K0 b4K0

1
CCCCCA
;

ð3Þ

where i ¼ 1 or 2 denotes the two conduction-band wave
functions, and i ¼ 3 or 4 denotes the two valence-band
wave functions; then the effective Hamiltonian H should
satisfy the following equation:

HΨ ¼ Ψ
�
EþI 0

0 E−I

�
; ð4Þ
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where Eþ and E− denote the (degenerate) eigenvalues
of the corresponding eigenfunctions and I is the
2 × 2 identity matrix. The effective Hamiltonian can be
obtained by

H ¼ Ψ
�
EþI 0

0 E−I

�
Ψ†: ð5Þ

With the eigenvalues and eigenfunctions obtained
from the tight-binding calculation, we have numerically
evaluated the effective Hamiltonian, which is in the
form of a 4 × 4 matrix with only eight nonzero matrix
elements:

H ¼

0
BBB@

0 H12 0 H14

H21 0 H23 0

0 H32 0 H34

H41 0 H43 0

1
CCCA: ð6Þ

We have found that jH12j ¼ jH21j ¼ jH34j ¼ jH43j and
jH14j ¼ jH23j ¼ jH32j ¼ jH41j. In Fig. 1(b), we present the
results of the matrix element as a function of k around the Γ
point of the antidot lattice. It is seen that jH12j is linear in k,
while jH14j is almost a constant. The details of H12’s k
dependence (i.e., as a function of kx and ky) can be obtained
by setting k along the x and y directions. It is found that the
Hamiltonian can be expressed as

H ¼

0
BBB@

0 ℏvðkx − ikyÞ 0 m

ℏvðkx þ ikyÞ 0 m 0

0 m 0 ℏvð−kx − ikyÞ
m 0 ℏvð−kx þ ikyÞ 0

1
CCCA: ð7Þ

Therefore, the effective Hamiltonian consists of two 2 ×
2 matrices, ℏvσ · p and −ℏvσ� · p, along the diagonal and
four antidiagonal m terms [44]. The two diagonal matrices
are seen to originate from the pristine graphene
Hamiltonian, which can be easily verified by doing
Taylor expansion around K and K0 points of pristine

graphene. Note that the velocity v here is not necessarily
the same as vF (c=300) in pristine graphene. In antidot
graphene, it is a function of the geometric factor γ. The four
antidiagonal m terms couple the K and K0 valleys; hence,
they imply intervalley scatterings, which can arise from the
atomically sharp edges of the antidots. We find the

FIG. 1. (a) Antidot graphene in the tight-binding model. Red and black dots represent the carbon atoms A and B. Here, L denotes the
periodicity of the antidot lattice, and d denotes the diameter of the hole. (b) The matrix element magnitude plotted as a function of Bloch
wave vector k. The term jH12j (black solid squares) is found to vary linearly with k ¼ jkj, while the intervalley scattering term jH14j (red
solid circles) is almost a constant. (c) Band structures for various γ with a fixed periodicity L ¼ 13 nm. The black circles represent the
tight-binding results, and red curves stand for the dispersion relation given by the effective Hamiltonian. The Bloch wave vector k ranges
from K to Γ, then to M, and finally back to K [here, K, Γ, and M points are for the antidot (hole) reciprocal lattice].
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intervalley scattering strength to have a very weak k2

dependence, which is ignored here since we focus only
on the low-energy regime. Hence, the intervalley
scattering strength is characterized by a constant m.
The effective Hamiltonian yields a dispersion relation
E ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏ2v2k2 þm2

p
¼ �ε, where both the conduction

and valence bands are doubly degenerate. This dispersion
relation, which is shown as red curves in Fig. 1(c), can fit
the numerically obtained band structures very well, thereby
confirming this effective Hamiltonian to be relatively
accurate for modeling the antidot graphene system in the
vicinity of the Γ point (of the antidot lattice).
The values of the velocity, v and m, depend on the

geometry of antidot graphene. The values evaluated from
the tight-binding calculations are summarized in Fig. 2.
For a fixed periodicity L, the effective velocity v (black
solid squares) decreases with increasing γ, while the gap
(2m) increases with increasing γ. A decrease of the Fermi
velocity associated with the gap opening can also be
found in Ref. [45]. It can be plausibly understood as due
to the narrowing of the “neck” region of the passage
channels with increasing γ. We can linearly fit m and v
as a function of γ, which are shown as dashed curves in
Fig. 2:

�
v ¼ ð1 − 0.67γÞvF
m ¼ 0.056γt · 13 nm

L

: ð8Þ

The termm scales with the inverse of the periodicity, i.e.,
varying as 1=L, which is in accordance with previous
numerical results [19,46]. For our experimental samples,
we have a fixed L ¼ 150 nm and γ ¼ 2=3 (sample A),
8=15 (sample B), and 2=5 (sample C). The corresponding
gap (2m) is around 20 meV, and the effective velocity v is
about 0.55vF; hence, m=ℏv ¼ 0.03 nm−1 for sample A.
Values of m and v for samples B and C can be similarly
deduced from Eq. (8).

C. Uniqueness of the effective Hamiltonian

Since the bands are doubly degenerate, the two wave
functions ðψ1 ψ2 Þ at the same energy can form a linear
combination ðψ 0

1 ψ 0
2 Þ, which would be an equally valid

choice. The question is whether different choices of
the wave functions can result in a different effective
Hamiltonian. To prove the uniqueness of the effective
Hamiltonian, we recognize the fact that the wave functions
must transform into each other via the unitary matrix U�
for both the conduction and valence bands. In other words,

� ðψ 0
1 ψ 0

2 Þ ¼ ðψ1 ψ2 ÞUþ
ðψ 0

3 ψ 0
4Þ ¼ ðψ3 ψ4 ÞU−

: ð9Þ

Let H0 be the alternative effective Hamiltonian and let
Ψ0 ¼ ðψ 0

1 ψ 0
2 ψ 0

3 ψ 0
4 Þ. Based on Eq. (5), we have

H0 ¼ Ψ0
�
EþI 0

0 E−I

�
Ψ0†: ð10Þ

Here, Ψ0 ¼ Ψ
�Uþ 0

0 U−

�
. We can simplify H0 as

H0 ¼ Ψ
�
Uþ 0

0 U−

��
EþI 0

0 E−I

��
Uþ 0

0 U−

�†
Ψ†

¼ Ψ
�
EþI 0

0 E−I

��
Uþ 0

0 U−

��
Uþ 0

0 U−

�†
Ψ†

¼ H: ð11Þ

Therefore, we can conclude that the effective
Hamiltonian obtained above is unique; i.e., it would remain
the same regardless of the choice of wave functions.

III. NONZERO BERRY CURVATURE

A. Symmetry analysis

The nonzero term m mixes the K and K0 valleys whose
Berry curvatures have opposite signs. Hence, one may
wonder whether there is net nonzero Berry curvature with
this valley mixing. It is noted that both time-reversal and
inversion symmetries are preserved in this system; how-
ever, that does not guarantee a zero Berry curvature
[9,41,42,47,48]. We start the symmetry analysis with the
eigenvectors of the conduction band, obtained directly from
the effective Hamiltonian, Eq. (7),

8<
:
ψ1ðkÞ¼

�
ke−iθffiffiffiffiffiffiffi
εþm

p
ffiffiffiffiffiffiffiffiffiffiffi
εþm

p ffiffiffiffiffiffiffiffiffiffiffi
εþm

p − ke−iθffiffiffiffiffiffiffi
εþm

p
�
T
=2

ffiffiffi
ε

p

ψ2ðkÞ¼
�
− ke−iθffiffiffiffiffiffiffi

ε−mp − ffiffiffiffiffiffiffiffiffiffiffi
ε−m

p ffiffiffiffiffiffiffiffiffiffiffi
ε−m

p − ke−iθffiffiffiffiffiffiffi
ε−mp

�
T
=2

ffiffiffi
ε

p ;

ð12Þ

where θ ¼ arctanðky=kxÞ denotes the direction of the
wave vector k. Since there is double degeneracy for the

FIG. 2. Effective velocity v and intervalley scattering strength
m are plotted as a function of the geometric factor γ. The
calculated results on velocity v (in units of vF) are shown as black
solid squares, and those form (in units of t) are shown as red open
circles. These parameters are obtained for a fixed periodicity
L ¼ 13 nm. The dashed curves are linear fittings.
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conduction band, any linear combination of ψ1 and ψ2 is
also an eigenwavefunction of the effective Hamiltonian,
Eq. (7). In Eq. (12), the eigenwavefunctions are chosen
so that the Berry curvature matrix is diagonalized, as
shown in Sec. III B. Under time-reversal transformation
(see Appendix A),

Tψ2ðkÞ ¼ ψ2ð−kÞ� ¼ eiθψ1ðkÞ; ð13Þ

from which we conclude that the Berry curvature must
obey (see Appendix B)

Ω2ð−kÞ ¼ −Ω1ðkÞ; ð14Þ

where the subscript denotes the respective wave function
[Eq. (12)] from which the Berry curvature is evaluated.
Similarly, for the inversion symmetry, we have Ω1ð−kÞ ¼
Ω1ðkÞ and Ω2ð−kÞ ¼ Ω2ðkÞ. Combining both the time-
reversal and inversion symmetries, we find that the sym-
metry conditions only require

Ω1ðkÞ þ Ω2ðkÞ ¼ 0. ð15Þ

Hence, the Berry curvature for each band is not neces-
sarily zero. Below, we can see that, for our degenerate
system, the Berry curvature is indeed nonzero.
If we focus on the region near the Γ point (of the hole

lattices), i.e., jkj ∼ 0, the eigenvectors from Eq. (12) can be
simplified as

�
ψ1 ≈ ð 0 1 1 0 ÞT= ffiffiffi

2
p ¼ jK0iA þ jKiB

ψ2 ≈ ð−1 0 0 −1 ÞT= ffiffiffi
2

p ¼ jKiA þ jK0iB
: ð16Þ

Equation (16) clearly shows the mixing behavior
between the K and K0 valleys. For instance, for ψ1, the
wave function of atom A comes from the K0 valley, while
for atom B, it comes from the K valley. However, if we
assume that there is a long-range potential V (such as the
Coulomb potential of the charged impurity), the scattering
matrix element should be

hψ1jVjψ2i ¼ ðhKjVjK0iÞA þ ðhK0jVjKiÞB ∼ 0. ð17Þ

In other words, the long-range disorders cannot scatter
ψ1 to ψ2. Note that the intervalley scattering is already
taken into account in the Hamiltonian and its relevant wave
functions.

B. Calculation of the Berry curvature

Since the 4 × 4 matrix describes a doubly degenerate
system, the Berry curvature for either the conduction or
valence band is essentially a 2 × 2 matrix, which is defined
as [9,41,42,47–49]

Ω ¼ ∂kxAy − ∂kyAx − i½Ax; Ay�: ð18Þ

Here, the Berry connection Aα is a matrix, whose matrix
elements are defined as ðAαÞmn ¼ ihumj∂kαjuni, where
umðnÞ denotes the periodic part of the wave function. We
can see that the first two terms originate from the non-
degenerate case, while the last term is the correction term
due to degeneracy [9,42,47–49]. If there is no degeneracy,
Aα is a number instead of a matrix, making ½Ax; Ay� zero.
The calculation of the Berry connection requires

information from the periodic parts of the wave function
denoted by umðnÞ. We can derive the expression for u
based on Eqs. (2a) and (2b), i.e., u ≈ ð aKðkÞeiK·r þ
aK0 ðkÞeiK0·r bKðkÞeiK·r þ bK0ðkÞeiK0·rÞT . Since the integra-
tion of exp½iðK − K0Þ · r� over the unit cell is zero,
we obtain ðAαÞmn ¼ ihumj∂kαjuni ¼ ihψmj∂kαjψni, where
ψmðnÞ are the eigenvectors of the effective Hamiltonian
[Eq. (12)]. Hence, by substituting Eq. (12) into Eq. (18), we
find that the Berry curvature is given by

Ω¼

0
BB@

m=ℏv

2½ðm=ℏvÞ2þk2�3=2 0

0 − m=ℏv

2½ðm=ℏvÞ2þk2�3=2

1
CCA: ð19Þ

It is seen that the Berry curvature matrix is nonzero only
for the diagonal terms. It is also noted that the matrix
element Ω11 is the same as the Berry curvature of the
massive Dirac Hamiltonian [5], where m characterizes
the local potential difference between the carbon atoms
A and B. The Berry curvature is determined solely by one
parameter, i.e., m=ℏv. In Fig. 3, we summarize the Berry
curvature for different geometric parameters γ. It peaks at
k ¼ 0 and decays as k deviates from 0. The Berry curvature
can also be obtained through tight-binding calculations
[48]. We found that near the Γ point of the antidot lattice,

FIG. 3. Berry curvature matrix element Ω11 calculated as a
function of wave vector k for various values of the geometric
factor γ [based on Eq. (19)]. The parameterm=ℏv can be obtained
from the tight-binding calculations, where the periodicity L is
fixed at 13 nm. Here a denotes the carbon-carbon atomic
separation (¼ 1.42Å).
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Eq. (19) agrees well with the Berry curvature obtained
through tight-binding calculations. Away from the Γ point,
there can be differences between the two. It is also to be
noted that by integrating the Berry curvature calculated by
the tight-binding model over the first Brillouin zone, we
obtain a Berry phase of 2π. Therefore, the effective
Hamiltonian, Eq. (7), and the Berry curvature, Eq. (19),
can well describe the antidot graphene system only at the
low-Fermi-energy region.

C. Robustness against randomness perturbations

From the derived effective Hamiltonian and the related
analysis, it should be clear that the gap opening in the antidot
graphene is due to the folding of theK andK0 points [26] of
the reciprocal carbon lattice, onto the Γ point of the hole
reciprocal lattice. Specifically, K and K0 (of carbon lattice)
are located at (�4π=ð3 ffiffiffi

3
p

aÞ; 0), where a is the carbon-
carbon atomic separation. If the periodicity of holes is given
by 3Na, where N is an integer, then the primitive vector of
the reciprocal hole lattice is 4π=ð3 ffiffiffi

3
p

NaÞ · ð1=2;� ffiffiffi
3

p
=2Þ.

We can see that K and K0 can be folded onto the Γ point.
In the above context of a perfect antidot lattice, it was

pointed out in Ref. [22] that if the hole lattice is rotated by
π=6, which is denoted the “rotated triangular lattice,” and,
in addition, if the periodicity of the hole lattice is

ffiffiffi
3

p
Na so

that the primitive vector of the reciprocal hole lattice is
4π=ð3NaÞ · ð ffiffiffi

3
p

=2;�1=2Þ, with N ≠ 3n (n being an inte-
ger), then K and K0 valleys are not coupled; therefore, there
can be no band gap. These conclusions were numerically
verified in Ref. [22], where the results were explained by
using the Clar sextet theory. Below, we show that such cases
are unstable against small-scale randomness perturbations
on the edge of the holes. Such randomnesswould be difficult
to avoid in the oxygen etching of the antidot pattern. It is
demonstrated that once there is atomic-scale randomness on
the edges of the holes, then the full band gap is restored; the
magnitude of the band gap in such cases is fairly accurately
predicted by Eq. (8) from the geometric parameter γ.
The conclusion from such randomness perturbation

analysis, shown below, is that the results obtain from
Sec. II are generally applicable to the experimentally
fabricated antidot samples.
To determine whether the antidot sample is gapped or

gapless, we calculate its conductance as a function of Fermi
energy. If there is a zero conductance plateau, then there is a
band gap; otherwise, it is a gapless system. The conductance
of the antidot graphene system can be well simulated by the
open-source package KWANT [50], which can calculate the
electronic transport property based on the tight-binding
models. We have carried out simulations for the three
different cases as follows.
(a) Lattice A—This is the “triangular lattice structure,”

which is what we have focused on in Sec. II. In this
case, K and K0 can always be folded onto the Γ point

of the hole reciprocal lattice; i.e., a gap is expected.
Here, the periodicity is fixed at L ¼ 24a, with γ ¼ 0.2.

(b) Lattice B—This is the “rotated triangular lattice
structure” [22], which is predicted to have no gap.
The periodicity in this case is fixed at L ¼ 14

ffiffiffi
3

p
a

with the same γ ¼ 0.2 as in (a). The value of the
periodicity, L ¼ 14

ffiffiffi
3

p
að≈24.2aÞ, is chosen so that K

and K0 cannot be folded onto the same Γ point. A
gapless system is expected; i.e., the conductance
should exhibit no zero-conductance region.

(c) Lattice C—This is the same as Lattice B but modified
with atomic-scale randomness at the edges of the holes.
We assume that the hole radius is angular dependent;
i.e., rnðθÞ ¼ r · (1þ fnðθÞ), where n refers to the nth
hole. The term fnðθÞ is defined as fnðθÞ≡P

m anm cosðmθ þ φnmÞ, where the summation of m
goes from 1 to 5. In the simulations, we have randomly
chosen anm ∈ ð0; 0.06Þ, φnm ∈ ð0; 2πÞ for each hole.

The whole system for transport simulations is shown in
Fig. 4(a). We can see that there are 10 holes in the width

FIG. 4. (a) Schematic illustration of an antidot graphene lattice
(Lattice B) for calculating the conductance as a function of Fermi
energy. The system contains 20 holes in the x direction and 10
holes in the y direction. The inset is a zoom-in image of the antidot
latticewith a hole. (b) Calculated conductance plotted as a function
of Fermi energy. The black curve represents the conductance of
Lattice A, where the zero-conductance plateau indicates the band
gap of this system. For Lattice B, the red curve exhibits no zero-
conductance regions, implying that there is no band gap. Lattice C
differs fromLattice B only at the edges of the holes, wherewe have
added atomic-scale randomness. Ten different randomness pro-
files were calculated, and the blue curve represents the ensemble-
averaged conductance. It is seen that a band gap reappears, and the
magnitude of this band gap is the same as that of Lattice A,
implying that the transport gap in Lattice C has the same origin as
that in Lattice A, i.e., from K to K0 intervalley scatterings.
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direction and 20 holes in the length direction. The inset
image is a zoom-in for a hole in Lattice B, i.e., “the rotated
triangular lattice structure.” The conductances as a function
of Fermi energy of the three cases are summarized in
Fig. 4(b). For Lattice A, the conductance is plotted as the
black curve, where a zero conductance plateau is observed
as expected. For Lattice B, the conductance does not drop
to zero at zero Fermi energy, shown by the red curve. This
clearly implies that there is no band gap for Lattice B, as
predicted. For the third case, we introduced atomic-scale
randomness into Lattice B. In this case, we have calculated
10 different randomness profiles, and the blue curve in
Fig. 4(b) is the averaged conductance. It is clearly seen that
with randomness, the full band gap reappears. The magni-
tude of the band gap in the third case is exactly the same as
that of Lattice A, around 0.08t. With the appropriate
parameter values of L ¼ 24a and γ ¼ 0.2, Eq. (8) predicts
a band gap around 0.084t, which is consistent with the
conductance simulation results.
There is a simple explanation for the reappearance of the

gap when the atomic-scale perturbations were added. In
this case, small-scale randomness in real space implies
scatterers with large momentum transfers in the reciprocal
space, i.e., short-range scatterers. That means intervalley
scatterings are the inevitable consequences of introducing
atomic-scale randomness, and the opening of the gap is the
result. There is also a simple heuristic explanation for why
the obtained gap size depends on the geometric parameter
γ=L ¼ d=L2 as given by Eq. (8). The K to K0 scattering
strength is given by hKjVsrjK0i, where Vsr denotes the
effective short-range disorder potential. Here, Vsr must be
proportional to the number of sites at the edges of the holes,
which is proportional to the circumference of the hole;
hence, Vsr ∼ nd, where n is the number of holes. The wave
amplitudes of jKi and jK0i must each be normalized in the
sample area S, which means jKi and jK0i must each be
proportional to 1=

ffiffiffi
S

p
. Combining these two facts, we get

hKjVsrjK0i ∝ nd=S ∼ d=L2, as S ∝ nL2. However, such an
argument cannot yield the accurate value of the gap, which
must be determined numerically.
From this perspective, the existence of a gap in antidot

graphene is almost inevitable for the experimentally fab-
ricated antidot samples by using plasma etching. The no-
gap state is very precarious since its existence requires the
very precise periodicity, with no atomic-scale randomness
allowed.

D. Energy splitting of the eigenfunctions

Accompanying the introduction of edge randomness
into the antidot graphene is the splitting of the originally
doubly degenerate eigenfunctions as in the case of Lattice
A above. Below, we first quantify such splittings and
then show in the subsequent section that the topological
manifestation of antidot graphene is not affected by such
splittings.

We have calculated the band structure of antidot gra-
phene with randomness by using the supercell approach in
which each supercell comprised several unit cells with
randomness introduced at the hole edges. The Bloch
boundary condition was imposed at the boundary of
supercells. The periodicity of the unit cell is set to
19

ffiffiffi
3

p
a so that there is no K to K0 coupling in the perfect

antidot lattice case. For the supercell, we consider nine
holes as shown in Fig. 5. The periodicity of the supercell is
19

ffiffiffi
3

p
a × 3. For the band-structure data presented in Fig. 5,

we have removed the flat bands. If fðθÞ ¼ 0, i.e., no
randomness, we can see that there is no band gap, as shown
in Fig. 5(a). For Fig. 5(b), we consider the same case as in
Fig. 5(a) but with atomic-scale randomness. It is noted that
there is a tiny energy splitting of the originally doubly
degenerate eigenfunctions, accompanying the appearance
of the band gap. Hence, the conduction (valence) bands
become quasidegenerate. In Fig. 5(b), the size of the gap is
around 0.05t, which is close to the prediction by Eq. (8),
which gives a gap around 0.052t.
In the presence of the randomness perturbation, the

effective Hamiltonian can be numerically evaluated to be

FIG. 5. Supercells and the simulated band structures. Each
supercell comprises nine unit cells, whose hole periodicity is
given by 19

ffiffiffi
3

p
a. In diagram (a), we have an antidot lattice

without any randomness; i.e., periodicity is accurate down to the
atomic scale. We can see that there is no band gap, as predicted.
(b) Antidot lattice with randomness. For this case, the band gap
reappears, accompanied by a small energy splitting for both the
conduction and valence bands. In other words, the states in the
conduction and valence bands are quasidegenerate.
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�
ℏνσ · ðkþ cÞ mσx

mσx −ℏνσ � ·ðk − cÞ

�
; ð20Þ

where c ≈ c0 þ c1kþ c2k2 þOðk3Þ. This nonzero
c turns out to be responsible for the energy splitting of
the eigenfunctions in the conduction (valence) band.
In fact, one can easily evaluate the dispersion relation
from the above effective Hamiltonian to give EðkÞ ¼
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏ2ν2k2 þ m2 þ ℏ2ν2jcj2 � 2ℏν

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2jcj2 þ ðℏνk · cÞ2

pq
,

which indicates an energy splitting in the eigenfunctions of
both the conduction and valence bands. This splitting turns
out to be on the order of 0.1m. Hence, both the conduction
and valence bands can be regarded as quasidegenerate.
One may wonder what effect this splitting might have

on the topological characteristics of antidot graphene.
Below, we show that the topological manifestation is not
changed from the case when the eigenfunctions are doubly
degenerate.

E. Effect of the Berry curvature under
an applied electric field

Berry curvature is well known to affect the electronic
transport in the presence of an electric field. This is a
physical manifestation of Berry curvature. In the present
case, the Berry curvature Ω is a 2 × 2 matrix since
the conduction and valence bands are (quasi-) double
degenerate. Let ðφ1;φ2Þ denote the two quasidegenerate
states; an arbitrary initial state ψ is expressible as a linear
superposition of ðφ1;φ2Þ, i.e., ψ ¼ η1φ1 þ η2φ2, where η1;2
are the coefficients satisfying jη1j2 þ jη2j2 ¼ 1. It would be
convenient to express ψ in a vector form η ¼ ð η1 η2 ÞT .
In the presence of an applied electric field, the electronic
velocity transverse to the electric field direction is given
by [47]

vx ¼ ðeEy=ℏÞ · η†Ω η; ð21aÞ

where Ey is the external electric field. Based on the tight-
binding model [48], we have numerically calculated the Ω
matrix by using the supercell with randomness. It turns out
that the off-diagonal terms of Ω are nonzero. For simplicity
in evaluating the effect of the Berry curvature under an
electric field, we choose to diagonalize Ω by changing to a
new basis. If the diagonalization matrix is U, we have

Ω0 ¼ UΩU†, where Ω0 ¼
�Ω11 0

0 Ω22

�
. It follows that

Eq. (21a) can be simplified as

vx ¼ ðeEy=ℏÞ · ðη0Þ†Ω0η0; ð21bÞ

where η0 ≡Uη ¼ ð η01 η02 ÞT and jη01j2 þ jη02j2 ¼ 1. The
values of Ω11 and Ω22 in the first Brillouin zone are
summarized in the inset of Fig. 6. We can see that Ω11

and Ω22 have opposite signs, i.e., Ω22 ¼ −Ω11, and their

values are very close to those shown in Eq. (19). From
Eq. (21b), we have vx ¼ ðeEy=ℏÞ · ðjη01j2 − jη02j2ÞΩ11. This
result means that when jη01j2 > 1=2, the electronic wave
tends to go left as Ey is negative (applied in the minus y
direction), as illustrated by the red wave in Fig. 6. If
we focus on the states that flow leftwards, the average
transverse velocity is given by

v̄x ¼
eEy

ℏ
·

P
jη0

1
j2>1=2 ðη0Þ†Ω0η0P
jη0

1
j2>1=2 ðη0Þ†η0

; ð22Þ

where the denominator is the normalization factor. The
summation can be carried out by integration. By assuming
that η01¼jη01jexpðiβ1Þ and η02 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − jη01j2

p
expðiβ2Þ, where

1=
ffiffiffi
2

p
≤ jη01j<1, 0 ≤ β1;2 < 2π, it follows that

P
jη0

1
j2>1=2 ¼R

1
1=

ffiffi
2

p jη01j · djη01j
R
2π
0 dβ1

R
2π
0 dβ2. Equation (22) can be

easily evaluated, and the average velocity turns out to be
v̄x ¼ ðeEy=ℏÞ · ðΩ11=2Þ. For the range jη01j2 < 1=2, the
average transverse velocity is v̄x ¼ −ðeEy=ℏÞ · ðΩ11=2Þ.
Hence, the effective Berry curvature for inducing the
transverse current is half of the diagonal matrix element,
i.e., �Ω11=2.
In the above, it can be seen that independent of whether

the states are doubly degenerate or quasidegenerate, the
Berry curvature in antidot graphene has the same physical
manifestation. The atomic-scale randomness at the edge of
the holes, in fact, makes the topological effect more robust,
i.e., insensitive to the relative rotation of the hole lattice vs
the underlying graphene lattice, as well as to the precise

FIG. 6. Cartoon image illustrating different wave states’ evo-
lution under an external electric field under the influence of the
Berry curvature. The value of the Berry curvature is shown in the
color scale, plotted in the first Brillouin zone of the antidot
graphene. The bottom left (right) shows the value of the diagonal
matrix term Ω11 (Ω22), with the peak value at the Γ point of the
antidot reciprocal lattice. The red wave represents the case of
jη01j2 > 1=2; it travels to the left as vx < 0. The blue wave
represents the case of jη01j2 < 1=2; it travels to the right.
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values of the hole lattice constant. This predicted “topo-
logical Hall effect” is interesting, and we show experi-
mentally, in the following section, by fabricating and
measuring three samples with different geometric param-
eter values, that the topological current indeed exists in
antidot graphene.

IV. MEASUREMENT OF NONLOCAL
RESISTANCE IN ANTIDOT GRAPHENE

A. Sample and experimental setup

To experimentally check the nonzero Berry curvature,
we have fabricated the antidot graphene samples and
studied their electronic transport properties by exploiting
the nonlocal measurements. The single-layer graphene was
obtained by mechanical exfoliation and transferred onto a
silicon wafer with a SiO2 thickness of 285 nm. The periodic
antidots are patterned by e-beam lithography, followed by
oxygen plasma etching. The whole sample was etched into
standard Hall bar geometry, shown as the cartoon image in
Figs. 7(a) and 7(b), where the blue region is the antidot
graphene, while the grey parts denote the electrodes
(10 nmTi=60 nmAu). The geometric parameters are set
as d1 ¼ 2 μm, d2 ¼ 4 μm, and W ¼ 2 μm. For the antidot
lattice, we have fabricated three different samples. All
samples have periodicity fixed at L ¼ 150 nm, while the

hole diameters were designed to be d ¼ 100 (sample A), 80
(sample B), and 60 (sample C) nm. Scanning-electron-
microscope images are shown in the inset of Fig. 7(c) for
sample A, and in Fig. 14 for sample B (upper panel) and
sample C (bottom panel). All measurements were con-
ducted in PPMS (Quantum Design) after in situ annealing
at 390 K for 2 hours. We focus on analyzing the data from
sample A. Similar results for samples B and C are
summarized in Fig. 14.

B. Nonlocal measurements

The nonzero Berry curvature in antidot graphene can be
experimentally verified by applying the nonlocal measure-
ments, and the setup is shown in Fig. 7(a). By applying a
current I through one pair of Hall electrodes and recording
the voltage drop Vnl between another nearby pair of
electrodes, the nonlocal resistance is defined as

Rnl ¼ Vnl=I: ð23Þ

The nonlocal measurement setup differs from the
traditional four-probe local measurement, as shown in
Fig. 7(b). The traditional four-probe local measurement
gives the longitudinal resistivity ρ of the antidot graphene;
its dependence on gate voltage for various temperatures is
shown in Fig. 7(c). We can see that the charge neutrality

FIG. 7. Measurement setup for (a) nonlocal measurements and (b) local measurements. (c) Antidot graphene resistivity is plotted as a
function of gate voltage for various temperatures (from 10 to 300 K). Inset: SEM image for the antidot graphene sample. (d) Room-
temperature conductivity as a function of gate voltage is shown to be well fitted by the Boltzmann transport theory, which gives the
mobility around 1500 cm2=ðVsÞ and the residue carrier density n0 ¼ 2 × 1011=cm2.
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point (CNP) is located around 7.5 V. The longitudinal
resistivity has a strong temperature dependence, which
can be well described by a variable range hopping
model (VRH) [29,51]. The mobility of antidot graphene
is usually low compared to pristine graphene [29,52].
The resistivity (conductivity) as a function of gate voltage

can be described by ρ ¼ ρs þ
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðCVg=eÞ2 þ n20

q
eμ

�−1

[29,52–54], where ρs comes from the short-range scatter-
ings, μ is the mobility controlled by long-range (charged-
impurity) scatterings, C is the capacitance per unit
area of SiO2, and n0 is the residue carrier density due
to the electron-hole puddle effect [55–57]. These param-
eters can be obtained by fitting the room-temperature data.
The fitting details are shown in Fig. 7(d), which gives
mobility μ ¼ 1500 cm2=ðVsÞ and residue carrier density
n0 ¼ 2 × 1011=cm2.

C. Theory on nonlocal transverse
conductance and simulations

The nonlocal resistance is determined by the topological
current that flows in the sample channel. Since the state has
a nonzero Berry curvature, it will result in a transverse
conductance σxy, given by [5,6]

σxy ¼ 4
e2

ð2πÞ2ℏ ·
1

2

Z
Ω11ðkÞfðkÞdk; ð24aÞ

where k ¼ jkj, f (k) is the Fermi distribution function, and
the Fermi level is determined by the carrier density n, which
is related to kF by the relationn ¼ k2F=π. Here, the factor 1=2
comes from the evaluation of effective Berry curvature as
shown in Sec. III E. Substituting Eq. (19) into Eq. (24a), we
obtain

σxy ¼
e2

h
m=ℏvffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðm=ℏvÞ2 þ πn
p : ð24bÞ

The nonlocal resistance is strongly related to the trans-
verse conductance and may be expressed as [6,11]

Rnl ¼ ρ3σ2xy · α ¼ ρ3α
e4

h2
ðm=ℏvÞ2

ðm=ℏvÞ2 þ πn
; ð25Þ

where α is a coefficient that is independent of the Fermi
energy but depends on the sample geometric parameters,W
and d2, where W denotes the sample width and d2 the
separation between the electrodes as shown in Fig. 7.
Ultimately, the coefficient α is also related to the decay
length ξ of the Berry curvature density, as shown below.
An accurate value of α is important for the comparison

between the theory prediction and experimental data. To
find the behavior of coefficient α, a differential diffusion
equation must be solved. We show below that depending on

whether ξ is larger or smaller than the sample width W,
different behaviors of α can be derived.
The diffusion equation below was originally formulated

to describe spin diffusion, but it can be adapted to describe
Berry curvature diffusion [11]:

ξ2∂2sðx; yÞ − sðx; yÞ ¼ Ξðx; yÞ; ð26aÞ

where s is the “Berry curvature” (spin) density. The source
termΞðx; yÞ is determined by the external electric field, with
a form given by [11]

Ξðx; yÞ ¼ − τsIσxy=Wσ

sinhðπx=WÞ
�
δðy −W=2Þ þ δðyþW=2Þ

	
:

ð26bÞ

Here I denotes the current, and σxy, σ stand for the transverse
and longitudinal conductivities, respectively; τs is the relax-
ation time, which is related to ξ by τs ∼ ξ2. The two delta
functions inEq. (26b) indicate that the source term is nonzero
only at the two edges (y ¼ �W=2); hence, Eq. (26b) serves
as a boundary condition for sðx; yÞ. The induced Berry
curvature current along the x direction is given by
Js ¼ −ðξ2=τsÞ∂x

RW=2
−W=2 dy · sðx; yÞ ¼ α · Iσxy=σ. Here, the

quantity ξ2=τs is the intrinsic diffusion constant; it is treated
as a constant of the problem.Based on the above definition of
the Berry curvature current, we can obtain the nonlocal
resistance, given by Eq. (25). In Ref. [11], it is shown that in
the range W ≪ ξ, the coefficient α can be analytically
expressed as α ¼ W expð−d2=ξÞ=2ξ. However, in the
regimeW ≥ ξ, the coefficient α has to be solved numerically.
The case of small ξ (as compared withW) is crucial here, as
the decay length must be quite small in antidot graphene
since the mobility is low. Below, we show that by fitting the
experimental data, the decay length was found to be on the
order of 450–550 nm for our three antidot graphene samples.
They are consistently smaller than the decay length (2 μm)
reported in graphene placed on top of h-BN [6].
Following the work in Ref. [11], we have obtained the

coefficient α by numerically solving the differential dif-
fusion equation [Eq. (26a)] with its boundary conditions
[Eq. (26b)], by using the commercial software COMSOL [58]
package. The Berry curvature density sðx; yÞ can be
obtained numerically. One simulated example with ξ ¼
W is shown in Fig. 8(a). The color scale indicates the
magnitude of the Berry curvature density; its magnitude
is seen to decay to zero as x deviates from x ¼ 0. The
Berry curvature current density, defined as JsðxÞ ¼
−ðξ2=τsÞ∂x

RW=2
−W=2 dy · sðx; yÞ, is summarized in Fig. 8(b)

for various values of ξ. Here, JsðxÞ is seen to decay
exponentially with x. Hence, the coefficient α should
behave as α≡ f expð−x=λÞ, where f and λ are dependent
on ξ. Their functional dependencies are shown in Fig. 9(a).
In the range ξ ≫ W, λ ¼ ξ and f ¼ W=2ξ, our simulations
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exactly reproduce the analytical expression given previ-
ously. However, in the regime ξ ≤ W, λ saturates at W=π
when ξ approaches 0. That means when ξ is small, the
nonlocal resistance decays exponentially as expð−πx=WÞ,
instead of expð−x=ξÞ, as previously predicted by the
analytical formula. For the parameter f, its value peaks
atW=π and decays quickly as ξ decreases. These behaviors
clearly imply that the previous analytical expression for α
cannot model the properties of the system in the regime
ξ ≤ W. The behavior of the coefficient α, as a function of ξ,
is summarized in Fig. 9(b). It is seen that the simulation
results deviate from the analytical expression in the small
ξ=W range. In the following analysis of the nonlocal
resistance, we will use the simulation results in Fig. 9(b).
The exponential decay length has been measured on

disordered graphene in Ref. [12], where λ was found to be
300 nm with a sample width of 0.9 μm. The relation
between λ and the sample width is noted to agree with what
we have predicted here.

D. Simulation of the stray current

In order to isolate the nonzero transverse conductance
σxy, it is necessary to exclude the stray current that can exist

even when there is no topological current. Since the
voltage-probe electrodes are located on opposite sides of
the system [as shown in Fig. 7(a)], a voltage drop between
the voltage-probe electrodes is expected once a current
flows through the sample. This classical diffusive transport
behavior can be understood as the stray current effect,
which can be approximated by the van der Pauw relation,
i.e., R0

nl ∼ ρ expð−πL=WÞ. This effect can also be accu-
rately calculated by COMSOL simulations, which is shown
in Fig. 10, where the color indicates the potential distri-
bution. To clearly observe the nonlocal voltage difference
(which is quite small), we intentionally focus on the range
of 0.45V and 0.55V. By analyzing the potential drop
between the neighboring Hall electrode pair, we have
calculated the nonlocal resistance R0

nl that results from
the stray current in our system,

R0
nl ¼ 0.00594ρ; ð27Þ

where ρ is the longitudinal resistivity of antidot
graphene.

FIG. 9. (a) Parameters f, λ and (b) coefficient αðξÞ are plotted
as a function of ξ=W. The open symbols are simulation results,
while the solid curves are from the analytical expression given in
Ref. [11]. The simulation results and the predictions of the
analytical expression agree well in the range ξ ≫ W, but they
differ when ξ ≤ W. The latter applies to our samples.

FIG. 8. (a) The distribution of Berry curvature density sðx; yÞ
obtained by simulations using the COMSOL package. The decay
length ξ is set to be ξ ¼ W. The color indicates the magnitude of
the Berry curvature density in arbitrary units. (b) The Berry
curvature current density JS is plotted as a function of x. The
cases of ξ=W ¼ 0.05, 0.12, 0.3, 1, 2, 4 are shown. In all cases, JS
is seen to decay exponentially with x.
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E. Nonlocal resistance from the Berry curvature

For the nonlocal measurements, we find that by using the
nearest-neighbor electrode pair for applying current and
detecting voltages (with the electrode separation of 4 μm),
we can always observe a peak at CNP for the nonlocal
resistance. However, for electrode pairs of other separations
(such as 8 or 12 μm), the detected voltage drop is nothing
but noise. In Fig. 11, we present the measured nonlocal
resistance Rexp

nl (solid curves obtained from nearest neigh-
bors) as a function of gate voltage at various temperatures.
To rule out the stray current effect, we also plot the

calculated R0
nl (dashed curves) in the same figure. For a

clearer comparison, the signal of R0
nl is amplified by a

factor (7 for 10 K and 4 for 20 K) at low temperatures. We
can see that the measured nonlocal resistance Rexp

nl exceeds
the stray current effect (R0

nl), implying that the measured
excess must arise from the topological effect.
We summarize the temperature dependence of the non-

local resistance in Fig. 12, where the black solid squares
represent the peak values (backgate fixed at CNP) of
measured nonlocal resistance, and the red solid curve
stands for the calculated R0

nl. Based on Eqs. (25) and
(27), we conclude that the peak values follow the relations
Rnl ∼ ρ3 and R0

nl ∼ ρ. Since ρðTÞ near the CNP decreases
when the temperature increases [29] [see Fig. 7(c)], Rnl
decreases faster than R0

nl as temperature rises. This is
clearly shown in Fig. 12, in which the black dashed curve,
representing RnlðTÞ þ R0

nlðTÞ, is seen to display a cross-
over behavior that agrees extremely well with the measured
nonlocal resistance of Rexp

nl . It follows that at high temper-
atures, Rexp

nl is dominated by the stray current effect,
whereas at low temperatures, the topological nonlocal
resistance dominates. For T < 100 K, the measured non-
local resistance is larger than what is expected from the
stray current effect. This means that for T < 100 K, the
topological current can induce a detectable nonlocal volt-
age drop. We define the topological nonlocal resistance as
Rnl ≡ Rexp

nl − R0
nl. It is shown below that the carrier con-

centration dependence of this nonlocal resistance can be
well predicted by Eq. (28).

FIG. 11. The measured nonlocal resistance Rexp
nl is plotted as a

function of gate voltage for different temperatures, as shown by
the solid curves. The calculated stray current R0

nl is shown by
dashed curves. The magnitude of R0

nl is amplified by a factor of 7
for 10 K and by a factor of 4 for 20 K.

FIG. 12. The peak values (at CNP) of measured nonlocal
resistance are plotted as a function of temperature, shown as
black solid squares. The calculated stray current effect R0

nl ∝
ρðTÞ is shown by the solid red curve. The blue curve denotes the
peak values of topological nonlocal resistance calculated,
Rnl ∝ ρ3ðTÞ, based on Eq. (28) for a fixed ξ ¼ 450 nm. The
black dashed curve represents Rnl þ R0

nl. It is clear that there is a
crossover from the high-temperature, linear ρðTÞ behavior to the
low-temperature, ρ3ðTÞ behavior. The measured data are seen to
agree with this crossover behavior (dashed curve) extremely well.

FIG. 10. Stray current effect simulated by COMSOL. A voltage
drop V is imposed between the central pair of Hall electrodes.
The color scale is in the range of 0.45V to 0.55V.
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Apart from the magnitude, there is also a difference
between the features of the measured nonlocal resis-
tance Rexp

nl and the stray current-induced R0
nl. For the

low-temperature data (10 K and 20 K), the measured
nonlocal resistance is zero for jV − VCNPj > 2V as shown
in Fig. 11. For the stray current effect (dashed curves), its
values decay to zero smoothly.

V. COMPARISON BETWEEN THEORY
AND EXPERIMENT

In Fig. 13, we plot the topological nonlocal resistance,
Rnl ¼ Rexp

nl − R0
nl, as a function of carrier density (open

circles). The measured data can be well fitted by the
following equation,

Rnl ¼ ρ3
�
e2

h

�
2 ðm=ℏvÞ2
ðm=ℏvÞ2 þ π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 þ n20

p · αðξÞ; ð28Þ

where the term n in Eq. (25) is replaced by
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 þ n20

p
,

with n0 ¼ 2 × 1011=cm−2 being the residue carrier density
at CNP. Since m=ℏv ≈ 0.03 nm−1 is known from the
tight-binding calculations, the fitting requires just one
parameter—the decay length ξ. The best fit gives
ξ ≈ 450 nm. Note that this value is indeed much smaller
than the sample width W ¼ 2 μm.
The small decay length values in our samples, as

compared to that reported in Ref. [6], can be attributed

to the fact that our graphene samples are nanostructured
and placed on top of SiO2, while in Ref. [6] the sample is
pristine graphene placed on h-BN substrate. The latter has
been shown to be a much cleaner and flatter substrate [59].
In our samples, the magnitude of the residue carrier density
is on the order of 1011=cm2, much larger than that for
pristine graphene on h-BN, which is on the order of
1010=cm2. It follows that our samples are more disordered,
and therefore, they can have a much shorter scattering time
τs. Since ξ ∝ ffiffiffiffi

τs
p

, a short decay length follows.
Based on the decay length ξ ≈ 450 nm, it is easy to

understand why we cannot detect the nonlocal voltage drop
for the next-nearest neighbor electrode pairs (with a
separation of 8 μm). Since the magnitude of nonlocal
voltage drop is determined by the coefficient αðξ; xÞ,
defined as α≡ fðξÞ expð−πx=WÞ. For the nearest-neighbor
electrode pairs, x ¼ 4 μm, which gives expð−πx=WÞ ¼
1.8 × 10−3. However, for the next-nearest-neighbor elec-
trode, x ¼ 8 μm, which yields expð−πx=WÞ ¼ 3.5 × 10−6.
Consider the data at 10 K (see Fig. 11); for x ¼ 4 μm, the
peak of nonlocal resistance is about 10 kΩ. Based on this
value, for x ¼ 8 μm, the peak value of the nonlocal
resistance is estimated to be on the order of 10 Ω, which
is below the noise floor.
The nonlocal resistance as a function of carrier density

measured at 10 K for samples B and C are summarized in
Fig.14. In theupperpanel, redopencircles show thenonlocal
resistance measured from sample B, and the inset is its SEM
image. In the bottom panel, similar results for sample C are
summarized. To fit these nonlocal resistance data, we follow
the steps of analyzing sample A as presented above.We first

FIG. 13. The topological nonlocal resistance (defined as
Rexp
nl − R0

nl) is plotted as a function of carrier density, shown
by open circles at temperatures of 10, 20, and 40 K. The fitted
nonlocal resistance is shown by the solid black curves. This
fitting yields a value for the decay length ξ of 450 nm.

FIG. 14. The topological nonlocal resistance (defined as
Rexp
nl − R0

nl) is plotted as a function of carrier density for sample
B (upper panel), with a designed hole diameter of 80 nm, and
sample C (bottom panel), with a designed hole diameter of 60 nm,
shown by open circles for different samples with different
geometric factors. The periodicity is fixed at 150 nm. The solid
curves represent the fitted nonlocal resistance.
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calculate the parameter m=ℏv (based on tight-binding cal-
culations) and the residue carrier density n0 (based on
experimental resistivity-back gate curves). For sample B,
we have m=ℏv ¼ 0.021 nm−1 and n0 ¼ 2.2 × 1011=cm−2;
for sample C, we have m=ℏv ¼ 0.015 nm−1 and n0 ¼
1.3 × 1011=cm−2. With these input values, we fit the exper-
imental nonlocal resistance data, shown by the black
solid curves in Fig. 14. These fittings yield the decay length
ξ ≈ 500 nm for sample B and ξ ≈ 550 nm for sample C.
It is also noted that as the diameters of the holes decrease,
the signal of nonlocal resistance is reduced, due to the
decrease of ρ.
A recent experimental work [60] demonstrated that a

conducting edge state might exist in gapped bilayer
graphene. Can such a conducting edge state exist in our
sample? For our antidot graphene samples placed on top of
SiO2, the evidence seems to indicate that there cannot be a
conducting edge-state channel since the existence of such a
state should enhance the measured transverse nonlocal
resistance, and over a longer distance, e.g., over 8 μm.
These were not seen. More conclusively, we have measured
the I-V curve of sample C at 10 K with gate voltage fixed
at CNP. The I-V curve is shown in Fig. 15. The non-
linear behavior of the I-V curve indicates the existence of a
gap in antidot graphene. From the I-V curve, the derived

resistance per square as a function of bias voltage is also
plotted. Note that the resistance at CNP (measured under a
small bias voltage) is around a few hundred kilo Ohms,
which is much larger than the edge-state channel where the
resistance should be on the order of h=e2∼25.9 kiloOhms.
Thus, the existence of a conducting edge state is highly
unlikely.

VI. CONCLUSIONS

In this work, we have obtained the effective Hamiltonian
of antidot graphene based on the tight-binding eigenvalues
and eigenfunctions. The effective Hamiltonian predicts the
gap opening at the Dirac point due to intervalley scatterings.
Based on the effective Hamiltonian, we find the Berry
curvature to be nonzero, without breaking either the time-
reversal or inversion symmetry. The nonzero Berry curvature
can be experimentally verified by nonlocal transport mea-
surements, based on three separately fabricated antidot
graphene samples. The very good one-parameter fitting of
the nonlocal resistance data gives the topological current
decay length of ξ ¼ 450, 500, and 550 nm for three samples
with fixed periodicity of 150 nm and hole diameters of 100,
80, and 60 nm, respectively.
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APPENDIX A: PROOF OF TIME-REVERSAL
SYMMETRY RELATION BETWEEN
DOUBLE DEGENERATE STATES

By definition, under time-reversal transformation, the
momentum k flips signs, and the wave function takes its
complex conjugate, that is,

Tψ2ðkÞ ¼ ψ2ð−kÞ�: ðA1Þ

We want to show that

ψ2ð−kÞ� ¼ eiθ · ψ1ðkÞ: ðA2Þ

This can be achieved in the following two steps.
(1) By recalling that ψ2ðkÞ ¼ f−½ðke−iθÞ= ffiffiffiffiffiffiffiffiffiffiffiffi

ε −m
p � − ffiffiffiffiffiffiffiffiffiffiffiffi

ε −m
p ffiffiffiffiffiffiffiffiffiffiffiffi

ε −m
p −½ðke−iθÞ= ffiffiffiffiffiffiffiffiffiffiffiffi

ε −m
p � gT=2 ffiffiffi

ε
p

, where the
four components correspond to KA, KB, K0A, K0B. By flipping the sign of k, we must remember that we are
changing the total momentum of (K þ k) to −ðK þ kÞ. Since −K ¼ K0, it follows that changing the sign of k is
always accompanied by exchanging the K and K0 valleys. Hence, KA becomes K0A and KB becomes K0B, and vice
versa. Therefore, we have

ψ2ð−kÞ ¼
� ffiffiffiffiffiffiffiffiffiffiffiffi

ε −m
p ke−iθffiffiffiffiffiffiffiffiffiffiffiffi

ε −m
p ke−iθffiffiffiffiffiffiffiffiffiffiffiffi

ε −m
p − ffiffiffiffiffiffiffiffiffiffiffiffi

ε −m
p �

T
=2

ffiffiffi
ε

p
: ðA3Þ

FIG. 15. The black curves represent the I-V curve at 10 K for
sample C. The red curve is the derived resistance per square. The
resistance at small bias voltage is around 100 kΩ, which is much
larger than h=e2. Hence, the existence of a conducting edge state
is not likely.
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(2) It is straightforward to obtain

ψ2ð−kÞ∗ ¼
� ffiffiffiffiffiffiffiffiffiffiffiffi

ε −m
p keþiθffiffiffiffiffiffiffiffiffiffiffiffi

ε −m
p keþiθffiffiffiffiffiffiffiffiffiffiffiffi

ε −m
p − ffiffiffiffiffiffiffiffiffiffiffiffi

ε −m
p �

T
=2

ffiffiffi
ε

p
: ðA4Þ

Since ψ1ðkÞ¼f½ðke−iθÞ= ffiffiffiffiffiffiffiffiffiffiffi
εþm

p � ffiffiffiffiffiffiffiffiffiffiffi
εþm

p ffiffiffiffiffiffiffiffiffiffiffi
εþm

p −½ðke−iθÞ= ffiffiffiffiffiffiffiffiffiffiffi
εþm

p �ÞT=2 ffiffiffi
ε

p
and k¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ε2−m2

p
¼ ffiffiffiffiffiffiffiffiffiffiffi

εþm
p

·
ffiffiffiffiffiffiffiffiffiffiffi
ε−m

p
, it

follows that

eiθψ1ðkÞ ¼
�

kffiffiffiffiffiffiffiffiffiffiffiffi
εþm

p ffiffiffiffiffiffiffiffiffiffiffiffi
εþm

p
eiθ

ffiffiffiffiffiffiffiffiffiffiffiffi
εþm

p
eiθ − kffiffiffiffiffiffiffiffiffiffiffiffi

εþm
p

�
T
=2

ffiffiffi
ε

p

¼
� ffiffiffiffiffiffiffiffiffiffiffiffi

ε −m
p kffiffiffiffiffiffiffiffiffiffiffiffi

ε −m
p eiθ

kffiffiffiffiffiffiffiffiffiffiffiffi
ε −m

p eiθ − ffiffiffiffiffiffiffiffiffiffiffiffi
ε −m

p �
T
=2

ffiffiffi
ε

p

¼ ψ2ð−kÞ∗: ðA5Þ

Therefore, Tψ2ðkÞ ¼ ψ2ð−kÞ� ¼ eiθ · ψ1ðkÞ.

APPENDIX B: PROOF OF Ω2ð−kÞ= −Ω1ðkÞ
To prove Ω2ð−kÞ ¼ −Ω1ðkÞ, i.e., Eq. (14), we start from the definition of Berry curvature,

Ω1 ¼ iðh∂kxψ1j∂kyψ1i − h∂kyψ1j∂kxψ1iÞ ¼ i

�Z
∂kxðψ�

1Þ∂kyψ1dr −
Z

∂kyðψ�
1Þ∂kxψ1dr

�
; ðB1Þ

where ψ1 ¼ ψ1ðk; rÞ, with r ¼ ðx; yÞ. The proof can also be divided into two steps.
(1) We first show that the additional phase exp (iθ) does not change the Berry curvature.

By replacing ψ1 in Eq. (B1) with ψ1eiθ, the term in the bracket becomes

Z
∂kxððψ1eiθÞ�Þ∂kyðψ1eiθÞdr −

Z
∂kyððψ1eiθÞ�Þ∂kxðψ1eiθÞdr

¼
Z

∂kxðψ�
1Þ∂kyψ1drþ

Z
ψ�
1ψ1∂kxθ · ∂kyθdrþ i

Z
ðψ1∂kxψ

�
1∂kyθ − ψ�

1∂kyψ1∂kxθÞdr

−
�Z

∂kyðψ�
1Þ∂kxψ1drþ

Z
ψ�
1ψ1∂kyθ · ∂kxθdrþ i

Z
ðψ1∂kyψ

�
1∂kxθ − ψ�

1∂kxψ1∂kyθÞdr
	

¼
Z

∂kxðψ�
1Þ∂kyψ1drþ i

Z
ðψ1∂kxψ

�
1∂kyθ − ψ�

1∂kyψ1∂kxθÞdr

−
�Z

∂kyðψ�
1Þ∂kxψ1drþ i

Z
ðψ1∂kyψ

�
1∂kxθ − ψ�

1∂kxψ1∂kyθÞdr
	

¼
Z

∂kxðψ�
1Þ∂kyψ1dr −

Z
∂kyðψ�

1Þ∂kxψ1dr

þ i

�Z
ðψ1∂kxψ

�
1∂kyθ þ ψ�

1∂kxψ1∂kyθÞdr −
Z

ðψ1∂kyψ
�
1∂kxθ þ ψ�

1∂kyψ1∂kxθÞdr
	

¼
Z

∂kxðψ�
1Þ∂kyψ1dr −

Z
∂kyðψ�

1Þ∂kxψ1dr

þ i

�
∂kyθ · ∂kx

Z
ðψ�

1ψ1Þdr − ∂kxθ · ∂ky

Z
ðψ�

1ψ1Þdr
	

¼
Z

∂kxðψ�
1Þ∂kyψ1dr −

Z
∂kyðψ�

1Þ∂kxψ1dr:

The last step is obvious because the integrated modulus of the wave function is a constant. Therefore, we have
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i

�Z
∂kxððψ1eiθÞ�Þ∂kyðψ1eiθÞdr −

Z
∂kyððψ1eiθÞ�Þ∂kxðψ1eiθÞdr

�

¼ i

�Z
∂kxðψ�

1Þ∂kyψ1dr −
Z

∂kyðψ�
1Þ∂kxψ1dr

�
¼ Ω1ðkÞ: ðB2Þ

Hence, we conclude that the additional phase does not change the Berry curvature.
(2) Replace ψ1eiθ by ψ2ð−kÞ�.

According to the conclusion of Appendix A, we have ψ1eiθ ¼ ψ2ð−kÞ�.
Therefore,

Ω1ðkÞ ¼ i

�Z
∂kxððψ1eiθÞ�Þ∂kyðψ1eiθÞdr −

Z
∂kyððψ1eiθÞ�Þ∂kxðψ1eiθÞdr

�

¼ i

�Z
∂kxψ2ð−kÞ · ∂kyψ2ð−kÞ�dr −

Z
∂kyψ2ð−kÞ · ∂kxψ2ð−kÞ�dr

�

¼ −i
�Z

∂kxψ2ð−kÞ� · ∂kyψ2ð−kÞdr −
Z

∂kxψ2ð−kÞ · ∂kyψ2ð−kÞ�dr
�

¼ −Ω2ð−kÞ:

[1] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y.
Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov,
Electric Field Effect in Atomically Thin Carbon Films,
Science 306, 666 (2004).

[2] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I.
Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A.
Firsov, Two-Dimensional Gas of Massless Dirac Fermions
in Graphene, Nature (London) 438, 197 (2005).

[3] Y. B. Zhang, Y. W. Tan, H. L. Stormer, and P. Kim,
Experimental Observation of the Quantum Hall Effect
and Berry’s Phase in Graphene, Nature (London) 438,
201 (2005).

[4] A. K. Geim and K. S. Novoselov, The Rise of Graphene,
Nat. Mater. 6, 183 (2007).

[5] D. Xiao, W. Yao, and Q. Niu, Valley-Contrasting Physics in
Graphene: Magnetic Moment and Topological Transport,
Phys. Rev. Lett. 99, 236809 (2007).

[6] R. V. Gorbachev et al., Detecting Topological Currents in
Graphene Superlattices, Science 346, 448 (2014).

[7] M. Q. Sui et al., Gate-Tunable Topological Valley Trans-
port in Bilayer Graphene, Nat. Phys. 11, 1027 (2015).

[8] Y. Shimazaki, M. Yamamoto, I. V. Borzenets, K. Watanabe,
T. Taniguchi, and S. Tarucha, Generation and Detection of
Pure Valley Current by Electrically Induced Berry Curva-
ture in Bilayer Graphene, Nat. Phys. 11, 1032 (2015).

[9] D. Xiao, M. C. Chang, and Q. Niu, Berry Phase Effects on
Electronic Properties, Rev. Mod. Phys. 82, 1959 (2010).

[10] Y. D. Lensky, J. C. W. Song, P. Samutpraphoot, and L. S.
Levitov, Topological Valley Currents in Gapped Dirac
Materials, Phys. Rev. Lett. 114, 256601 (2015).

[11] D. A. Abanin, A. V. Shytov, L. S. Levitov, and B. I.
Halperin, Nonlocal Charge Transport Mediated by Spin

Diffusion in the Spin Hall Effect Regime, Phys. Rev. B 79,
035304 (2009).

[12] Y. L. Wang, X. H. Cai, J. Reutt-Robey, and M. S. Fuhrer,
Neutral-Current Hall Effects in Disordered Graphene,
Phys. Rev. B 92, 161411 (2015).

[13] A. A. Kaverzin and B. J. van Wees, Electron Transport
Nonlocality in Monolayer Graphene Modified with Hydro-
gen Silsesquioxane Polymerization, Phys. Rev. B 91,
165412 (2015).

[14] J. Lee, K. F. Mak, and J. Shan, Electrical Control of
the Valley Hall Effect in Bilayer MoS2 Transistors, Nat.
Nanotechnol. 11, 421 (2016).

[15] X. L. Li, X. R. Wang, L. Zhang, S. W. Lee, and H. J. Dai,
Chemically Derived, Ultrasmooth Graphene Nanoribbon
Semiconductors, Science 319, 1229 (2008).

[16] X. R. Wang, Y. J. Ouyang, X. L. Li, H. L. Wang, J. Guo,
and H. J. Dai, Room-Temperature All-Semiconducting Sub-
10-nm Graphene Nanoribbon Field-Effect Transistors,
Phys. Rev. Lett. 100, 206803 (2008).

[17] D. V. Kosynkin, A. L. Higginbotham, A. Sinitskii, J. R.
Lomeda, A. Dimiev, B. K. Price, and J. M. Tour, Longi-
tudinal Unzipping of Carbon Nanotubes to Form Graphene
Nanoribbons, Nature (London) 458, 872 (2009).

[18] Y.-W. Son, M. L. Cohen, and S. G. Louie, Energy Gaps
in Graphene Nanoribbons, Phys. Rev. Lett. 97, 216803
(2006).

[19] T. G. Pedersen, C. Flindt, J. Pedersen, N. A. Mortensen,
A.-P. Jauho, and K. Pedersen, Graphene Antidot Lattices:
Designed Defects and Spin Qubits, Phys. Rev. Lett. 100,
136804 (2008).

[20] J. A. Fürst, J. G. Pedersen, C. Flindt, N. A. Mortensen, M.
Brandbyge, T. G. Pedersen, and A. P. Jauho, Electronic
Properties of Graphene Antidot Lattices, New J. Phys.
11, 095020 (2009).

[21] J. A. Fürst, T. G. Pedersen, M. Brandbyge, and A.-P. Jauho,
Density Functional Study of Graphene Antidot Lattices:

PAN, ZHANG, ZHANG, ZHANG, DONG, and SHENG PHYS. REV. X 7, 031043 (2017)

031043-16

https://doi.org/10.1126/science.1102896
https://doi.org/10.1038/nature04233
https://doi.org/10.1038/nature04235
https://doi.org/10.1038/nature04235
https://doi.org/10.1038/nmat1849
https://doi.org/10.1103/PhysRevLett.99.236809
https://doi.org/10.1126/science.1254966
https://doi.org/10.1038/nphys3485
https://doi.org/10.1038/nphys3551
https://doi.org/10.1103/RevModPhys.82.1959
https://doi.org/10.1103/PhysRevLett.114.256601
https://doi.org/10.1103/PhysRevB.79.035304
https://doi.org/10.1103/PhysRevB.79.035304
https://doi.org/10.1103/PhysRevB.92.161411
https://doi.org/10.1103/PhysRevB.91.165412
https://doi.org/10.1103/PhysRevB.91.165412
https://doi.org/10.1038/nnano.2015.337
https://doi.org/10.1038/nnano.2015.337
https://doi.org/10.1126/science.1150878
https://doi.org/10.1103/PhysRevLett.100.206803
https://doi.org/10.1038/nature07872
https://doi.org/10.1103/PhysRevLett.97.216803
https://doi.org/10.1103/PhysRevLett.97.216803
https://doi.org/10.1103/PhysRevLett.100.136804
https://doi.org/10.1103/PhysRevLett.100.136804
https://doi.org/10.1088/1367-2630/11/9/095020
https://doi.org/10.1088/1367-2630/11/9/095020


Roles of Geometrical Relaxation and Spin, Phys. Rev. B 80,
115117 (2009).

[22] R. Petersen, T. G. Pedersen, and A.-P. Jauho, Clar Sextet
Analysis of Triangular, Rectangular, and Honeycomb
Graphene Antidot Lattices, ACS Nano 5, 523 (2011).

[23] A. Zhang, H. F. Teoh, Z. Dai, Y. P. Feng, and C. Zhang,
Band Gap Engineering in Graphene and Hexagonal BN
Antidot Lattices: A First Principles Study, Appl. Phys. Lett.
98, 023105 (2011).

[24] S. Yuan, R. Roldán, A.-P. Jauho, and M. I. Katsnelson,
Electronic Properties of Disordered Graphene Antidot
Lattices, Phys. Rev. B 87, 085430 (2013).

[25] M. Dvorak, W. Oswald, and Z. G. Wu, Bandgap Opening by
Patterning Graphene, Sci. Rep. 3, 2289 (2013).

[26] F. Guinea and T. Low, Band Structure and Gaps of
Triangular Graphene Superlattices, Phil. Trans. R. Soc.
A 368, 5391 (2010).

[27] J. Eroms and D. Weiss, Weak Localization and Transport
Gap in Graphene Antidot Lattices, New J. Phys. 11, 095021
(2009).

[28] A. J. M. Giesbers, E. C. Peters, M. Burghard, and K. Kern,
Charge Transport Gap in Graphene Antidot Lattices,
Phys. Rev. B 86, 045445 (2012).

[29] H. Zhang et al., Large-Scale Mesoscopic Transport in
Nanostructured Graphene, Phys. Rev. Lett. 110, 066805
(2013).

[30] E. C. Peters, A. J. M. Giesbers, U. Zeitler, M. Burghard, and
K. Kern, Valley-Polarized Massive Charge Carriers in
Gapped Graphene, Phys. Rev. B 87, 201403 (2013).

[31] R. Yagi, R. Sakakibara, R. Ebisuoka, J. Onishi, K. Watanabe,
T. Taniguchi, and Y. Iye, Ballistic Transport in Graphene
Antidot Lattices, Phys. Rev. B 92, 195406 (2015).

[32] A. Sandner, T. Preis, C. Schell, P. Giudici, K. Watanabe, T.
Taniguchi, D. Weiss, and J. Eroms, Ballistic Transport in
Graphene Antidot Lattices, Nano Lett. 15, 8402 (2015).

[33] S. R. Power and A. P. Jauho, Electronic Transport in
Disordered Graphene Antidot Lattice Devices, Phys. Rev.
B 90, 115408 (2014).

[34] Z. Y. Fan, A. Uppstu, and A. Harju, Electronic and Trans-
port Properties in Geometrically Disordered Graphene
Antidot Lattices, Phys. Rev. B 91, 125434 (2015).

[35] M. V. Berry, Quantal Phase Factors Accompanying Adia-
batic Changes, Proc. R. Soc. A 392, 45 (1984).

[36] J. G. Pedersen, T. Gunst, T. Markussen, and T. G. Pedersen,
Graphene Antidot Lattice Waveguides, Phys. Rev. B 86,
245410 (2012).

[37] J. G. Pedersen, M. H. Brynildsen, H. D. Cornean, and T. G.
Pedersen, Optical Hall Conductivity in Bulk and Nano-
structured Graphene Beyond the Dirac Approximation,
Phys. Rev. B 86, 235438 (2012).

[38] J. G. Pedersen and T. G. Pedersen, Dirac Model of an
Isolated Graphene Antidot in a Magnetic Field, Phys.
Rev. B 85, 035413 (2012).

[39] T. Ando, Theory of Valley Hall Conductivity in Graphene
with Gap, J. Phys. Soc. Jpn. 84, 114705 (2015).

[40] L. Jiang, Y. Zheng, H. Li, and H. Shen, Magneto-Transport
Properties of Gapped Graphene, Nanotechnology 21,
145703 (2010).

[41] M. C. Chang and Q. Niu, Berry Phase, Hyperorbits, and the
Hofstadter Spectrum, Phys. Rev. Lett. 75, 1348 (1995).

[42] R. Shindou and K. I. Imura, Noncommutative Geometry and
Non-Abelian Berry Phase in the Wave-Packet Dynamics of
Bloch Electrons, Nucl. Phys. B720, 399 (2005).

[43] M. Vanević, V. M. Stojanović, and M. Kindermann, Char-
acter of Electronic States in Graphene Antidot Lattices: Flat
Bands and Spatial Localization, Phys. Rev. B 80, 045410
(2009).

[44] When introducing the vector potential (magnetic field) to
this new 4 × 4matrix Hamiltonian, it is easy to show that the
Landau Level (LL) is given by εn ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ 2neℏBv2

p
.

This implies that the n ¼ 0 LL is split into εn ¼ �m. This
may be the explanation for the observed zero σxy plateau in
the quantum Hall effect of antidot graphene as reported in
Ref. [30].

[45] H. Nishi, Y. I. Matsushita, and A. Oshiyama, Band-
Unfolding Approach to Moire-Induced Band-Gap Opening
and Fermi Level Velocity Reduction in Twisted Bilayer
Graphene, Phys. Rev. B 95, 085420 (2017).

[46] R. Petersen and T. G. Pedersen, Quasiparticle Properties of
Graphene Antidot Lattices, Phys. Rev. B 80, 113404 (2009).

[47] D. Culcer, Y. Yao, and Q. Niu, Coherent Wave-Packet
Evolution in Coupled Bands, Phys. Rev. B 72, 085110
(2005).

[48] M. Gradhand, D. V. Fedorov, F. Pientka, P. Zahn, I. Mertig,
and B. L. Gyorffy, First-Principle Calculations of the Berry
Curvature of Bloch States for Charge and Spin Transport of
Electrons, J. Phys. Condens. Matter 24, 213202 (2012).

[49] F. Wilczek and A. Zee, Appearance of Gauge Structure in
Simple Dynamical Systems, Phys. Rev. Lett. 52, 2111
(1984).

[50] C. W. Groth, M. Wimmer, A. R. Akhmerov, and X. Waintal,
KWANT: A Software Package for Quantum Transport,
New J. Phys. 16, 063065 (2014).

[51] E. C. Peters, A. J. M. Giesbers, and M. Burghard, Variable
Range Hopping in Graphene Antidot Lattices, Phys. Status
Solidi B 249, 2522 (2012).

[52] J. Pan, H. Zhang, Y. Zheng, B. Zhang, T. Zhang, and P.
Sheng, Spatial Variation of Charge Carrier Density in
Graphene under a Large Bias Current, Phys. Rev. B 93,
115424 (2016).

[53] S. Adam, E. H. Hwang, V. M. Galitski, and S. Das Sarma, A
Self-Consistent Theory for Graphene Transport, Proc. Natl.
Acad. Sci. U.S.A. 104, 18392 (2007).

[54] S. D. Sarma, S. Adam, E. H. Hwang, and E. Rossi,
Electronic Transport in Two-Dimensional Graphene,
Rev. Mod. Phys. 83, 407 (2011).

[55] J. Martin, N. Akerman, G. Ulbricht, T. Lohmann, J. H.
Smet, K. Von Klitzing, and A. Yacoby, Observation of
Electron-Hole Puddles in Graphene Using a Scanning
Single-Electron Transistor, Nat. Phys. 4, 144 (2008).

[56] A. H.CastroNeto, F.Guinea,N.M. R.Peres,K. S.Novoselov,
and A. K. Geim, The Electronic Properties of Graphene,
Rev. Mod. Phys. 81, 109 (2009).

[57] K. Eun-Ah and A. H. C. Neto, Graphene as an Electronic
Membrane, Europhys. Lett. 84, 57007 (2008).

[58] See https://www.comsol.com.
[59] C. R. Dean et al., Boron Nitride Substrates for High-Quality

Graphene Electronics, Nat. Nanotechnol. 5, 722 (2010).
[60] M. J. Zhu et al., Edge Currents Shunt the Insulating Bulk in

Gapped Graphene, Nat. Commun. 8, 14552 (2017).

BERRY CURVATURE AND NONLOCAL TRANSPORT … PHYS. REV. X 7, 031043 (2017)

031043-17

https://doi.org/10.1103/PhysRevB.80.115117
https://doi.org/10.1103/PhysRevB.80.115117
https://doi.org/10.1021/nn102442h
https://doi.org/10.1063/1.3536517
https://doi.org/10.1063/1.3536517
https://doi.org/10.1103/PhysRevB.87.085430
https://doi.org/10.1038/srep02289
https://doi.org/10.1098/rsta.2010.0214
https://doi.org/10.1098/rsta.2010.0214
https://doi.org/10.1088/1367-2630/11/9/095021
https://doi.org/10.1088/1367-2630/11/9/095021
https://doi.org/10.1103/PhysRevB.86.045445
https://doi.org/10.1103/PhysRevLett.110.066805
https://doi.org/10.1103/PhysRevLett.110.066805
https://doi.org/10.1103/PhysRevB.87.201403
https://doi.org/10.1103/PhysRevB.92.195406
https://doi.org/10.1021/acs.nanolett.5b04414
https://doi.org/10.1103/PhysRevB.90.115408
https://doi.org/10.1103/PhysRevB.90.115408
https://doi.org/10.1103/PhysRevB.91.125434
https://doi.org/10.1098/rspa.1984.0023
https://doi.org/10.1103/PhysRevB.86.245410
https://doi.org/10.1103/PhysRevB.86.245410
https://doi.org/10.1103/PhysRevB.86.235438
https://doi.org/10.1103/PhysRevB.85.035413
https://doi.org/10.1103/PhysRevB.85.035413
https://doi.org/10.7566/JPSJ.84.114705
https://doi.org/10.1088/0957-4484/21/14/145703
https://doi.org/10.1088/0957-4484/21/14/145703
https://doi.org/10.1103/PhysRevLett.75.1348
https://doi.org/10.1016/j.nuclphysb.2005.05.019
https://doi.org/10.1103/PhysRevB.80.045410
https://doi.org/10.1103/PhysRevB.80.045410
https://doi.org/10.1103/PhysRevB.95.085420
https://doi.org/10.1103/PhysRevB.80.113404
https://doi.org/10.1103/PhysRevB.72.085110
https://doi.org/10.1103/PhysRevB.72.085110
https://doi.org/10.1088/0953-8984/24/21/213202
https://doi.org/10.1103/PhysRevLett.52.2111
https://doi.org/10.1103/PhysRevLett.52.2111
https://doi.org/10.1088/1367-2630/16/6/063065
https://doi.org/10.1002/pssb.201200177
https://doi.org/10.1002/pssb.201200177
https://doi.org/10.1103/PhysRevB.93.115424
https://doi.org/10.1103/PhysRevB.93.115424
https://doi.org/10.1073/pnas.0704772104
https://doi.org/10.1073/pnas.0704772104
https://doi.org/10.1103/RevModPhys.83.407
https://doi.org/10.1038/nphys781
https://doi.org/10.1103/RevModPhys.81.109
https://doi.org/10.1209/0295-5075/84/57007
https://www.comsol.com
https://www.comsol.com
https://www.comsol.com
https://doi.org/10.1038/nnano.2010.172
https://doi.org/10.1038/ncomms14552

