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Decomposing thermal fluctuations with hydrodynamic modes
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We have obtained analytically the complete set of hydrodynamic modes (HMs) for a two-dimensional (2D)
fluid confined within a channel with the Navier slip boundary condition at the hydrodynamic boundary. The HMs
are orthogonal to each other and hence each represents an independent degree of freedom. We show that the HMs
can be used to recursively generate a time series of random thermal fluctuations of displacement velocity, with
identical statistical distributions as those obtained from MD simulations. By projecting the HMs onto molecular
dynamics (MD) configurations and evaluating the resulting decay time from the autocorrelation function, we
obtain from MD the eigenvalues of the HMs. Multiplying two different HMs and integrating as a function of z
from center of the channel towards the fluid-solid interface, the position of the hydrodynamic boundary (HDB)
is unambiguously identified as the point at which the integral vanishes. Invariably the HDB is located inside the
fluid domain and not on the liquid-solid interface. With the knowledge of the HDB position, the value of the
slip length can be obtained directly from HM’s dispersion relation. We show that in terms of the complete set of
HMs, the fluctuation-dissipation theorem may be expressed in a simple expression involving the average of the
inverse of the eigenvalues. Besides offering an alternative perspective on thermal fluctuations and hydrodynamic
boundary, the present work opens the possibility of using modulated boundary conditions to manipulate thermal
fluctuations in mesoscopic channels, which can lead to interesting statistical mechanical consequences.
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I. INTRODUCTION

Thermal fluctuations in fluid are usually manifest as lo-
calized tiny displacement velocity variations [1,2], or as self-
diffusion of the fluid molecules. It is an inherent part of the
physical phenomena associated with thermal equilibrium that
is the foundation of statistical mechanics. In the past few
decades, the advent of nano- and microfluidics has focused
attention on the effect of fluid-solid interfaces on confined
fluids [3–7]. In an earlier work [8] it was shown that by
considering the low-order continuum hydrodynamic modes
in a 2D channel, one can identify the location and charac-
teristics of the hydrodynamic boundary (HB), with excellent
agreement with the results of molecular dynamics (MD) sim-
ulations. Interestingly, the HB is always located inside the
fluid domain. In this work we report the analytical solution
for the complete set of hydrodynamic modes in a 2D channel.
With this solution set one can easily obtain a time series
of velocity fluctuations that is statistically identical to that
obtained by molecular dynamics (MD). Besides confirming
the earlier results [8] on the location and characteristics of
the hydrodynamic boundary, we have also obtained a simple
expression for the fluctuation-dissipation theorem (FDT) in
terms of hydrodynamic modes’ eigenvalues. Since the bound-
ary condition is an inherent part of the hydrodynamic modes,
the present work opens the possibility of manipulating thermal
fluctuations in mesoscopic channels via boundary condition
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modulations, with the attendant statistical mechanical conse-
quences.

In what follows, we present the analytical solution of the
2D hydrodynamic modes in Sec. II. This is followed by a de-
scription of our approach in Sec. III in which MD simulations
[9,10] are used to obtain the eigenvalues of the HMs, with the
subsequent determination of the HB position and the relevant
slip length. In Sec. IV the setup of the MD simulations, the use
of projection of HM onto the MD configurations to obtain the
autocorrelation function, and the evaluation of the diffusion
constant, are detailed. In Sec. V we give a brief description
on the generation of a fluctuating velocity displacement time
series that exhibits identical statistical properties as that ob-
tained by MD. In Sec. VI we illustrate the approach used to
identify the location of the hydrodynamic boundary as well as
the value of the slip length. Derivation of the FDT [10,11]
in terms of the hydrodynamic modes is given in Sec. VII,
with comparison to the MD simulation result on the diffusion
constant. We conclude in Sec. VIII with a short recapitulation
and an outlook for future works.

II. HYDRODYNAMIC MODES

According to the kinetic theory of fluids [4,12], thermal
fluctuations arise from the thermal motion of molecules. In
the continuum limit, a fruitful approach to study the motions
of an infinite number of interacting molecules is to use the
continuum equation of motion [1] and view the thermal fluc-
tuations as the actuation of the hydrodynamic modes via the
equipartition theorem. For the 2D liquid system, the hydro-
dynamic modes are the eigenfunctions of the incompressible
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FIG. 1. (a) A schematic representation of a fluid confined within
a mesoscopic 2D channel of length 2L and height 2H . Gray solid
balls denote fluid atoms and red solid balls denote wall atoms, here
only one layer is shown. (b) A snapshot of our MD simulation
configuration.

Navier–Stokes equation characterized by the mass density ρ,
velocity field �v(�x), and viscosity η:

ρ
∂�v(�x, t )

∂t
= −∇p + η∇2�v(�x, t ), ∇ · �v(�x, t ) = 0, (1)

where p denotes pressure, t is the time, and we have neglected
the nonlinear term ρ�v · (∇�v) since we will not be considering
high velocity flows. To solve for the hydrodynamic modes, we
first take the curl on both sides of Eq. (1) to obtain an equation
for the vorticity ��:

R
∂ ��(�x, t )

∂t
= ∇2 ��(�x, t ), �� = ∇ × �v, (2a)

∇2 ��(�x, t ) = −λR ��(�x, t ), (2b)

where R = ρ/η. Equation (2b) is in the form of an eigenvalue
equation, in which the eigenvalue λ characterizes the time
dependence of �� ∼ exp(−λt ). In what follows, we consider
the geometry of a 2D channel with width 2H along the z
direction as shown schematically in Fig. 1(a), with the center
of the channel designated as z = 0 and the direction along
the channel axis denoted as the x direction. A snapshot of
the molecular dynamics simulation of the sytem is shown in

Fig. 1(b). Since we would like to consider the hydrodynamic
modes in the absence of any external force acting on the
system, hence from Newton’s law only those solutions with
stationary center of mass will be taken into account.

As the velocity has only x and z components, it follows
that �� = (∂vz/∂x − ∂vx/∂z) ĵ has only a y component and
therefore may be regarded as a scalar quantity. We denote it as
�(�x, t ). By writing �(�x, t ) = exp(−λt )�(�x) in anticipation
of exponentially decaying solutions, we obtain from Eq. (2)
the following solution form [13]:

�(x, z) = � sin(kzz + α) cos(kxx), (3)

Where � denotes the amplitude of the mode, and k2
x +

k2
z = λR. Here �,α are arbitrary constants to be deter-

mined by the additional conditions imposed on the so-
lution. From the definition of the vorticity function and
the incompressibility condition ∂vx/∂x + ∂vz/∂z = 0, we
can eliminate vx by differentiating � [Eq. (3)] with re-
spect to x and note that −∂vx/∂z∂x = −∂z(∂vx/∂x) =
−∂z(−∂vz/∂z) = +∂2vz/∂z2, so that

∂2vz

∂x2
+ ∂2vz

∂z2
= −�kx sin(kzz + α) sin(kxx). (4)

Here vz is subject to the boundary condition that vz = 0 at
the hydrodynamic boundary. Similarly, for vx one obtains

∂2vx

∂x2
+ ∂2vx

∂z2
= −�kz cos(kzz + α) cos(kxx), (5)

where vx is specified to satisfy the Navier boundary condition
[14]: ∓ls(∂vx/∂z) = vx at the hydrodynamic boundary, where
ls denotes the slip length [3]. It should be noted that owing to
the liquid structure in the vicinity of solid-liquid interface, the
hydrodynamic boundary cannot be at the liquid-solid molec-
ular interface. Instead, it is located at y = ±h = ±(H − 	),
where 	 is the distance of the hydrodynamic boundary from
the molecular interface y = ±H [8]. More on the determina-
tion of the hydrodynamic boundary will be noted below.

There are two sets of solutions: the set that displays an-
tisymmetry with respect to z = 0, and the set that displays
symmetry with respect to z = 0. Below we first consider the
antisymmetric solution set.

A. Antisymmetric solutions

Antisymmetric solutions of Eqs. (4) and (5) that satisfy
all the boundary conditions plus the incompressibility and
stationary center of mass conditions can be written as

vx = �

[

 sinh(kxz) + kz

λR
cos(kzz + α)

]
cos(kxx), (6a)

vz = �

[

 cosh(kxz) + kx

λR
sin(kzz + α)

]
sin(kxx), (6b)

where the parameter 
 is determined by the condition


 cosh(kxh) = − kx

λR
cos(kzh) sin α, α = π

2
,

3π

2
,

5π

2
,−−

(6c)
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FIG. 2. (a) A plot of the velocity field for a particular antisymmetric hydrodynamic eigenmode with kx = π/L. Here we choose
L = 17.48 μm and H = 6 μm. Net flow in one periodic unit is zero. (b) A plot of the velocity field for a particular symmetric hydrodynamic
eigenmode with kx = π/L. Here we choose the same sample size L = 17.48 μm and H = 6 μm. The net flow in one periodic unit is zero,
consistent with the zero volume force. Unlike the antisymmetric modes, there does not exist centers of vortices at z = 0. There can be a kx = 0
antisymmetric mode, but not for the symmetric case.

and the dispersion relation is given by

λRls + kx tanh(kxh) + kz tan(kzh) = 0, (6d)

in conjunction with the constraint k2
x + k2

z = λR.
The validity of the solution can be checked by substituting

the solutions into the differential equation with the relevant
boundary conditions, as well as the incompressibility and the
stationary center of mass conditions. For example, the incom-
pressibility condition can be easily verified by differentiating
Eq. (6a) by x and Eq. (6b) by z, and adding the results.
That vz = 0 at the hydrodynamic boundary can be verified
by combining (6b) and (6c), setting z = ±h, and recognizing
that cos(±kzh) sin α = sin(α ± kzh) for α = π/2, 3π/2, etc.,
since cos α = 0. To verify the Navier boundary condition at
z = −h, simply solve for 
 in Eq. (6c) and substitute the
result into (6a) at z = −h. That would yield (with α = π/2
for simplicity) vx|z=−h = −�ls cos(kzh), where relation (6d)
has been used. By differentiating Eq. (6a), setting z = −h, and
using Eq. (6c), we obtain ∂zvx|z=−h = −� cos(kzh). It follows
that ∂zvx|z=−h = vx|z=−h/ls, the desired result.

The antisymmetric hydrodynamic modes have the charac-
ter of vortex and antivortex pairs. This is illustrated in Fig. 2(a)
for a particular mode with a nonzero kx.

B. Symmetric solutions

For the solution set symmetric with respect to z = 0, the
procedure is similar. By following the same variable separa-
tion procedure as described above (except there cannot be a
kx = 0 mode as in the antisymmetric case owing to the
stationary center of mass condition) we can get the relevant
expressions as

vx = �

[

 cosh(kxz) + kz

λR
cos(kzz)

]
cos(kxx), (7a)

vz = �

[

 sinh(kxz) + kx

λR
sin(kzz)

]
sin(kxx), (7b)


 sinh(kxh) = − kx

λR
sin(kzh), (7c)

with the dispersion relation given by

λRls + kx coth(kxh) − kz cot(kzh) = 0. (7d)

The parameters in the above equations must be solved
together with the constraint k2

x + k2
z = λR. The symmetric

hydrodynamic modes also display the characteristic feature of
vortex and antivortex pairs. A typical example is illustrated in
Fig. 2(b).

C. Equipartition and the mode amplitude

Since the hydrodynamic eigenmodes are the eigenfunc-
tions of the Laplacian operator, they are orthogonal to each
other and hence each represents an independent degree of
freedom. It follows that the amplitude �β of the solution
is determined by the equipartition theorem [1], i.e., each
hydrodynamic mode should have (1/2)kBT of thermal kinetic
energy:

1

2
ρ�2

β

∫ [
v2

β,x(x, z) + v2
β,z(x, z)

]
dxdz = 1

2
kBT, (8a)

�2
β = kBT

ρ
∫ [

v2
β,x(x, z) + v2

β,z(x, z)
]
dxdz

. (8b)

Here we use subscript β for the eigenfunction index. Hence
vβ,x means the x component of the βth velocity eigenfunction.
Similarly for the z component.

For a system with an infinite spatial domain, the amplitude
is necessarily infinitesimal. However, for a given spatial loca-
tion, the incoherent addition of an infinite number of modes
would still give rise to a finite fluctuation amplitude.

D. Completeness of the solutions

It is important to note that the symmetric solutions, com-
bined with the antisymmetric solutions, satisfy the following
completeness condition:∑

β

�vβ (�r)�vβ (�r′) = δ(�r − �r′)
∫

|�vβ (�r)|2d�r, (9)

where �r = (x, z). Proof of the completeness condition is pre-
sented in Appendix A [13].
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E. Evaluation of eigenvalues and eigenfunctions

In Secs. II A and II B above we have presented two types of
eigenfunctions and their corresponding dispersion relations.
Here we illustrate the solution procedure for the eigenfunc-
tions and eigenvalues from the two dispersion relations.

Antisymmetric and symmetric modes have the same so-
lution procedures. Here we use the antisymmetric modes to
illustrate the solution procedure. In Eq. (6d), h, ls, and R are
the given system parameters and kx is the sequenced input
wave vector which characterizes the periodicity along the x
direction. Once all four parameters are given, we can solve
for the unknown kz under the constraint k2

x + k2
z = λR. For

a given kx, kz has infinite number of solutions due to the
periodic property of tan(x). By substituting pairs of kx and kz

back to (6a) and (6b) one can explicitly obtain the eigenfunc-
tions, while the eigenvalues can be obtained from the relation
λ = (k2

x + k2
z )/R.

When the channel’s length L is given, wave vector kx can
be any value selected from {kx = mxπ/L|mx ∈ N}. For each
specified mx, an infinite number of kz indexed by mz ∈ N+
can generate either antisymmetric or symmetric solutions.
Therefore we can label the eigenwave vector �k = (kx, kz ) by
using the 2-tuple (mx, mz ). Since the 2-tuple is countable,
we rearrange the eigenvalues in a sequence by using one
(integer) index β to label the ordering in accordance to
the magnitude of λ from small to large (decay time from
large to small). In this fashion we map the eigenvalues from
the 2-tuple to its natural ordering λβ . Such a label will
become useful as shown below, for ordering the decay times of
the HMs.

From the above, we see that the eigenfunctions and eigen-
values can be labeled either by (kx, kz ) or by β.

III. OUTLINE OF THE STRATEGY IN USING MD
TO DETERMINE THE HMs’ EIGENVALUES

What we have presented above is basically the analytical
form of the HMs in which h and ls are treated as given system
parameters, from which kz and λ can be derived. However, in
MD simulations h and ls are implicit parameters, not known
a priori. Therefore we intend, in the subsequent sections, to
use MD in conjunction with the form of the HM with kz

being treated as a variable, to first identify the eigenvalues
of the HMs. The system parameters h and ls are subsequently
obtained by using the orthogonality property of the HMs. In
other words, the solution steps are in the reverse order as
that described in Sec. II E above. While the technical steps of
this process are detailed in the subsequent sections; here we
give an overview of the approach so as to anticipate the later
developments.

The basic principle of this approach is that even though
in MD there is no explicit delineation of a “hydrodynamic
boundary,” yet the fact that it exists implicitly in MD sim-
ulations cannot be in doubt. Hence if continuum hydrody-
namics is correct, then the HM with the correct value of kz

(i.e., that which gives the eigenvalue), once projected onto
the MD configuration and followed in its time evolution,
should exhibit a local maximum in the decay time in its self-
correlation. This is guaranteed by the variational derivation of

the Navier boundary condition from the principle of minimum
dissipation [15,16]. As evidenced below, this fact is indeed
true.

Once the eigenvalues (and hence the eigenfunctions) are
determined, we multiply two different HMs and integrate the
product from z = 0, i.e., the center of the channel, towards
the channel boundary. Since the HMs are the eigenfunctions
of symmetric matrices, they are orthogonal to each other
and hence the integral must vanish at the HB. By using this
process the position of the HB, i.e., the value of h, can be
unambiguously identified and with overdetermination, since
the integral should vanish for the product of any two different
HMs.

The determination of the HB position also carries with
it the value of the slip length, since once h, kx, kz (and
therefore λ) are known, the slip length can be obtained from
the dispersion relation, Eq. (6d) or (7d). This manner of
determining the slip length is noted to be very different from
the usual MD approach [7,9,17–21]. The present approach
has the advantage of knowing the reference point, i.e., the
hydrodynamic boundary, from which the slip length should
be measured. This is especially important since the slip length
is usually fairly small in magnitude and hence the precise
position of the reference point is crucial for determining its
value.

IV. MOLECULAR DYNAMICS SIMULATIONS

A. Parameter settings

Molecular dynamics (MD) simulation of Lennard-Jones
(LJ) potential fluid [22] confined between two parallel solid
walls were carried out to numerically verify the results from
the perspective of continuum hydrodynamic modes [9,10].

There are two types of atoms in our MD system: fluid
atoms and solid wall atoms. Solid wall has three atomic layers
arranged in a face-centered-cubic lattice, with each atom
constrained to move within a harmonic potential centered
on the lattice site. The force constant for the solid atoms is
given by k0 = 900 in default MD unit of our system, with the
harmonic potential given by U = 1

2 k0|	�r|2, where 	�r denotes
the deviation vector from the equilibrium position of the solid
atom. The value of the force constant was chosen to ensure
that the mean-square displacement of the wall atoms does not
exceed 10% of the nearest-neighbor distance, in accordance
with the Lindemann criterion [23]. Interaction between the
solid atoms was removed. Detailed settings can be found in
Ref. [8]. Periodic boundary conditions were applied along all
three directions, with the y periodicity being very short so as
to suppress low energy excitations.

The interactions between the fluid atoms and that between
the solid and fluid atoms are both described by the LJ poten-
tial, where i,j refer to the atomic type. Here “solid” is denoted
by subscript w and “fluid” by subscript f; σ is LJ potential’s
atomic size parameter and ε denotes the interaction energy
unit. In addition, we use m to denote the atomic mass. We
set εw f = 1.16ε, σw f = 1.04σ , δw f = 0.7 and ε f f = 1.16ε,
σ f f = 1.04σ , and δ f f = 1. The average number density of
the fluid is set at ρ = 0.805/σ 3, and the fluid system is kept
at equilibrium state under a constant temperature 3.5ε/kB.
To keep our MD system at constant temperature rather than
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constant energy, Nose-Hoover chains [24] algorithm with
chain length lc = 2 was used as the thermostat. Throughout
the MD simulations, the equation of motion was integrated
with a time step of 0.001

√
mσ 2/ε. Center of mass motion

was removed from the simulation at a frequency of every 5000
steps.

We performed equilibrium MD simulations under the NVT
constraints, i.e., the number of atoms, volume, and tempera-
ture are fixed at constant values. We first put the fluid atoms at
evenly distributed lattice sites with an appropriate separation
between the neighbors, determined from the fluid number
density ρ. Then we add three layers of solid atoms arranged
with face-centered-cubic structure both above and beneath
the inserted fluid atoms. The fluid region’s geometric size
is 2L × 2H × 2W with 2H = 34.96σ , where H denotes the
position of the liquid-solid interface. The channel’s period-
icity along the x direction is set by 2L = 2H . Channel’s
y direction periodicity is chosen to be 2W = 5.2σ , for en-
suring the eigenmodes’ oscillations along the y direction is

suppressed. Once the initial configuration was prepared, it
was evolved for around 50 000 time steps in order to attain
the equilibrium state. All the eigenmodes projections and
correlation measurements discussed below were carried out at
the equilibrium state. In what follows, unless explicitly stated,
reduced units will be used by default.

B. Projected autocorrelation function of the eigenmodes

Using the continuum form of the HMs, projected unto the
MD configurations, is an important initial step in our approach
to obtain the HM’s eigenvalues from MD as mentioned above
in Sec. III.

The hydrodynamic eigenmodes’ projected autocorrelation
function Cβ (kz,	t ) was measured for a particular eigen-
mode β with the input eigenwave vector kz values rang-
ing from 0.001 to 0.800 with an interval of 0.001. It is
defined as

Cβ (	t ) =
〈(∑N

i �u[�ri(t0)] · �vβ[�ri(t0)]
)(∑N

i �u[�ri(t0 + 	t )] · �vβ[�ri(t0 + 	t )]
)〉

〈(∑N
i �u[�ri(t0)] · �vβ[�ri(t0)]

)(∑N
i �u[�ri(t0)] · �vβ[�ri(t0)]

)〉 , (10)

where the angular brackets denote ensemble averaging over t0,
�vn[�ri(t )] denotes the βth hydrodynamic velocity eigenmodes
value at position �ri(t ), which is the coordinate vector of atom
i at time t , �u[�ri(t )] denotes the MD velocity vector of ith atom
at position �ri(t ), and N is the total number of fluid atoms
in the simulation domain. To ensure that the hydrodynamic
statistical average is established and that the measurement is
precise, we choose the time resolution 	t = 0.02

√
mσ 2/ε to

be 20 times larger than the integration time step. By measuring
the normalized time correlation of a specific eigenmode β

from MD, we are able to obtain the decay time τ = 1/λ,
which can be determined by the slope of the autocorrelation
function.

C. Evaluating the diffusion constant from MD trajectories

We would like to evaluate an important parameter
that is the result of equilibrium fluctuations—the diffusion
constant—from MD atomic trajectories. We note that the
diffusion constant can be evaluated by more than one ap-
proach, e.g., through the Green-Kubo relation [2] as the time
integral of the velocity autocorrelation function. However,
accuracy of this approach is poor, owing to the statistical
fluctuations in the long time tail of the autocorrelation func-
tion. Here we use the ensemble-averaged atomic trajectories
to calculate the diffusion constant by using the Einstein
relation [2]:

lim
t→∞

〈[x(t ) − x(0)]2〉
2t

= D. (11)

By choosing an appropriately large-sized box as our mon-
itoring window and limit the time interval to be small enough
so that no atoms within the box would drift out, we plot the

half the mean-squared distance versus the time interval 	t as
shown in Fig. 3. Diffusion constant can be determined by eval-
uating the asymptotic slope as t → ∞. This procedure yields
D = 0.20

√
εσ 2/m. This value can serve as the reference to be

compared with that obtained from the fluctuation-dissipation
theorem by using the HMs, shown in Sec. VI.

FIG. 3. A plot of the Einstein relation 〈[x(t ) − x(0)]2〉/2 ∼ t ,
evaluated from atomic trajectories. Diffusion constant is determined
by the asymptotic slope as t → ∞. Here the blue line denotes the
guide to the eye for the straight line section of the simulation data,
and the red circle symbols denote the MD simulation data. Note that
the initial few points in the simulated trajectory data do not follow
the diffusive behavior, but rather show a ballistic behavior. From the
slope of the straight-line portion, we obtain the value of the diffusion
constant to be 0.20 ± 0.01, in units of

√
εσ 2/m.
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FIG. 4. (a) Instantaneous magnitude of the projection coeffi-
cient A(t ) for the eigenmode with kx = 0, kz = 0.179/σ . Each
point is sampled from MD trajectories with a time interval 	t =
0.02

√
mσ 2/ε. (b) The logarithm of the autocorrelation function

shows a good linear dependence with time t with a slope of
−0.074

√
ε/mσ 2 when t is small, implying a decay time of

13.51
√

mσ 2/ε. Deviation from linearity is seen when t becomes
larger.

V. GENERATION OF DISPLACEMENT
VELOCITY TIME SERIES

Equation (10) gives the eigenmode-projected autocorre-
lation function Cβ (	t ) evaluated from MD trajectories. We
would like to take a look at how the eigenmodes projection
coefficient Aβ (t ) evolves as a function of the instantaneous
time t, and what its normalized autocorrelation function
Cβ (t ) = 〈Aβ (0)Aβ (t )〉

〈A2
β (0)〉 looks like. Aβ (t ) is defined as

Aβ (t ) =
∑N

i �u[�ri(t )] · �vβ[�ri(t )]∑N
i �vβ[�ri(t )] · �vβ[�ri(t )]

. (12)

From the completeness theorem, Eq. (9), we can express
�u[�ri(t )] ∼= ∑

β Aβ (t )�vβ[�ri(t )], where the approximation is in
the replacement of the spatial integral in Eq. (9) by discrete
summation. In Fig. 4(a) we plot the values of Aβ (t ) at dis-
cretized time steps, i.e., {A(k	t )}, where k = 0, 1, 2, 3,... The
effect of thermal fluctuations are easily seen. In Fig. 4(b) the
logarithm of Cβ (t ) is seen to present a good linear relation
with time t , i.e., Cβ (t ) = exp(−λβt ), even though at large t a
slight deviation from linearity is seen.

We would like to generate both the thermal fluctuation
time series and the corresponding autocorrelation function by
using the same HM eigenfunction and eigenvalue, without
using the MD. That can be useful sometimes as an alternative
theoretical tool without invoking MD. In what follows we will
ignore the subscript β.

Since Ak satisfies the constraints 〈Ak〉 = 0 and 〈AkAk+m〉 =
�2e−λm	t , where the angular brackets denote averaging over
time steps k, it follows that by using the reparametrization
we can recursively construct a correlated stochastic time
series ak :

a0 = r0, ak = e−λ	t ak−1 +
√

1 − e−2λ	t rk. (13)

Here r0, r1, r2, ... are independent variables that follows
the Gaussian probability density function exp(−r2/2)/

√
2π .

FIG. 5. (a) Time series Ã(t ) with same time correlation behavior
for the eigenmode kx = 0, kz = 0.179/σ . (b) The logarithm of the au-
tocorrelation function 〈ÃkÃk+m〉/〈Ã2

k〉 shows exact linear dependence
with t as expected, with a slope of −0.0776, implying a decay time
of 12.9

√
mσ 2/ε, which is 5% smaller than that obtained from MD.

It can be easily verified that the time series ak de-
notes a correlated Gaussian-distributed variable satisfy-
ing the correlation constraint 〈akak+m〉 = e−λm	t . That
is, 〈ak〉 = e−λ	t 〈ak−1〉 + √

1 − e−2λ	t 〈rk〉 = 0; and 〈a2
k〉 =

e−2λ	t 〈a2
k−1〉 + (1 − e−2λ	t )〈r2

k 〉 = 1. To build artificial ther-
mal fluctuation time series Ã(t ) with the same time correlation
constraint of A(t ), we simply define Ãk = �ak so that 〈Ãk〉 =
0 and 〈ÃkÃk+m〉 = �2e−λm	t . In Fig. 5(a) we show the Ã(t )
time series generated from the above recursive scheme. The
autocorrelation is shown in Fig. 5(b). The decay time is
about 5% lower than that shown in Fig. 4(b), but the time
series resembles that obtained from MD, even though we do
not expect them to be identical. It should be noted that the
eigenmode used here has utilized the information about the
position of the hydrodynamic boundary, i.e., the value of h =
H− 	. In the following section we detail how this value of h
is determined.

VI. HYDRODYNAMIC BOUNDARY
AND THE SLIP LENGTH

In order to determine the position of the hydrodynamic
boundary from the projected HMs in MD simulations, we
would use the 2-tuple �k = (kx, kz ) characterization of the
HMs, instead of the ordered eigenvalue index β. The basic
idea is that for a given kx, we input a discretized series of kz

values into the eigenfunctions, Eqs. (6) and (7). However, in-
stead of trying to solve for the eigenvalues, which requires the
knowledge about the position of the hydrodynamic boundary
h as well as the value of the slip length, here we use MD to
obtain both pieces of information. This process involves the
following steps.

A. Projection of the form HM onto MD configurations

We directly project the HM eigenfunction with arbitrary
values of kz onto the MD simulations to obtain C(kx )

kz
(	t ), i.e.,

Eq. (9), so as to obtain the inverse of its slope (i.e., the decay
time τ ) when plotted as a function of 	t .
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FIG. 6. (a) Decay time τ plotted as a function of kz, discretized
by intervals 	kz = 0.001/σ for the kx = 0 case. Three black dots
correspond to the peak points of the red curves, which theoretically
predict the hydrodynamic modes’ eigenwave vector kz as well as
its decay time. The upper blue curve corresponds to the relation
τk2

z =ρ/η, where the viscosity η = 1.95
√

εm/σ 2. The black dots
denote the intersections of the blue curve with the red curve, from
which the eigen-kz values are picked out. (b) Hydrodynamic bound-
ary position should satisfy the constraint of mutual orthogonality.
Here the integral of three cross products are shown as a function of
the upper integration limit. The three integrals of the cross products
all vanishes in the vicinity of h = 16.48σ .

B. Determination of kz and hence the eigenvalue of the HM

Since arbitrary values of kz do not necessarily satisfy the
boundary condition that is implicit in the MD simulations,
we expect the decay time τ to be a maximum when the kz

value actually meets the boundary condition requirement in
the MD simulations. In this manner we can easily identify
the eigenvalues of the HMs, or the eigen-kz values, directly
from MD. For those values of kz that do not meet the implicit
MD boundary condition requirement, the decay time should
be shorter since the discrepancy with the boundary condition
necessarily invokes more dissipation owing to the incompati-
bility. This aspect can be seen from the variational derivation
of the Navier boundary condition [15,16], which dictates
minimum dissipation when the Navier boundary condition is
satisfied. When supplemented by the HMs, the position of
the hydrodynamic boundary becomes a parameter that can be
(over-)determined from MD.

In Fig. 6(a) the red curve shows the decay time τ plotted as
a function of kz, discretized by interval 	kz = 0.001 for the
kx = 0 case. It turns out that the kx = 0 case is the simplest
in terms of the determination of the hydrodynamic boundary
position h. The reason is that for the kx = 0 case, a priori
knowledge of h is necessary in the calculation of C(kx )

kz
(	t ).

Therefore the strategy here is to first determine h from the
kx = 0 case, then to test the consistency with the kx = 0 case.
In Fig. 6(a) the blue curve denotes the relation τk2

z = ρ/η,
with a viscosity value of η = 1.95

√
εm/σ 2. The intersections

of the blue curve with the red curve are marked by three black
dots, which also correspond to the peaks of the decay time
curve. In this manner the fluid viscosity is simultaneously
determined.

TABLE I. Fluid hydrodynamics parameter values.

Mode 1 Mode 2 Mode 3 Mode 4

kz for MD 0.178 0.357 0.536 0.731
kz for theory 0.178 0.357 0.537 0.720
	(σ ) 1.0 ± 0.1
Slip length ls(σ ) 1.2 ± 0.1
Viscosity ν (

√
εm/σ 2) 1.9 ± 0.1

C. Using the orthogonality relation to determine
the HDB position and the slip length

To fix the location of the hydrodynamic boundary, we input
the kz values as indicated by the three black dots in Fig. 6(a) to
the kx = 0 HMs, which are just sin(kzz). Three cross products
can be formed from the three modes, denoted as 12, 13, and
23. The integration of these three cross products, starting
at z = 0 upward, must vanish at the same hydrodynamic
boundary since they have to be orthogonal to each other. By
carrying out the integration as a function of z, we monitor the
position of the first zero crossing. This is shown in Fig. 6(b),
where the three cross products are shown to all cross zero at
around z = 16.48σ . This value of z is denoted the hydrody-
namic boundary position h. Since the molecular interface is
located at H = 17.48σ , there is an offset of 	 = σ for the
hydrodynamic boundary, which is inside the fluid domain.
The reason for this offset is understandable, since in MD it
is well known that there can be large density oscillation(s) in
the vicinity of the fluid-solid interface [8].

It should be noted that once the position of the HB is
determined, the value of the slip length is also known and can
be determined from the HMs eigenfunctions by substituting
the eigenvectors k(n)

z into the dispersion relationships, Eq. (6d)
or (7d), as noted earlier.

The relevant parameter values shown in Fig. 6 are tabulated
in Table I.

Next we check the consistency of the hydrodynamic
boundary position with the kx = π/L (2D) HM projected onto
the MD simulation results. In these modes we use the infor-
mation of the hydrodynamic boundary position h obtained
from Fig. 6. The purpose here is to check the consistency.
Figure 7 gives the relation between decay time versus kz. The
blue curve is the same as that in Fig. 6. The three black dots
indicate the positions of the analytical HM predictions, based
on the hydrodynamic boundary information obtained from the
kx = 0 (see Fig. 6) modes. They correspond very well with
the peaks of the decay time (red curve) obtained from MD
simulations through the projection approach, as well as with
the intersections of the blue curve with the red curve.

VII. FLUCTUATION-DISSIPATION THEOREM

As first pointed out by Onsager, the equilibrium fluctua-
tions of a phase variable are governed by the same transport
coefficients as the relaxation process to equilibrium of the
same variable. Hence there is an inherent connection between
fluctuations and the dissipative coefficient, which is made ex-
plicit by the fluctuation-dissipation theorem [2,11,25]. Under
the linear response approximation [2], this theorem states that
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FIG. 7. Decay time τ plotted as a function of the eigenwave
vector kz discretized by intervals 	kz = 0.001 for 2D hydrodynamic
eigenmodes with H = 17.48σ and kx fixed at π/L. Three black dots
correspond to the peak points of the red curves which theoretically
predict the hydrodynamic modes eigenwave vector kz and its decay
time. According to eigenmodes property, τ (k2

z + k2
x ) = ρ/ν should

be a constant which is plotted as blue curves in the figure above.
We can see that the blue curve passes through the black dots just
as expected and we use the same hydrodynamic parameters here
to show that they reflect the intrinsic solid-fluid intermolecular
interactions.

the diffusion constant D can be expressed as a function of the
time integral of the velocity autocorrelation function for a 2D
fluid:

D = 1

2

∫ ∞

0
〈�ui(0) · �ui(τ )〉dτ. (14)

Here �ui denotes the 2D velocity vector of fluid atom
i and the angular brackets represent the equilibrium ensemble
average. We wish to express Eq. (14) from the perspective of
HMs.

As seen from the previous section, at time t the molecular
velocity can be expressed by superposing continuum hydrody-
namic velocity eigenmodes. By substituting Aβ (t ), Eq. (12),
into Eq. (14) and invoking the completeness condition, we
obtain

D = 1

2

∫ ∞

0

〈∑
β

∑
α

Aβ (0)Aα (τ )�vβ (0) · �vα (τ )

〉
dτ. (15)

Since each hydrodynamic eigenmode represents an inde-
pendent degree of freedom, the cross-correlation 〈Aβ (0)Aα (t )〉
for β = α should be zero. Therefore,

D(x, z) = 1

2

∫ ∞

0

〈
βmax∑
β

Aβ (0)Aβ (τ )|�vβ (x, z)|2
〉

dτ

= 1

2

∫ ∞

0

βmax∑
β

〈
A2

β (0)
〉〈|�vβ (x, z)|2〉e−λiτ dτ

= 1

2

βmax∑
β

1

λβ

〈
A2

β (0)
〉|�vβ (x, z)|2. (16)

Here the summation is up to a maximum number of terms
βmax so that the decay time 1/λβ of the eigenmodes falls
within the diffusive regime. We are reminded that too short
a decay time is inconsistent with the relaxational behavior
of the HMs, since it takes a few molecular collisions before
the diffusive behavior is established and ballistic behavior
obliterated.

The ensemble averaged 〈A2
β (0)〉 = �2

β = (kBT/ρ)/∫
[v2

β,x(x, z) + v2
β,z(x, z)]dxdz can be determined directly

from the equipartition theorem. The fluctuation-dissipation
theorem is then given by the very simple expression:

D = 1

A

∫∫
D(x.z)dxdz = 1

2

kBT βmax

ρA

⎡⎣ 1

βmax

βmax∑
β

1

λβ

⎤⎦
= 1

2

kBT M

ρ

⎡⎣ 1

βmax

βmax∑
β

1

λβ

⎤⎦ (17)

Here A denotes the area of the 2D sample, the quantity in
the square brackets is the averaged decay time of the eigen-
modes, up to the maximum βmax, and M = limA→∞ βmax/A
∼= 0.25/σ 2 is shown in Appendix B to be a well-defined areal
mode density.

By setting 1/λβmax = 0.06
√

mσ 2/ε (the intercept of the
straight line portion of the curve in Fig. 3), we obtain βmax ≈
4100 and D = 0.19

√
εσ 2/m, which is consistent with the

diffusion constant value obtained from the slope of the straight
line section in Fig. 3, i.e., 0.20

√
εσ 2/m, which has a standard

error estimated to be around 0.01
√

εσ 2/m.
As far as we know, this is the first time that the fluctuation-

dissipation theorem has been expressed in terms of the eigen-
values of the HMs. However, Eq. (17) should not be surprising
since the FDT clearly involves a timescale, and that timescale
turns out to be the averaged decay time of the hydrodynamic
modes. The only constraint here is that the HM’s decay time
(inverse eigenvalue) should be within the diffusive regime so
that the HM scheme is consistent with the basic assumptions
of the FDT. In other words, while mathematically the HM’s
eigenvalue can approach infinity, physically there is an upper
limit to the value of the eigenvalues for the validity of the FDT.

VIII. CONCLUSIONS AND OUTLOOK

We have formulated an alternative perspective on thermal
fluctuations in a 2D channel that is based on HMs. It is shown
that this approach can reproduce both the statistical time series
of velocity fluctuations as that obtained from MD simulations,
as well as their statistical properties. In particular, the FDT can
be expressed in terms of the eigenvalues of the HMs. However,
since the HMs inherently involves the boundary condition on
the channel wall, it is shown that through the orthogonality
condition of the HMs one can use MD simulations, in con-
juction with the HMs, to accurately determine not only the
location of the hydrodynamic boundary, but also the relevant
slip length.

The HMs approach offers a complementary viewpoint on
thermal fluctuations that can be useful when the boundary
condition is involved. In looking ahead, we intend to explore
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the effect of inhomogeneous modulation of the boundary
condition along the channel walls, on the thermal fluctuations
and their dynamic implications, such as the diffusion constant.
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APPENDIX A

Since it is well known that the eigenfunctions of a self-
adjoint operator, in conjunction with the relevant boundary
condition(s), form a complete and orthonormal set, here we
give a simple proof that the HMs are indeed complete.

In order to reduce the number of constraints in Navier-
Stokes equation, we introduce the scalar potential φ and
rewrite the velocity field as

vx = ∂φ

∂z
, vz = −∂φ

∂x
, (A1)

so that the incompressibility condition is automatically satis-
fied. Substituting Eq. (A1) into the Navier-Stokes equation we
get

∇2∇2φ + λ∇2φ = 0, vx(−L, z) = vx(L, z),

vz(−L, z) = vz(L, z). (A2)

In conjunction with the boundary conditions

ls
∂vx(x,±H )

∂z
± vx(x,±H ) = 0,

vz(x,±H ) = 0, (A3)

periodic boundary conditions are applied at x = ±L. Since
slip length is uniform along the x direction, the scalar potential
can be expressed as either

φ(x, z) =
∞∑

i=1

φ̃i(z) sin(mix) (A4)

or

φ(x, z) =
∞∑

i=1

φ̃i(z) cos(mix), (A5)

depending on whether the solution is symmetric or anti-
symmetric modes we want to solve, where mi = iπ/L, i =
1, 2, 3, . . ..

By combining Eqs. (A1), (A4), or (A5) with Eq. (A2) we
obtain

d4φ̃i

dz4
+ p1

d2φ̃i

dz2
+ p2φ̃i = 0, (A6)

where p1 = λ − 2m2
i , p2 = m4

i − λm2
i .

Denote O = d4

dz4 + p1
d2

dz2 + p2; we show that O is a self-
adjoint operator, which means that

{
u∗

(
d4

dz4
+ p1

d2

dz2
+ p2

)
v − v

[(
d4

dz4
+ p1

d2

dz2
+ p2

)
u∗

]}h

−h

=
[

u∗ d3v

dz3
− du∗

dz

d2v

dz2
+ d2u∗

dz2

dv

dz
− v

d3u∗

dz3
+ p1

(
u∗ dv

dz
− v

du∗

dz

)]h

−h

= 0. (A7)

Here we have used the following equalities:

u∗ d4

dz4
v = d

dz

[
u∗ d3

dz3
v

]
− d

dz

[
d

dz
u∗ d2

dz2
v

]

+ d

dz

[
d2

dz2
u∗ d

dz
v

]
− d

dz

[
v

d3

dz3
u∗

]
+ v

d4

dz4
u∗,

u∗ d2

dz2
v = d

dz

[
u∗ d

dz
v

]
− d

dz

[
v

d3

dz3
u∗

]
+ v

d2

dz2
u∗.

To show Eq. (A7) to be true, we use the Navier slip
boundary condition at z = ±h, which states that

d2v

dz2
= ∓ 1

ls

dv

dz
,

d2u∗

dz2
= ∓ 1

ls

du∗

dz
, u∗ = v = 0, (A8)

and after simple reduction,

−du∗

dz

d2v

dz2
+ d2u∗

dz2

dv

dz
= ± 1

ls

du∗

dz

dv

dz
∓ 1

ls

du∗

dz

dv

dz
≡ 0.

Hence O is a self-adjoint operator, and {φ̃i} forms a com-
plete set.

Since {sin(mix), mi = iπ/L, i = 1, 2, 3, . . .} and
{cos(mix), mi = iπ/L, i = 0, 1, 2, 3, . . .} together form
a complete basis, denoted as {κi(x)}, and as HMs are the
direct sum of the two complete basis {φ̃i} and {κi(x)} in
two independent subspaces, hence the HMs clearly form a
complete and orthogonal basis.

APPENDIX B

For any given eigenwave vector kx, there exists one and
only one eigenwave vector k(n)

z in one periodicity. Therefore
the total number of eigenmodes should be equal to the ratio
of (kx, kz ) domain area divided by the unit area 	 = (π/L) ×
(π/H ) occupied by each mode.
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FIG. 8. The ratio of βmax and L is seen to be at a constant when L
and H tend to infinity. This asymptotic value of the slope (red line) is
M ∼= 0.263/σ 2. Numerically evaluated values are indicated by blue
dots. In our present case M ∼= 0.249/σ 2 with L = 250.

We denote the minimum decay time as τ0, then eigenvec-
tors should obey the constraint:

τ = R

k2
x + k2

z

� τ0, k2
x + k2

z � R

τ0
,

where kx = nπ
L , n = 0, 1, 2, 3, . . . , Nx, where Nx is the max-

imum integer satisfying Nx = ⌊√
R
τ0

⌋
. Hence for either the

symmetric or the antisymmetric case,

βmax
∼= lim

H,L→∞
π R

τ0
× 1

4
π
L × π

H

. (B1)

The ratio of maximum βmax and A = HL is therefore

M ′ = lim
H,L→∞

βmax

A
∼=

R
τ0

16π
∼= R

16πτ0
.

Symmetric and antisymmetric modes have the same
asymptotic property so

M = 2M ′ ∼= R

8πτ0
.

In Fig. 8, we plot the βmax as a function of channel’s
half-length L (with fixed H) numerically to illustrate the above
linear dependency.
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