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Quantum diffusion of massive Dirac fermions induced by symmetry breaking
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We show that when a two-dimensional (2D) Dirac fermion moves in disordered environments, the weak
time-reversal symmetry breaking by a small mass gives rise to the diffusive wave propagation, i.e., that the
wave-packet spread obeys the diffusive law of Einstein, up to a—practically inaccessible—exponentially large
length. Strikingly, the diffusion constant is larger than that given by the Boltzmann kinetic theory, and grows
unboundedly as the energy-to-mass ratio increases. This diffusive phenomenon is of quantum nature and different
from weak antilocalization. It implies a new type of transport in topological insulators at zero temperature.
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I. INTRODUCTION

A common wisdom brought by the discovery of localiza-
tion in quantum disordered [1,2] and quantum chaotic [3,4]
systems is that the diffusive law established by Einstein in
1905, i.e., the mean squared displacement grows linearly in
time:

〈r2〉t ∼ Dt, (1)

with D the diffusion constant, is not favored in the low-
dimensional quantum world. The loss of the memory of
particle’s momentum due to collisions with scatterers can
be remedied by various quantum ingredients, such as in-
terference of quantum waves [5–7], quantum chaoticity of
dynamics [8,9], and the exchange interaction between parti-
cles [10]. The memory recovery corrupts the foundation of
Boltzmann kinetic theory for diffusion [11,12]. As a result,
the linear scaling (1) is violated and the (normal) diffusion
is suppressed. Should the temperature be finite, the quantum
phase coherence is destroyed by thermal noises and diffusion
can thus appear [13].

However, recent progresses achieved in very different
research areas, ranging from quantum transport of super-
conducting films [14,15] to wave-packet dynamics of 2D
quantum chaotic systems [16–18], have posed a fundamental
challenge for the common wisdom. In particular, by using the
field theory and the mathematical spectral theory, it is estab-
lished that, when some canonical quantum chaotic systems
are endowed with spin, the diffusive law (1) can persist in the
entire course of wave-packet propagation at the critical point
of topological phase transitions [16–18]. It is thus suggested
that the arising of the irreversible diffusion can go far beyond
the canonical Einstein-Boltzmann paradigm and may have
novel quantum origin in the presence of spin.
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In reality an important spin system is the 2D massive
Dirac fermion, described by a two-component spinor ψ (r, t ),
which propagates according to the (2 + 1)D Dirac equation. It
models a number of electronic materials including anomalous
Hall systems [19], graphene in the spin-↑ K valley gapped by
a spin-orbit interaction [20]; and magnetically doped surface
states of topological insulators [21–23]. These Dirac fermions
carry rich spin properties [24]. It is natural to expect that
when they move in a disordered environment, strong inter-
play between their spin properties and multiple random wave
scattering may give rise to rich wave propagation phenom-
ena. In particular, whether the diffusive law (1) emerges—at
zero temperature—is of fundamental interest, and may find
practical applications. It has been a long-term interest to gen-
eralize the Boltzmann equation to investigate the interplay
between diffusion and various wave effects [25,26]. Recent
nonperturbative studies [11,12,16–18] have suggested that to
address the emergence of quantum diffusion it is crucial to go
beyond traditional ladder and maximally crossing diagrams
[2,5–8,21]. This turns out to be a highly nontrivial task, as
general disordered Dirac systems are concerned. To the best
of our knowledge, such task has been undertaken only for the
limiting massless case [27]. But in that case, instead of Eq. (1),
a superdiffusive propagation 〈r2〉t ∼ t ln t was found, leading
to topological metallic behaviors [28,29].

The above implies that the behaviors of massless Dirac
materials and electronic materials with spin-orbit interaction
[30,31] in disordered environments are completely different
in the scaling characteristic of their conductance. This is the
case even though both systems are in the same sympletic
symmetry class and the same dimension (2D). The difference
is especially striking in that for the former system the scaling
law is found to be one-loop type even in the nonperturbative
regime [27–29], and thus no localization transition occurs; this
is in sharp contrast to the presence of localization transition
in the latter system [31]. A problem arising thereby is what
happens to massive Dirac particles, which no longer belongs
to the sympletic symmetry class; this is the problem addressed
in the present paper.
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II. SUMMARY OF MAIN RESULTS AND PHYSICAL
PICTURE

In this paper we formulate a density response theory for
2D Dirac fermions of mass m moving in a disordered scalar
potential, which allows us to address the propagation of wave
packet. We focus on the case where the particle energy ε

satisfies ε/m � 1 and ετ � 1, with τ the elastic scattering
time, which is order of the Boltzmann collision time. (Both the
velocity parameter and the Planck constant h̄ are set to unity.)
The two inequalities quantify the conditions of small mass and
weak disorder, respectively. We find that, at zero temperature,
quantum diffusion occurs at the time scale τm ≡ ( ε

m )2 τ
2 , much

larger than the time scale τ when the Boltzmann kinetic the-
ory applies. Specifically, fluctuations in the particle number
density relax according to the diffusion equation, that gives
rise to the scaling law (1); however, the diffusion constant D
is determined by a highly nonlinear equation:

D0

D
= 1 − 1

2π2ν

∫ 1
τ

0
dQQ

1

τ−1
m + DQ2

, (2)

where the second term on the right hand side is of quantum
origin, with ν the local density of state. It exceeds the Boltz-
mann diffusion constant D0 = τ , and grows unboundedly with
the ratio ε

m . In two limiting regimes: (I) ε
m � eπετ and (II)

ε
m � eπετ , the explicit analytical expression of D reads:

D =
{

D0 + 1
2π2ν

ln ε√
2m

, for regime I ;
1

2π2ν
ln ε√

2m
, for regime II.

(3)

In the regime I, the quantum term 1
2π2ν

ln ε√
2m

is �D0 im-
plying weak quantum diffusion; in the regime II, it is �D0

implying strong quantum diffusion. The quantum term is
completely determined by ν and ε/m, independent of the
disorder parameter τ . Interestingly, it is reproduced when one
replaces the logarithm ln L

τ
(with L being a length scale) in

the conductivity for m = 0 [27–29] by ln
√

τm
τ

(and uses the

Einstein relation between the conductivity and the diffusion
constant). Note that the one-loop weak antilocalization cor-
rection [30,32,33] corresponds only to the first line of Eq. (3),
but not to the second. The latter is for the regime where
the “correction” is �D0, i.e., beyond the expected validity
of the one-loop calculation as shown in Fig. 1, where quan-
tum diffusion is shown to exist at D � D0. We further show
that the length scale to develop unitary class localization is
exponentially large in (νD)2, and thus all localization effects
are invisible in practice. In contrast, the results shown in this
paper are in the relevant length scales that are experimentally
accessible.

Now we explain in a pictorial way that a small but nonva-
nishing m is the key to the emergence of quantum diffusion.
First of all, when the particle moves in a disordered environ-
ment, random scattering by impurities renders the memory
of momentum lost at the time scale τ , like in the canonical
Einstein-Boltzmann paradigm. However, at longer times the
memory gets recovered by constructive interference between
different propagating paths of quantum waves. In combina-
tion with the helicity, that introduces strong spin-momentum
locking, the memory recovery enhances the relaxation time

FIG. 1. Solving Eq. (19) numerically shows that as the length
scale increases, the low-frequency diffusion constant increases from
the Boltzmann value D0 and levels off at a larger value—the quantum
diffusion constant D obeying Eq. (2). Here ετ = 5 and from the
bottom to the top ε/m = 105, 1010, 1015, +∞.

of momentum and renormalizes τ : The more the memory is
recovered, the slower the momentum relaxes. Then, as we will
implement by a systematic analytical theory below, it turns out
that on one hand the quantum interference rests on system’s
invariance under some time-reversal operation T̂ , while on the
other hand this T̂ symmetry is weakly broken by small m. As
a result, the constructive interference and the ensuing memory
recovery can persist only up to some time scale, which is
τm. After that the particle undergoes random scattering again.
So at the time scale of τm the wave-packet propagation is
diffusive, but with the diffusion constant enhanced from D0

by the memory recovery (Fig. 1).

III. OUTLINE OF ANALYTICAL THEORY

Now we outline the analytical derivations. The complete
theory is given in the supplemental material [34] written in a
self-contained and article style. The quantum wave propagates
according to ∂tψ = Ĥψ , Ĥ ≡ σ · p + mσ z + V (r) with σ ≡
(σ x, σ y), where σ x,y,z are the Pauli matrices and p ≡ −i∇, r
are the momentum and the position operator, respectively. The
disordered potential V (r) has a zero mean everywhere, and
its fluctuations are spatially independent, i.e., 〈V (r)V (r′)〉 =
U0δ(r − r′) with 〈·〉 denoting the average over disorder config-
urations. Here U0 is the disorder strength and can be expressed
as U0 = 1/(πντ ). Note that U0, ε, m are renormalized at short
scales [19]. But the renormalized values enter into the large-
scale physics discussed below merely as parameters. So we
will not discuss this further.

Introducing the time-reversal operation T̂ := −iσ yĈ,
where Ĉ stands for the complex conjugation and applying it
to Ĥ , we find that

f or m = 0 : T̂ Ĥ T̂ −1 = Ĥ ;

f or m 
= 0 : T̂ Ĥ T̂ −1 
= Ĥ . (4)

That is, for m = 0 the system has the time-reversal symme-
try, otherwise the symmetry is broken. For m � ε, in which
we are interested, the breaking is weak, and the field theory
developed for strong T̂ -symmetry breaking (i.e., the unitary
class) [35] does not apply.
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FIG. 2. The diagrammatical representation of the Bethe-Salpeter
equation for the response function φ (a); the dominant contributions
to the two-particle irreducible vertex function U (b); and the singlet
cooperon C (c). In (b) the diagrammatical structure of Z is arbitrary.
In (c) the solid (respectively empty) circles stand for that two end
spins are paired into a singlet state.

The program to be executed below is in spirit parallel to
the theory for localization of spinless particles [6,7]. However,
some key steps are renovated by generalizing the treatments
developed for massless Dirac fermions [27] to the massive
case. Most importantly, the final results have totally opposite
physical implications. Define the retarded (advanced) 2 × 2
matrix Green function as GR(A)

ε := 1/(ε − Ĥ ± iδ), with δ

a positive infinitesimal. Then the motion of Dirac fermions
over large length and time scales can be characterized by the
response function,

∑
p,p′,q

ei(p+·r+−p′
+·r′

++p′
−·r′

−−p−·r− )φ
pp′
αβ,β ′α′ (q, ω)

:= − 1

2π i

〈
(GR

ε+ (r+, r′
+))αβ (GA

ε− (r′
−, r−))β ′α′

〉
. (5)

Here p± = p ± q
2 , p′

± = p′ ± q
2 , ε± = ε ± ω

2 , and α, β, ... are
spin indices to which the Einstein summation convention
applies below. Upon performing the disorder averaging, the
translational invariance is restored, and the right-hand side de-
pends only on three independent coordinates: r++r−

2 − r′
++r′

−
2 ,

r+ − r−, r′
− − r′

+. The Fourier wavenumbers, q, p, p′, respec-
tively, conjugate to them.

When we expand GR,A
ε in V and perform the disorder

averaging, each term of φ
pp′
αβ,β ′α′ is mapped onto a specific

diagram. As shown in Fig. 2(a), the backbone of each diagram
consists of two particle lines: the upper (lower) particle line
corresponds to GR(A). The building blocks of each diagram
are the free Green functions GR(A)

ε (r − r′) := 〈GR(A)
ε (r, r′)〉,

represented by a solid line going rightwards (leftwards), and
the disorder scattering U0δ(r − r′), represented by a dashed
line. In the Fourier representation, GR(A)

ε has the general form:
GR(A)

ε (p) = (ε − σ · p − mσ z − �R(A)
ε (p))−1, where �R(A)

ε is
the self-energy. All diagrams of the response function can be
organized in the way shown by Fig. 2(a), which is described

by the Bethe-Salpeter equation:

φ
pp′
αβ,β ′α′ (q, ω) = (GR

ε+ (p+))αγ (GA
ε− (p−))γ ′α′

(
− δpp′δγβδβ ′γ ′

2π i

+
∑

k

U pk
γ δ,δ′γ ′ (q, ω)φkp′

δβ,β ′δ′ (q, ω)

)
. (6)

Here the kernel U is a two-particle irreducible vertex function.
As exemplified by Fig. 2(c), each diagram of U has ends
joined by the disorder scattering line, and cannot be divided
into disconnected parts through cutting the upper and the
lower particle line simultaneously. Furthermore, by adapting
the method of Ref. [36] it can be shown that U obeys the Ward
identity: ∑

p

(δGε(p))γ ′γU pk
γ δ,δ′γ ′ = (δ�ε(k))δ′δ, (7)

where δGε(p) := GR
ε+ (p+) − GA

ε (p−) and δ�ε(p) is defined in
the similar way. Equations (6) and (7) are rigorous, laying
down a foundation for the analysis of the density response of
massive Dirac fermions.

Multiplying both sides of Eq. (6) by the inverse of the
matrix GR, we obtain
(
ε+ − σ · p+ − mσ z − �R

ε+ (p+)
)
γα

φ
pp′
αβ,β ′α′

= (
GA

ε− (p−)
)
γ ′α′

(
− δpp′δγβδβ ′γ ′

2π i
+

∑
k

U pk
γ δ,δ′γ ′φ

kp′
δβ,β ′δ′

)
,

(8)

and similarly, we have
(
ε− − σ · p− − mσ z − �A

ε− (p−)
)
α′γ ′φ

pp′
αβ,β ′α′

= (
GR

ε+ (p+)
)
αγ

(
− δpp′δγβδβ ′γ ′

2π i
+

∑
k

U pk
γ δ,δ′γ ′φ

kp′
δβ,β ′δ′

)
,

(9)

where the arguments q, ω are suppressed in order to make the
formulas compact. Let us set β = β ′ in both equations, set
γ = α′ in the first equation and γ ′ = α in the second, and
sum up the spin indices and the momenta. Subtracting the two
equations thereby obtained and using Eq. (7), we obtain the
macroscopic equation describing the particle number conser-
vation:

−iωφ0(q, ω) + iq · φ j (q, ω) = iν. (10)

Here iν is the source. φ0 and φ j are the density and the
current relaxation function, respectively, whose microscopic
expressions are

φ0 =
∑
p,p′

φ
pp′
αβ,βα, φ j =

∑
p,p′

σα′αφ
pp′
αβ,βα′ . (11)

It should be emphasized that Eqs. (10) and (11) are exact,
irrespective of the disorder strength, i.e., ετ . That they follow
from Eqs. (8) and (9) is in spirit similar to that hydrodynamic
equations follow from the Boltzmann kinetic equation. Should
an additional relation between φ0 and φ j exist, then the macro-
scopic equation (10) is closed.
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Now we establish such a relation for ετ � 1. Note that the
diagrams dominating GR(A)

ε (p) have a rainbow-like structure
(the self-consistent Bonn approximation). Their sum gives
Im�R(A)

ε (p) = ∓ 1
2τ

. (The real part is unimportant and ig-
nored.) To calculate the microscopic expression of φ j , we
multiply Eqs. (8) and (9) by the matrix elements of σ, sum
up spin and momentum indices, and subtract the two equa-
tions obtained thereby. With the substitution of the following
expansion∑

p′
φ

pp′
αβ,βα′ = − 1

2π iν
(δGε(p))αα′φ0

+ 1

πντ
(GR

ε+ (p+)σGA
ε− (p−))αα′ · φ j, (12)

we obtain (the group velocity is ≈1 for m/ε � 1)

φ j (q, ω) = −iqD(ω)φ0(q, ω), D(ω) = 1

−iω + γ (ω)
, (13)

and the microscopic expression of γ (ω):

γ (ω) = 1

τ

(
1 − 1

πντ

∑
p,p′

(GA
ε− (p)q̂ · σGR

ε+ (p))α′α

×U pp′
αβ,β ′α′ (q, ω)(GR

ε+ (p′)q̂ · σGA
ε− (p′))ββ ′

)
. (14)

Equation (14) implies that τ is renormalized and the ω de-
pendence implies a retarded effect. Substituting Eq. (13) into
Eq. (10) gives

φ0(q, ω) = iν

−iω + D(ω)q2
. (15)

It shows that φ0 has a diffusive pole. Physically, it implies that
a number density fluctuation excited locally relaxes according
to a diffusion-like equation. It differs from the normal diffu-
sion equation in that the diffusion constant D(ω), as shown by
its microscopic expression Eqs. (13) and (14), depends gener-
ally on ω. (In principle, it also depends on q, but this plays no
role for q → 0 in this work.) Such dependence accounts for
the memory recovery developed in the course of propagation.
Whenever D(ω) is independent of ω and the length scale L,
the normal diffusion equation and thus Eq. (1) follows.

As a simple application of the general theory, we ignore the
second term in Eq. (14), obtaining γ = 1

τ
. So D(ω) = τ ≡ D0

for ω � γ . This result can also be derived by summing up all
the ladder diagrams of φ0, and the sum is thus called “dif-
fuson”. Alternatively, it can be obtained by generalizing the
Boltzmann kinetic theory developed for spinless disordered
Hamiltonians [11,12].

However, this result cannot be extended to arbitrar-
ily small ω or equivalently arbitrarily large L, for which
we need to consider diagrams beyond the first order
in U0 and, in particular, those giving rise to singular
contributions to U . Let us sum up the maximally cross-
ing diagrams shown in Fig. 2(c), obtaining: U pp′

αβ,β ′α′ =
πνU 2

0
−iω+τ−1

m +D0(p+p′ )2 �
0
αβ ′ (�0)∗βα′ ≡ Cp+p′

αβ,β ′α′ (ω). In the presence

of the T̂ symmetry, m = 0 and τ−1
m vanishes. So C has a

diffusive pole: It is singular at p ≈ −p′, i.e., Q ≡ p + p′ ≈ 0,

and is called “cooperon”. When the symmetry is broken, τm is
finite, which was observed in Ref. [32] and may be regarded as
the lifetime of the cooperon. Here �0 is a projector. �0

αβ ′ im-
plies that the spins with indices α, β ′ form a singlet pair, and
so does (�0)∗βα′ . In principle, there are triplet contributions to
U ; however, for ε/m � 1 they do not display any singularities
and can be ignored. With the substitution of U into Eq. (14),
we obtain the leading quantum correction to D0, denoted as
δD1:

δD1

D0
= 1

πν

∫
Q< 1

τ

dQ
(2π )2

1

−iω + τ−1
m + D0Q2 . (16)

It holds for | δD1
D0

| � 1, i.e., τmax(ω, τ−1
m ) � e−4π2νD0 . Pro-

vided ωτm � 1 and L � √
D0τm, δD1 is independent of ω, L

and reduces to the first line of Eq. (3), giving rise to the weak
quantum diffusion. Due to νD0 = ετ

2π
the inequality τ

τm
�

e−4π2νD0 gives the condition in the introduction that defines
the regime I. Equation (16) differs from the well-known weak
antilocalization [30] in the appearance of τ−1

m .
For smaller τ−1

m , namely, smaller ω or larger L, we need
to go beyond the perturbative cooperon contributions. To per-
form such a nonperturbative analysis we note that, similar to
the spinless case [7], the most singular contributions to U have
the diagrammatical structure as shown in Fig. 2(b). There, two
singlet cooperons cross an arbitrary diagram (e.g. an infinite
series of cooperons) denoted as Z . This gives an expression
for the dominant Bethe-Salpeter kernel:

U pp′
αβ,β ′α′

dominant−→ Cp+p′
αβ,β ′α′ (ω)

+ Cp+p′
ατ,β ′ρ ′ (ω)Z p+p′

τρ,ρ ′τ ′ (ω)Cp+p′
ρβ,τ ′α′ (ω). (17)

For m = 0 it has been shown [27] that �0
β ′αU pp′

αβ,β ′α′�
0
α′β =

iπU 2
0 φ0(p + p′, ω) with φ0 given by Eq. (15). Intuitively, this

identity reflects a reciprocal relation resulting from the T̂ sym-
metry, i.e., when the lower particle line in Fig. 2(b) is rotated
so that it goes in the same direction as the upper particle
line, the diagrams representing the right-hand side of Eq. (17)
are converted into those representing U 2

0 φ0(p + p′, ω). For
m � ε the T̂ symmetry is broken only weakly. As a result,
the reciprocal relation remains valid, except that similar to
the difference between the diffuson and the cooperon, the
symmetry breaking term τ−1

m is added to the diffusive pole
carried by dominant U . Taking this into account, we obtain

U pp′
αβ,β ′α′

dominant−→ πνU 2
0

−iω + τ−1
m + D(ω)(p + p′)2

�0
αβ ′ (�0)∗βα′ .

(18)

Substituting it into Eqs. (13) and (14) gives

D0

D(ω)
= 1 − 1

πν

∫
Q< 1

τ

dQ
(2π )2

1

−iω + τ−1
m + D(ω)Q2 . (19)

This result differs crucially from the self-consistent equation,
that describes localization when the breaking of time-reversal
symmetry is weak, in the sign of the second term [6]. It cannot
be obtained by the nonperturbative field theory for massive
Dirac fermions [35] where all cooperon contributions vanish.
For low frequencies ωτm � 1 one may ignore the ω term. So
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D(ω) is independent of ω, but depends on the length scale L
in general. Solving the equation numerically we obtain Fig. 1.
We see that as L increases the low-frequency D(ω) increases
from D0, and levels off at a value, which gives the quantum
diffusion constant D. To find an analytic form of the latter, we
note that for L � √

Dτm Eq. (19) reduces to Eq. (2). From
Eq. (2) we reproduce for the regime I the first line of Eq. (3);
this was obtained before from Eq. (16), which is perturbative
and corresponds to replacing D(ω) on the right-hand side
of Eq. (19) by D0. Most importantly, from Eq. (2) we see
that D � D0 in the regime II; in this case solving Eq. (2)
up to the logarithmic accuracy, we obtain the second line of
Eq. (3).

IV. INTERPLAY WITH LOCALIZATION

Consider a path representing a quantum amplitude, which
moves diffusively at length scale of

√
Dτm. Suppose that dur-

ing this diffusive motion the path self-intersects twice with
two loops formed. Then, another quantum amplitude can pass
the two loops in different order, and pass each loop along
the same direction as the former amplitude. These two paths
have the same phase and thus constructively interfere with
each other. They give an interference correction to D (not D0),
denoted as δD2, which is immune to even strong T̂ -symmetry
breaking and cannot be described by the theory developed
above. It can be calculated by the field-theoretical approach
[17], which is δD2

D = − 1
2π2(νD)2 ln L√

Dτm
, a unitary-class weak

localization correction to D. δD2 and D are comparable
for L ∼ √

Dτme2π2(νD)2
, where the quantum diffusion crosses

over to the unitary-class localization. Our findings thus show
neither the scaling law for various sympletic class systems

[27–29,31] nor that for unitary class systems [31] applies to
the present system. It is even not clear to us whether some
generalization of the well-known single parameter scaling the-
ory of Anderson localization [37] may exist, since the present
system is in the crossover from the sympletic to the unitary
class.

V. IMPLICATIONS FOR TOPOLOGICAL INSULATORS

Our findings imply an exotic quantum transport phe-
nomenon in topological insulators. Consider a 3D topological
insulator on the substrate of a ferromagnet. The surface elec-
tronic states of the topological insulator are described by
the 2D massive Dirac equation, with the mass term arising
from the Zeeman splitting. Then, by the Einstein relation, the
second line of Eq. (3) implies that at zero temperature, as
the sample size increases, the surface electron conductance
increases from the Drude value and levels off at a value larger
than the Drude conductance, as shown in Fig. 1. Finally, we
note that the exchange interaction between electrons can give
rise to an Altshuler-Aronov type correction [10], which might
not be negligible in real experiments on topological insulators
[38]. We leave the interplay between such kind of interaction
corrections and presently found quantum diffusion for future
studies.
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This supplementary material (SM) aims at substan-
tially expanding the theory outlined in the main text
and explaining in details the derivations of the results
presented there. For the convenience of readers this SM
is written in a self-contained manner, so that readers need
not to resort to the main text. In particular, all the no-
tations are reintroduced and all the results presented in
the main text are presented here in a coherent way.

It is in order to expose some motivations of developing a 
nonperturbative diagrammatic theory for wave propa-
gation of Dirac particles with a small mass in disordered 
environments. First of all, because it is a two-dimensional 
(2D) system and the time-reversal symmetry is broken in 
the presence of finite mass, in the limit of infinite size and 
infinite time the particle-wave is strongly localized. As we 
will see in Sec. 4, this localization is of unitary type and 
occurs in an extremely large scale--practically 
inaccessible. So, a natural question is: what happens to 
wave propagation before strong localization sets in?

To address this issue, it is necessary to have a theory 
that allows us to study not only one-loop perturbative but 
also nonperturbative effects, for even strong localization 
does not set in, we have to deal with large length and time 
scales. The field theories [1, 2], though capable of 
describing strong local-ization of unitary type, require the 
time-reversal symme-try to be strongly broken and thus 
cannot be applied to the present study (see Sec. 4 for more 
details). On the other hand, the widely adopted 
diagrammatic method has been developed so far only for 
treating one-loop perturbative effects such as weak 
antilocalization, when the mass of Dirac particle does not 
vanish [3, 4]. In fact, even for Dirac particles with 
vanishing mass, to develop a nonperturbative theory for 
their motion in a disordered environment is challenging. 
In Ref. [2], it was argued based on field theory that the β-
function describing the scaling behavior of conductance 
has two critical points. This result was disproved by 
numerical exper-iments [5, 6]. Instead, numerical 
experiments showed that, irrespective of disorder 
strength, the β-function is as simple as Eq.(S86) below 
and no phase transition follows, unlike ordinary spin-orbit 
coupling systems with time-reversal symmetry [1, 7]. The 
scaling law observed numerically was analytically 
derived in Ref. [8] by a nonperturbative diagrammatic 

method developed in that work. Therefore, it is natural 
to generalize that method to the present system.

This SM is organized as follows. In Sec. 1, we describe
the system in details and discuss its symmetry. In Sec.
2, we develop the general theory for the density response
of disordered massive Dirac fermions in 2D. We show
that the wave propagation follows a generalized diffusion
equation, where the diffusion coefficient is frequency de-
pendent. In Sec. 3, we calculate the frequency-dependent
diffusion coefficient both perturbatively and nonpertur-
batively. In the former case, we reproduce the well-known
weak antilocalization correction to the Boltzmann diffu-
sion coefficient. In the latter case, we find that due to
the weak time-reversal symmetry breaking by a small
mass, a normal diffusive wave propagation results, but
the diffusion coefficient is larger than that given by the
Boltzmann kinetic theory, and grows unboundedly as the
energy-to-mass ratio increases. In Sec. 4, we discuss the
interplay between the quantum (normal) diffusion and
Anderson localization. Some additional technical details
are given in Appendices A and B.

1. THE MODEL AND ITS SYMMETRY

We consider Dirac fermions of mass m in the pres-
ence of scalar disorders. The propagation of such Dirac
fermions is described by

∂tψ = Ĥψ, (S1)

Ĥ ≡ σ · p+mσz + V (r), (S2)

where ψ is a two-component spinor, σ ≡ (σx, σy) with
σx,y,z are the Pauli matrices, and p ≡ −i5, r are the
momentum and the position operator, respectively. Both
the Fermi velocity and the Plank constant are set to unity
throughout this SM. The mass is considered to be very
small compared to the particle energy ε throughout this
SM. The disorder potential V (r) is Gaussian. It has zero
mean everywhere, and its fluctuations are spatially in-
dependent, 〈V (r)V (r′)〉 = U0δ(r − r′). Here 〈·〉 denotes
the average over disorder configurations, U0 = 1/(πντ) is
the disorder strength, ν is the density of states at ε, and
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τ is the characteristic time which, as we will see below, is
the elastic scattering time of the order of the Boltzmann
collision time. The parameters U0, ε,m are renormalized
at short scales. When such renormalization effects are
taken into account they enter into the large-scale physics
merely as new parameters [9]. Thus we shall not discuss
this further. We focus on the case where ε/m � 1 and
ετ � 1.

Define the time-reversal operator T̂ := −iσyĈ, where
Ĉ denotes the complex conjugate. For m=0 we have:

T̂ ĤT̂−1 = Ĥ. (S3)

So in this case the time-reversal symmetry is preserved,
and the system belongs to the symplectic class according
to the random matrix theory [10]. For m 6= 0,

T̂ ĤT̂−1 6= Ĥ. (S4)

So the time-reversal symmetry is broken, and the sys-
tem belongs to the unitary class. For m � ε, the time-
reversal symmetry is only weakly broken. This property
has important consequences on wave propagation, as we
will show below.

2. THE DENSITY RESPONSE THEORY

To study the physics of wave propagation below we
generalize the density response theory of 2D massless
Dirac fermions, developed by one of us previously [8],
to the massive case. From the technical viewpoint, the
present theory is in spirit parallel to the well-known
Vollhardt-Wölfle theory [11, 12] of strong Anderson lo-
calization of spinless particles. However, as we have de-
scribed in the paper and will show in details below, the
physical results are conceptually different from those in
that theory.

To start, we introduce the retarded (advanced) Green’s
function:

GR(A)
ε := 1/(ε− Ĥ ± iδ), (S5)

with δ being a positive infinitesimal. The motion of Dirac
Fermions in large length and time scales can be described
by the response function defined as:∑

p,p′,q

ei(p+·r+−p′+·r
′
++p′−·r

′
−−p−·r−)φpp

′

αβ,β′α′(q, ω)

:= − 1

2πi

〈
(GRε+(r+, r

′
+))αβ(GAε−(r′−, r−))β′α′

〉
, (S6)

in which p± = p ± q
2 , p′± = p′ ± q

2 , ε± = ε ± ω
2 ,

and α, β, · · · are spin indices. Throughout this SM the
Einstein summation convention applies to spin indices.
With the disorder average performed, the spatial trans-
lational invariance is restored. So only three indepen-

dent space coordinates: r++r−
2 − r′++r′−

2 , r+ − r−, and

r′− − r′+ appear. They correspond respectively to the
Fourier wavenumber q,p,p′.

When we expand G
R(A)
ε in V and perform the disor-

der averaging, each term of φpp
′

αβ,β′α′ can be represented
by a specific diagram. As shown in Fig. 2(a) in the
main text, the backbone of each diagram consists of two
particle lines: the upper (lower) particle line corresponds
to GR(A). The building blocks of each diagram are the
disorder-averaged retarded (advanced) Green’s functions

GR(A)
ε (r − r′) := 〈GR(A)(r, r′)〉, represented by a solid

line going rightwards (leftwards), and the disorder scat-
tering U0δ(r−r′) is represented by a dashed line. In the

Fourier representation GR(A)
ε takes the general form:

GR(A)
ε (p) = (ε− σ · p−mσz − ΣR(A)

ε (p))−1, (S7)

where Σ
R(A)
ε is the self-energy. All diagrams of the re-

sponse function can be organized in the way shown by
Fig. 2(a) in the main text, which is described by the
Bethe-Salpeter equation:

φpp
′

αβ,β′α′(q, ω) = (GRε+(p+))αγ(GAε−(p−))γ′α′

×
(
− δpp′δγβδβ′γ′

2πi
+
∑
k

Upk
γδ,δ′γ′(q, ω)φkp

′

δβ,β′δ′(q, ω)
)
,

(S8)

with Upk
γδ,δ′γ′(q, ω) being the irreducible two-particle in-

teraction vertex function. Each diagram of U has ends
joined by the disorder scattering lines, and cannot be sep-
arated into disconnected parts by cutting a pair of up-
per/lower particle line simultaneously, i.e. is two-particle
irreducible.

Adopting the method in [13, 14], in the Appendix A
we show that U obeys the following Vollhardt-Wölfle type
Ward identity, namely, Eq. (7) in the main text:∑

p

(δGε(p))γ′γU
pk
γδ,δ′γ′ = (δΣε(k))δ′δ, (S9)

with δGε(p) := GRε+(p+) − GAε−(p−), and δΣε(p) :=
ΣRε+(p+)− ΣAε−(p−).

Multiplying both sides of Eq. (S8) by (GRε (p+))−1, we
obtain:

(ε+ − σ · p+ −mσz − ΣRε+(p+))γαφ
pp′

αβ,β′α′ =

(GAε−(p−))γ′α′
(
− δpp′δγβδβ′γ′

2πi
+
∑
k

Upk
γδ,δ′γ′φ

kp′

δβ,β′δ′

)
.

(S10)

Similarly, we have:

(ε− − σ · p− −mσz − ΣAε−(p−))α′γ′φ
pp′

αβ,β′α′ =

(GRε+(p+))αγ

(
− δpp′δγβδβ′γ′

2πi
+
∑
k

Upk
γδ,δ′γ′φ

kp′

δβ,β′δ′

)
.

(S11)
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We then set β = β′ in both equations, set γ = α′ in
Eq. (S10), and set γ′ = α in Eq. (S11), and sum up
the spin indices. By further subtracting the ensuing two
equations, we obtain:(

ω − σ · q − δΣε(p)
)
α′α

φpp
′

αβ,βα′(q, ω)

=
(δGε(p))ββ

2πi
−
∑
k

(δGε(p))αγU
pk
γδ,δ′α(q, ω)φkp

′

δβ,βδ′(q, ω).

(S12)

With the help of the Ward identity Eq. (S9), upon sum-
ming up the momenta p, p′ we obtain:

−iωφ0(q, ω) + iq · φj(q, ω) = iν, (S13)

which describes the particle number conservation macro-
scopically. Here ν(ε) = 1

2πi

∑
p(GAε (p) − GRε (p))αα is

the density of states, φ0 and φj are the density relax-
ation function and the current relaxation function, re-
spectively, whose microscopic expressions are:

φ0 =
∑
p,p′

φpp
′

αβ,βα, (S14)

φj =
∑
p,p′

σα′αφ
pp′

αβ,βα′ . (S15)

Equation (S13) relates φ0 and φj . Physically, Eqs. (S13)-
(S15) that follow from Eqs. (S10) and (S11) are in spirit
similar to that hydrodynamic equations follow from the
Boltzmann kinetic equation, and Eq. (S13) is exact, ir-
respective of the disorder strength.

Similar to the usual hydrodynamical theory, if another
relation between φ0 and φj exists, then the equation set
for φ0 and φj is closed and can be solved. Below we show
that for ετ � 1, such an equation exists. In this limit
we can employ the self-consistent Born approximation to
find the self-energy of Green’s function, which satisfies:

ΣR(A)
ε = U0

∫
dk

(2π)2
1

ε− σ · k −mσz − Σ
R(A)
ε

.

(S16)

Thus we have:

ImΣR(A)
ε (p) = ∓ 1

2τ
(S17)

for m/ε � 1. The real part of the self-energy is unim-
portant and we shall not discuss it further.

To proceed further, we expand
∑

p′ φ
pp′

αβ,βα′ in terms
of the moments of the microscopic current σφ0 and φj .
More precisely, we have the following general form:∑

p′

φpp
′

αβ,βα′ = (a0(p))αα′φ0 + (a(p))αα′ · φj , (S18)

where the coefficients a0 and a are to be determined.
Because δGε(p) is strongly peaked at the Fermi momen-
tum for ετ � 1, the p-dependence of the left-hand side
is dominated by this structure carried by δGε(p). So, a0
must be proportional to δGε(p). The proportionality co-
efficient can be found by setting α = α′, summing up α,
and requiring both sides thereby obtained to be equal.
As a result,

a0 = −δGε(p)

2πiν
. (S19)

Then, by taking into account this structure and that a is
proportional to the microscopic current σ, we find that
a is proportional to GRε+(p+)σGAε−(p−). The proportion-
ality coefficient can be determined by multiplying both
sides of Eq. (S18) by σα′α, summing up the spin indices,
and requiring both sides thereby obtained to be equal.
As a result,

a =
GRε+(p+)σGAε−(p−)

πντ
. (S20)

Substituting Eqs. (S19) and (S20) into Eq. (S18), we
obtain:∑

p′

φpp
′

αβ,βα′ =− 1

2πiν
(δGε(p))αα′φ0

+
1

πντ
(GRε+(p+)σGAε−(p−))αα′ · φj ,

(S21)

namely, the Eq. (12) in the main text.
We are now ready to find another relation between

φj and φ0. Noting that the considered Dirac system is
isotropic, we have:

φj(q, ω) = φj(q, ω)q̂, (S22)

where q̂ = q/q is the unit vector in the q direction, and
φj(q, ω) is the module of the vector φj(q, ω). Combining
this with Eq. (S15), we obtain:

φj(q, ω) =
∑
p,p′

q̂ · σα′αφpp
′

αβ,βα′(q, ω). (S23)

To calculate the right-hand side we multiply both sides
of Eq. (S10) by q̂ · σα′γ , let β = β′, and sum up all spin
indices and momenta. As a result:
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ε+φj −
∑
p,p′

(q̂ · p+ + iσz(q̂ × p+)− imq̂ × σ + q̂ · σΣRε+(p+))α′αφ
pp′

αβ,βα′

=− 1

2πi

∑
p

(q̂ · σGAε−(p−))α′α′ +
∑

p,p′,k

(GAε−(p−)q̂ · σ)γ′γU
pk
γδ,δ′γ′φ

kp′

δβ,βδ′ . (S24)

Likewise, from Eq. (S11) we obtain:

ε−φj −
∑
p,p′

(q̂ · p− − iσz(q̂ × p−) + imq̂ × σ + ΣAε−(p−)q̂ · σ)α′αφ
pp′

αβ,βα′

=− 1

2πi

∑
p

(q̂ · σGRε+(p+))γγ +
∑

p,p′,k

(q̂ · σGRε+(p+))γ′γU
pk
γδ,δ′γ′φ

kp′

δβ,βδ′ . (S25)

Subtracting Eq. (S25) from Eq. (S24), we obtain:(
ω +

i

τ

)
φj − qφ0 =2i

∑
p,p′

(σz(q̂ × p)−mq̂ × σ)α′αφ
pp′

αβ,βα′ +
1

2πi

∑
p

(q̂ · σ(GRε+(p+)− GAε−(p−)))α′α′

+
∑

p,p′,k

(GAε−(p−)(q̂ · σ(GRε+(p+))−1 − (GAε−(p−))−1q̂ · σ)GRε+(p+))γ′γU
pk
γδ,δ′γ′φ

kp′

δβ,βδ′ , (S26)

where to obtain the i
τ φj term we have used the fact of:

GR,Aε (p) =
P̂

ε−
√
p2 +m2 ± i

2τ

, P̂ =
1

2
+

1

2

σ · p+mσz√
p2 +m2

, (S27)

for ετ � 1. Substituting Eq. (S21) into the first two terms on the right-hand side of Eq. (S26), with the help of Eq.
(S27) we find that both of them vanish. So Eq. (S26) is simplified to:(

ω +
i

τ

)
φj − qφ0 =

∑
p,p′,k

(
GAε−(p−)(q̂ · σ(GRε+(p+))−1 − (GAε−(p−))−1q̂ · σ)GRε+(p+)

)
γ′γ
Upk
γδ,δ′γ′φ

kp′

δβ,βδ′ . (S28)

Thanks to

q̂ · σ(GRε+(p+))−1 − (GAε−(p−))−1q̂ · σ =

(
ω +

i

τ

)
q̂ · σ − q − 2iσzq̂ × p+ 2imq̂ × σ (S29)

and

φj(q, ω) =

∫
dϕq̂

2π
φj(q, ω), (S30)

where ϕq̂ is the angle corresponding to the direction of q̂, upon substituting Eqs. (S21) and (S29) into Eq. (S28), and
performing the angular average of Eq. (S30), we find that the contribution arising from the first term of Eq. (S21)
to the right-hand side of Eq. (S29) vanishes (ω, q � 1

τ ). Furthermore, because σ · q̂ is the microscopic current in the
q̂ direction, for the contribution to the right-hand side of Eq. (S29) arising from the second term of Eq. (S21), one
needs to take only the i

τ q̂ · σ term into account for that the others do not contribute. So Eq (S28) is reduced toω +
i

τ

1− 1

πντ

∑
p,p′

(GAε−(p−)q̂ · σGRε+(p+))α′αU
pp′

αβ,β′α′(G
R
ε+(p′+)q̂ · σGAε−(p′−))ββ′

φj = qφ0.

(S31)

Combining Eqs. (S22) and (S31), we have:

φj(q, ω) = −iqD(ω)φ0(q, ω), (S32)
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where

D(ω) =
1

−iω + γ(ω)
, (S33)

with

γ(ω) =
1

τ

1− 1

πντ

∑
p,p′

(GAε−(p−)q̂ · σGRε+(p+))α′αU
pp′

αβ,β′α′(q, ω)(GRε+(p′+)q̂ · σGAε−(p′−))ββ′

 . (S34)

With Eqs. (S13) and (S33), the density relaxation func-
tion φ0 and the current relaxation function φj are solved:

φ0(q, ω) =
iν

−iω +D(ω)q2
, (S35)

φj(q, ω) =
νD(ω)q

−iω +D(ω)q2
. (S36)

We see that φ0 has a diffusive pole. Physically this im-
plies that a number density fluctuation excited locally
relaxes according to a diffusive-like equation. The diffu-
sion coefficient D(ω) depends on ω, which accounts for
the memory recovery developed in the course of propaga-
tion. In principle, it also depends on q, but in our work
q → 0. Note that when D is ω independent, the normal
diffusion equation is recovered.

3. THE FREQUENCY-DEPENDENT DIFFUSION
COEFFICIENT D(ω)

When the second term in Eq. (S34) is ignored, γ = 1/τ
and thus D(ω) = τ ≡ D0, which is ω independent (for
ωτ � 1). This result can also be derived by summing
up all the particle (namely, the upper particle line)-hole

(namely, the lower particle line) ladder diagrams of φ0,
and the sum is thus called diffuson. Alternatively, it can
be obtained by generalizing the Boltzmann kinetic theory
developed for spinless disordered Hamiltonians [15, 16].
For these reasons, we may call D0 the Boltzmann dif-
fusion constant. It is well known that D0 excludes all
wave interference effects. In this section we will apply
the general theory to the second term of Eq. (S34), and
we will especially focus on its behaviors at low frequen-
cies. This will allow us to find both the perturbative and
nonperturbative effects of wave interference.

3.1 Weak antilocalization

To calculate the second term in Eq. (S34), we seek
for the diagrammatical structures that give singular con-

tributions to Upp′

αβ,β′α′ . In this subsection we investigate
contributions that arise from the maximally crossing di-

agrams, which are denoted as (Λpp′

0 (q, ω))αβ,β′α′ . These
diagrams differ from those presented in Fig. 2(c) in the
main text in that the spin indices α, β, α′, β′ can be arbi-
trary. Note that the diagram composed of single disorder
scattering line is included as well.

Passing to the Fourier representation, we have:

(
Λpp′

0

)
αβ,β′α′

= U0δαβδα′β′ + U0

∑
k

(
GRε+(k)

)
αγ

(
GAε−(p+ p′ − k)

)
β′γ′

(
Λ
k(p+p′−k)
0

)
γβ,γ′α′

. (S37)

This implies that Λ0 depends on p,p′ via p+ p′, i.e.(
Λpp′

0 (q, ω)
)
αβ,β′α′

≡
(

ΛQ
0 (ω)

)
αβ,β′α′

, Q = p+ p′. (S38)

To proceed we introduce a characteristic time:

τ̃ :=
τ

1 + (mε )2
(S39)

and the rescaling: (
ΛQ
0 (ω)

)
αβ,β′α′

→ U0τ

τ̃2

(
ΛQ
0 (ω)

)
αβ,β′α′

(S40)
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to rewrite Eq. (S37) as(
ΛQ
0 (ω)

)
αβ,β′α′

=
τ̃2

τ
δαβδα′β′ + U0

∑
k

(
GRε+(k)

)
αγ

(
GAε−(Q− k)

)
β′γ′

(
ΛQ
0 (ω)

)
γβ,γ′α′

. (S41)

It is standard [3] to expand Λ0 in the spin singlet and triplet basis,(
ΛQ
0 (ω)

)
αβ,β′α′

=
∑

i,j=0,x,y,z

Ψi
αβ′Ψ

j∗
βα′C

ij(Q, ω), Ψi :=
τ iτy√

2
, (S42)

where i(j) = 0 stands for the singlet component and i(j) = x, y, z for the triplet components, with Ψi(j) being the
corresponding projectors. These singlet and triplet states are formed by pairing one spin in the end of the upper
particle line with the other in the end of the lower particle line [cf. Fig. 2(c) in the main text], and the Pauli matrices
τ i (i = 0, x, y, z) are defined on the corresponding sector. With the substitution of Eq. (S42) into Eq. (S41) and
using Eq. (S27), we obtain:

− (ex − ieye⊥)C00 +
(τ
τ̃
−
(
e2⊥ + e2x

))
Cx0 − (exey − ie⊥)Cy0 = 0, (S43)

− (ey + iexe⊥)C00 − (exey + ie⊥)Cx0 +
(τ
τ̃
−
(
e2⊥ + e2y

))
Cy0 = 0, (S44)

(τ
τ̃
−
(
e2x + e2y

))
C00 − (ex + ieye⊥)Cx0 − (ey − iexe⊥)Cy0 = τ̃ , (S45)

where

e⊥ =
m√

p2 +m2
, ex =

px√
p2 +m2

, ey =
py√

p2 +m2
, (S46)

and

· · · :=
∫
dϕQ̂

2π
(...)

1

1− iωτ̃ + iτ̃ p̂ ·Q
, (S47)

with p̂ being the unit vector along the direction of the particle momentum p.
From Eqs. (S43) and (S44), we obtain:

Cx0 =

(
τ
τ̃ − (e2⊥ + e2y)

)
(ex − ieye⊥) + (exey − ie⊥) (ey + iexe⊥)(

τ
τ̃ − (e2⊥ + e2y)

)(
τ
τ̃ − (e2⊥ + e2x)

)
− (exey − ie⊥) (exey + ie⊥)

C00, (S48)

and

Cy0 =
(eyex + ie⊥)(ex − ie⊥ey) +

(
τ
τ̃ − (e2⊥ + e2x)

)
(ey + iexe⊥)(

τ
τ̃ − (e2⊥ + e2x)

)(
τ
τ̃ − (e2⊥ + e2y)

)
− (exey − ie⊥)(exey + ie⊥)

C00. (S49)

In the limit Q→ 0, Eqs. (S48) and (S49) reduce to:

Cx0 = −2iτ̃
1

e3‖

(
(1− 1

2
e2‖)(Qx − ie⊥Qy)− ie⊥(Qy + ie⊥Qx)

)
C00, (S50)

and

Cy0 = −2iτ̃
1

e3‖

(
(1− 1

2
e2‖)(Qy + ie⊥Qx) + ie⊥(Qx − ie⊥Qy)

)
C00, (S51)

where e‖ =
√

1− e2⊥. Substituting Eqs. (S50) and (S51) into Eq. (S45), we obtain:

C00 =
1

e2‖

1
2e2⊥
e2‖τ̃
− iω + τ̃Q2(1 +

4e2⊥
e4‖

)
. (S52)
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For m� ε, it is simplified to:

C00 =
1

τ−1m − iω +D0Q2
, (S53)

with

τm =
( ε
m

)2 τ
2
. (S54)

Finally, undoing the rescaling Eq. (S40) gives

C00 =
πνU2

0

τ−1m − iω +D0Q2
≡ CQ(ω). (S55)

For m = 0 and thus vanishing τ−1m , the system bears
the T̂ -symmetry. In this case, C00 is singular at Q =
p+p′ = 0 and ω = 0. For m 6= 0, the symmetry is broken
and the system belongs to the unitary class. In this case,
a finite τm results. Therefore, we see that for m � ε,
the most singular contributions to (ΛQ

0 )αβ,β′α′ arise from
the cooperon component with i = j = 0, dubbed the sin-
glet cooperon. Therefore, the spin states (α, β′) must be
paired into a spin-singlet and so do (β, α′), as shown by
Fig. 2(c) in the main text. So in Eq. (S42) we keep
only the i = j = 0 component. With the further substi-
tution of Eq. (S55) we find the corresponding singular
contributions to U , which is:

πνU2
0

−iω + τ−1m +D0Q2
Ψ0
αβ′(Ψ

0)∗βα′ =: CQ
αβ,β′α′(ω). (S56)

Substituting it into Eq. (S34) gives:

γ(ω) =
1

τ

(
1− 1

πντ

∑
p,Q

(GAε−(p)q̂ · σGRε+(p))α′α

× πνU2
0

−iω + τ−1m +D0Q2

τyαβ′√
2

−τyβα′√
2

× (GRε+(−p)q̂ · σGAε−(−p))ββ′
)
.

(S57)

With the p sum performed, we obtain:

γ(ω) =
1

τ

(
1− 1

πν

∫
dQ

(2π)2
1

−iω + τ−1m +D0Q2

)
,

(S58)

which gives

δD

D0
=

1

πν

∫
Q< 1

τ

dQ

(2π)2
1

−iω + τ−1m +D0Q2
. (S59)

When τ−1m vanishes this reproduces the well-known weak
antilocalization correction to the Boltzmann diffusion
constant [3, 7]. Equation (S59) is essentially a one-loop
perturbative result. It does not apply for extremely large
length scale L and extremely small ω, i.e. in the nonper-
turbative regime. We are not aware of any methods that
allow us to go beyond the one-loop perturbation theory
for nonvanishing but small τ−1m , i.e. weak T̂ -symmetry
breaking. In fact, for this case the previous diagrammatic
theories [3, 4] have been restricted to one loop, while non-
perturbative field theories [1, 2] have been developed for
systems with T̂ -symmetry either preserved or strongly
broken. As a result, they do not apply here.

3.2 Symmetry breaking-induced diffusion: beyond
weak antilocalization

In this subsection we will develop a nonperturbative
theory of wave propagation of Dirac particles. We will
first consider the massless case and then generalize the
results to the massive case with m/ε� 1.

3.2.1 Closed equation for D(ω)

We introduce the full vertex function, Γpp′

αβ,β′α′(q, ω).

As shown in Fig. S1, it is related to Upp′

αβ,β′α′(q, ω) via
the following Bethe-Salpeter equation:

Γpp′

αβ,β′α′ = Upp′

αβ,β′α′ +
∑
k

Upk
αδ,δ′α′R

k
δγ,γ′δ′Γ

kp′

γβ,β′γ′ ,

(S60)

where

Rk
δγ,γ′δ′(q, ω) ≡ (GRε+(k+))δγ(GAε−(k−))γ′δ′ (S61)

and the arguments (q, ω) in Γ and U have been sup-
pressed in order to make the formula compact. It is easy
to see that Γ can be written as [Fig. S2(a)]
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Fig. S1. Diagrammatical representation of Eq. (S60).

Γpp′

αβ,β′α′ =

χpp′ + Γpp′

0 +
∑
k1

Γpk1

0 Rk1χk1p
′
+
∑
k1

χpk1Rk1Γk1p
′

0 +
∑
k1,k2

Γpk1

0 Rk1χk1k2Rk2Γk2p
′

0


αβ,β′α′

. (S62)

Here χ stands for the sum of all diagrams without a particle-hole ladder on the very left or right, Γ0 stands for the
sum of all particle-hole ladders, and we have defined the product of two general two-particle functions: A ≡ {Aαβ,β′α′}
and B ≡ {Bαβ,β′α′} as follows:

C := AB ⇐⇒ Cαβ,β′α′ := Aαδ,δ′α′Bδβ,β′δ′ , (S63)

which is readily seen to be associative, i.e.

(AB)C = A(BC). (S64)

It is easy to show that Γpp′

0 has no dependence on p, p′. So Eq. (S62) can be simplified as

Γpp′

αβ,β′α′ =

χpp′ + Γ0 + Γ0

(∑
k1

Rk1χk1p
′

)
+

(∑
k1

χpk1Rk1

)
Γ0 + Γ0

∑
k1,k2

Rk1χk1k2Rk2

Γ0


αβ,β′α′

. (S65)

Thanks to m = 0, the T̂ -symmetry follows, giving:

GAε (p) = (−iσy)(GAε (−p))T (iσy), (S66)

where T stands for the transpose. Using this relation and noting that Γpp′

αβ,β′α′(q, ω) is the full vertex function, we
can readily prove the following identity:

Γpp′

αβ,β′α′(q, ω) =(iσy)α′α′′Γ
p−p′+q

2
p′−p+q

2

αβ,α′′β′′ (p+ p′, ω)(−iσy)β′′β′

=(−1)s(α
′)+s(β′)Γ

p−p′+q
2

p′−p+q
2

αβ,α′ β′
(p+ p′, ω). (S67)

where the overline over the spin index transforms an up (↑)-spin into a down (↓)-spin and vice versa, and

s(α) :=

{
0, α =↑;
1, α =↓ . (S68)

The second line of Eq. (S67) can be diagrammatically represented by Fig. S2(b) with the help of Fig. S2(a). By
twisting the lower particle line in Fig. S2(b) and applying Eq. (S66) again, we obtain Fig. S2(c). Note that the

factor (−1)s(α
′)+s(β′) is multiplied by a new factor (−1)s(α

′)+s(β′), giving (−1)s(α
′)+s(β′)(−1)s(α

′)+s(β′) = (−1)2 = 1;
thus no factor arises in Fig. S2(c). Recall that the diagrams of Λ0 are obtained from those of Γ0 by twisting the lower
particle line, which has been analyzed in Sec. 3.1. The similar diagrammatical rule holds for χ. However, it should
be emphasized that, like the spinless case [12], the propagation direction of the upper and lower particle lines in Fig.
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Fig. S2. (a).Diagrammatical representation of Γpp′

αβ,β′α′(q, ω); (b) Diagrammatical representation of the second line of Eq.

(S67) obtained directly from (a); (c) Equivalent representation of (b).
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S2(a) and Fig. S2(c) are the same; moreover, all the external momenta and spin indices in the same places of Fig.
S2(a) and Fig. S2(c) are the same.

Note that U is the two-particle irreducible vertex. From Eq. (S60) we find that the diagrams representing U are
the last four diagrams of Fig. S2(c) and the irreducible part of χ. In Sec. 3.1 we have shown that the i = j = 0
component of the second diagram in Fig. S2(c), i.e. the singlet cooperon shown in Fig. 2(c) in the main text:

CQ
αβ,β′α′(ω)|τ−1

m =0 =
πνU2

0

−iω +D0Q2
Ψ0
αβ′(Ψ

0)∗βα′ (S69)

gives rise to the weak anti-localization. To find other singular contributions to U , which diverge in the infrared limit
Q→ 0, ω → 0, likewise we replace Λ0 in the last three diagrams of Fig. S2(c) by the singlet cooperon in Fig. 2(c) in
the main text. On the other hand, it is easy to see that the irreducible part of χ does not suffer infrared divergence.
Thus the first diagram in Fig. S2(c) can be ignored. Because the last diagram in Fig. S2(c) includes two singlet
cooperons, it must dominate over the second , the third, and the fourth diagrams which includes only one singlet
cooperon. Therefore, the dominant contribution to U is

Upp′

αβ,β′α′(q, ω)
dominant−→ CQ

αβ,β′α′(ω) + CQ
ατ,β′ρ′(ω)ZQ

τρ,ρ′τ ′(ω)CQ
ρβ,τ ′α′(ω), (S70)

where

ZQ
τρ,ρ′τ ′(ω) =

∑
k1,k2

(
R

k1−k2+Q
2 (k1 + k2, ω)χ

k1−k2+Q
2

k2−k1+Q
2 (k1 + k2, ω)R

k2−k1+Q
2 (k1 + k2, ω)

)
τρ,ρ′τ ′

(S71)

with the diagrams representing χ obtained from those representing χ through twisting their lower particle lines. Note
that in Eq. (S70) CQ

αβ,β′α′(ω) is included so that the leading perturbative quantum corrections obtained in Sec. 3.1
can be recovered. Equation (S70), namely, Eq. (17) in the main text, is diagrammatically represented by Fig. 2(b)
in the main text.

To proceed we prove in Appendix B the following identity:

U2
0 (−2πi)φ0(q, ω) =

Γ0(q, ω)− U0 + Γ0(q, ω)

∑
k1,k2

Zk1k2(q, ω)

Γ0(q, ω)


αβ,βα

, (S72)

where

Zk1k2

αβ,β′α′(q, ω) =
(
Rk1(q, ω)χk1k2(q, ω)Rk2(q, ω)

)
αβ,β′α′

. (S73)

Next, we consider the diagram representing (Γpp′

0 (q, ω))αβ,β′α′ with arbitrary spin indices: α, β, α′, β′ [Fig. S3(a)]. By
twisting the lower particle line we obtain maximally crossing diagrams [Fig. S3(b)]. By further applying Eq. (S66),
we obtain Fig. S3(c). Note that the direction of the lower particle line, as well as its end momenta and spin indicies,
is different from that in Fig. S3(b). Because these three diagrams are equivalent, we have:(

Γpp′

0 (q, ω)
)
αβ,β′α′

=

(
Λ

p−p′+q
2

p′−p+q
2

0 (p+ p′, ω)

)
αβ,α′ β′

× (−1)s(α
′)+s(β′), (S74)

where the diagrammatical definition of Λ0 [Fig. S2(c)] has been used.
With the help of Eq. (S38), we simplify Eq. (S74) as(

Γpp′

0 (q, ω)
)
αβ,β′α′

= (Λq
0(ω))αβ,α′ β′ × (−1)s(α

′)+s(β′). (S75)

For (Λq
0)αβ,α′ β′ , by analysis in Sec. 3.1, among its 16 components only one diverges in the infrared limit: q, ω → 0,

which corresponds to that (α, α′) are paired into a spin singlet and so are (β, β′). So, using Eqs. (S42) and (S55) we
find Γpp′(q, ω) in the limit: q, ω → 0, which is(

Γpp′

0 (q, ω)
)
αβ,β′α′

' Cq(ω)Ψ0
αα′

(Ψ0)∗
ββ′
× (−1)s(α

′)+s(β′) =
πνU2

0

−iω +D0q2
δαα′√

2

δββ′√
2
. (S76)
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Fig. S3. Diagrammatical proof of Eq. (S74).

[In fact, by directly summing up all the ladder diagrams in Fig. S3(a) it can be shown that this is true also for
nonvanishing τ−1m .] Substituting Eq. (S76) into Eq. (S72) and using Eq. (S35), we obtain:

πνU2
0

−iω +D(ω)q2
+ 2U0 =

πνU2
0

−iω +D0q2
+

(
πνU2

0

−iω +D0q2

)2

· 1

2

∑
k1,k2

Zk1k2

αβ,βα(q, ω). (S77)

On the other hand, we can substitute Eq. (S56) into Eq. (S70), obtaining:

Upp′

αβ,β′α′(q, ω)
dominant−→

(
πνU2

0

−iω +D0Q2
+

(
πνU2

0

−iω +D0Q2

)2

Ψ0
τρ′Z

Q
τρ,ρ′τ ′(ω)(Ψ0)∗ρτ ′

)
Ψ0
αβ′(Ψ

0)∗βα′ . (S78)

To calculate the factor: Ψ0
τρ′Z

Q
τρ,ρ′τ ′(ω)(Ψ0)∗ρτ ′ in the second term of the bracket, we perform an analysis, which is

similar to the derivations of Eq. (S74), for Eq. (S71). As a result,

ZQ
τρ,ρ′τ ′(ω) =

∑
k1,k2

(
Rk1(Q, ω)χk1k2(Q, ω)Rk2(Q, ω)

)
τρ,τ ′ ρ′

× (−1)s(τ
′)+s(ρ′). (S79)

This gives

Ψ0
τρ′Z

Q
τρ,ρ′τ ′(ω)(Ψ0)∗ρτ ′ =

1

2

∑
k1,k2

Zk1k2
τρ,ρτ (Q, ω). (S80)

We then substitute it into Eq. (S78). With the help of Eq. (S77) we reduce Eq. (S78) to

Upp′

αβ,β′α′(q, ω)
dominant−→ πνU2

0

−iω +D(ω)Q2
Ψ0
αβ′(Ψ

0)∗βα′ , for m = 0, (S81)

where the unimportant 2U0 term has been ignored. This corresponds to Eq. (18) in the main text with τ−1m = 0 and
was reported in Ref. [8] without giving the details of the derivations.

For nonvanishing m but m � ε, the T̂ -symmetry is broken but only weakly. Since the diffusive pole arises from
the T̂ -symmetry, we add the symmetry breaking term τ−1m to the diffusive pole of Eq. (S81) (similar procedures were
carried out in the self-consistent theory of Anderson localization [11].) This gives

Upp′

αβ,β′α′(q, ω)
dominant−→ πνU2

0

−iω + τ−1m +D(ω)Q2
Ψ0
αβ′(Ψ

0)∗βα′ , for 0<m� ε. (S82)

Substituting it into Eqs. (S33) and (S34), we obtain the
following closed equation for D(ω):

D0

D(ω)
= 1− 1

πν

∫
Q< 1

τ

dQ

(2π)2
1

−iω + τ−1m +D(ω)Q2
,

(S83)

namely, Eq. (19) in the main text. This result differs
crucially from the self-consistent equation, that describes
localization when the breaking of time-reversal symmetry
is weak, in the sign of the second term. It cannot be
obtained by the nonperturbative field theory for massive
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Dirac fermions where all cooperon contributions vanish
[2]. It is important that Eq. (S83) holds for both strong
and weak disorders, i.e. both small and large U0.

3.2.2 Superdiffusion for m = 0

Let us first study Eq. (S83) in the limiting case, i.e.
τ−1m = 0 or m = 0, where the T̂ -symmetry is not broken.
For ω = 0, Eq. (S83) can be solved exactly, giving for
arbitrarily large length scale L (note that the weak anti-

localization applies only for L� τe2π
2νD0 .):

D(0) = D0 +
1

2π2ν
ln

(
L

τ

)
. (S84)

By using Einstein’s relation and letting L be the sample
size, we obtain the conductance for L� τe2π

2νD0 , which
is

g(L) =
e2

2π2
ln

(
L

τ

)
. (S85)

This gives:

d ln g

d lnL
=

1

πg
(S86)

with g rescaled by e2

h . We emphasize that because this
law was obtained from the self-consistent Eq. (S83), it 
holds even for strong disorders or small g. This was first 
found in numerical experiments [5, 6], which is contrary to 
the prediction by arguments based on the field theory [2]. 
The scaling law Eq. (S86) is a basic characteristic of the 
topological metal. Indeed, Eq. (S86) has no correc-tions 
from higher order 1/g expansion; it is well known that 
negative corrections from higher order 1/g expansion lead 
to a fixed point signaling a phase transition. This implies 
the absence of phase transition in 2D which oc-curs to 
non-Dirac materials with the Tˆ-symmetry. This 
fundamental difference might be attributed to the Klein 
tunneling which is a unique property of Dirac materials 
and is not carried by usual (i.e. nonrelativistic) spin-orbit 
coupling systems with T̂ -symmetry [7]. Indeed, as disor-
ders become stronger and stronger, particles are more 
and more readily converted into holes of the same en-
ergy and vice versa. Consequently, strong disorders tend 
to delocalize, instead of to localize, a particle or a hole. 
This counterintuitive picture ceases to work for nonrela-
tivistic spin systems, due to the absence of hole states.

To address the issue of wave propagation inside the
bulk, we solve Eq. (S83) for low frequencies, ωτ <∼
e−4π

2νD0 , obtaining:

D(ω) ' 1

4π2ν
ln

1

−iωτ
, for ωτ <∼ e

−4π2νD0 . (S87)

from which the wavepacket spreading, characterized by
〈r2〉t, is

〈r2〉t =

∫
dω

2π

1− e−iωt

ω2
D(ω)

t�τe4π
2νD0

−→ t ln(t/τ)

4π2ν
. (S88)

So the wavepacket spreading is superdiffusive.

3.2.3 Quantum diffusion for small m

For small m� ε, τ−1m > 0, the T̂ -symmetry is weakly
broken. For low frequencies, ωτm � 1, the ω term in
the denominator of Eq. (S83) can be dropped out. As a
result, D(ω) is ω independent: D(ω) = D, which satisfies

D0

D
=1− 1

πν

∫
Q< 1

τ

dQ

(2π)2
1

τ−1m +DQ2

=1− 1

2π2ν

∫ τ−1

L−1

dQQ
1

τ−1m +DQ2
. (S89)

From this we see that D may still depend on the length
scale L considered in general. To investigate this L-
dependence of D we solve Eq. (S89) numerically and the
result is shown in Fig. 1 in the main text. We see that it
first increases logarithmically with L, and levels off at a
quantum value. The latter can be found by setting L−1

to zero in Eq. (S89), which gives

D0

D
= 1− 1

2π2ν

∫ τ−1

0

dQQ
1

τ−1m +DQ2
, (S90)

namely, Eq. (2) in the main text. Equation (S90) can be
rewritten as

D =D0 +
1

4π2ν
ln

(
D

τ

τm
τ

+ 1

)
'D0 +

1

2π2ν
ln

ε√
2m

, (S91)

where in deriving the second line we have used ετ � 1
and τm/τ � 1. For ε

m � eπετ (namely, regime I in
the main text), the second term is much smaller than
the first. So quantum interference gives a small positive
correction to the Boltzmann diffusion constant: this is
nothing but the weak antilocalization. For ε

m � eπετ

(namely, regime II in the main text), the second term
dominates over the first,

D =
1

2π2ν
ln

ε√
2m

. (S92)

This quantum diffusion constant is determined by ν and
ε/m, independent of the disorder parameter. With the
help of Eq. (S87) we see that Eq. (S92) follows from
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replacing 1
−iω in Eq. (S87) by τm. Correspondingly, Eq.

(S92) gives the diffusive law:

〈r2〉t ∼
t

2π2ν
ln

ε√
2m

(S93)

for wavepacket spreading at sufficiently long (but finite,
see Sec. 4 for detailed discussions) time. Comparing Eq.
(S93) with Eq. (S88), we find that the quantum diffusive
law Eq. (S93) is recovered from the superdiffusive law Eq.
(S88) by replacing t in the logarithm of the latter by τm.
In this sense, we may regard quantum diffusion found
here as a remnant of the superdiffusion in topological
metals.

A possible physical picture for quantum diffusion is as
follows. First of all, when the particle moves in a disor-
dered environment, random scattering by impurities ren-
ders the memory of momentum lost at the time scale
τ , like in the canonical Einstein-Boltzmann paradigm.
However, at longer times the memory gets recovered by
constructive interference between different propagating
paths of quantum waves. In combination with the helic-
ity, that introduces strong spin-momentum locking, the
memory recovery enhances the relaxation time of mo-
mentum and renormalizes τ : the more the memory is
recovered, the slower the momentum relaxes. Then, as
on one hand the quantum interference rests on the T̂ -
symmetry, while on the other hand this symmetry is
weakly broken by small m, the constructive interference
and the ensuing memory recovery can persist only up to
τm. After that the particle undergoes random scatter-
ing again. So at the time scale of τm the wavepacket
propagation is diffusive, but with the diffusion constant
enhanced from D0 by the memory recovery.

4. INTERPLAY WITH LOCALIZATION

The nonperturbative results obtained in Sec.3.2.3,
though valid for very small frequency ω and very large
length scale L, cannot be extended to the limiting case
of ω = 0 and L=∞. Indeed, because of the T̂ -symmetry
breaking the system belongs to the unitary class. For
this system is 2D and not at the critical point of a quan-
tum Hall transition, it has to exhibit strong localization
at the limit of ω = 0 and L=∞. So, a question arises
naturally: can localization effects, either strong or weak,
originating from the T̂ -symmetry breaking dominate over
the quantum diffusion found in the present work?

To address this problem, let us ignore all quantum dif-
fusion effects for the moment. By using the nonlinear
σ-model of unitary type [1], it is easy to show that the
leading weak localization correction to D0 is at the two-
loop level (in contrast to the one-loop level — arising
from the cooperon — for the orthogonal or sympletic
class). Letting this correction be comparable to D0 gives

the localization length:

ξ0 ' τe2π
2(νD0)

2

. (S94)

It is easy to show that practically [more precisely, for
ε
m � e(ετ)

2

/2], the scale for quantum diffusion to occur,
i.e.

√
Dτm is much smaller than ξ0. As a result, well

before the weak localization effect sets in, the quantum
diffusion dominates in wave physics, and its effect has to
be carried over to localization physics at large time or
length scale.

Unfortunately, the σ-model for the unitary class ig-
nores all contributions from the cooperon. Consequently,
it cannot describe the quantum diffusion. Now because√
Dτm is much smaller than ξ0, one may regard the quan-

tum diffusion as a renormalization of the bare diffusion
constant in the σ-model, which is D0. Upon replacing
D0 in the σ-model by D, we obtain a new localization
length formula:

ξ '
√
Dτme

2π2(νD)2 . (S95)

This length is exponentially large at (νD)2. Therefore,
both weak and strong localization effects can be ignored
in practice, and only the quantum diffusion found here is
visible.

We remark that because the present system is in the
crossover from the sympletic to the unitary class, it is
not clear whether the well-known single-parameter scal-
ing theory of Anderson localization [17] may be gener-
alized to the present system. In fact, even for spinless
systems, we are not aware of any such single-parameter
scaling theory that applies in a regime that crosses over
from one symmetry to the other.

APPENDIX A. PROOF OF THE WARD
IDENTITY

In this Appendix, we generalize the method of
Refs. [13, 14] developed for disordered systems without
spin-orbit coupling to disordered massive Dirac fermions,
and prove a special type, namely, the Vollhardt-Wölfle
type, of Ward identity Eq. (S9). This type of Ward
identity for disordered spinless electron systems was first
given in Ref. [11] and generalized to more general spin-
less disordered systems in Refs. [13, 14]. For massless
Dirac fermions a Ward identity of this type was given in
Ref. [8]. The proof of the Vollhardt-Wölfle type Ward
identity developed in Refs. [13, 14] is substantially sim-
pler than that in Ref. [11] and, most importantly, can
be more readily generalized to spinful systems. However,
how the disorder average introduces the effective statisti-
cal interaction in that specific field theoretic setting was
not discussed in details in the original papers [13, 14];
this will be given below.
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As first noticed in Refs. [13, 14], to derive that special
type of Ward identities it is more convenient to adopt the
standard many-body technique [18, 19] than to start from
the one-particle wave equation [20]. We first introduce
the “particle-field” Heisenberg operators, Ψα(x),Ψ†α(x),
where α is the spin index and the (1 + 2)D spacetime
coordinate x ≡ (x0,x). Note that x0 is the time coordi-
nate t and x is the spatial coordinate r in the main text.
These operators satisfy the equal-time anticommutation
relations:

{Ψα(x),Ψ†α′(x
′)}|x0=x′0 = δ2(x− x′)δαα′ (A1)

and

{Ψα(x),Ψα′(x
′)}|x0=x′0 = {Ψ†α(x),Ψ†α′(x

′)}|x0=x′0 = 0.
(A2)

The quantized Hamiltonian is

H =H0 +H ′,

H0 =

∫
d2xΨ†α(x)(−iσ · ∇+mσz)αβΨβ(x),

H ′ =

∫
d2xV (x)Ψ†α(x)Ψα(x). (A3)

Recall that V (x) is the disorder potential and the Ein-
stein summation convention is applied to the spin indices.
The Dirac system described by this Hamiltonian obeys
the following current conservation law:

∂µj
µ = 0,

j0 = Ψ†αΨα, j = Ψ†ασαβΨβ . (A4)

Here ∂µ ≡ (∂x0 ,∇). Throughout this appendix it acts
on the spacetime coordinate x, whenever several distinct
spacetime coordinates (e.g., y, z, etc.) appear. By using
Eqs. (A1) and (A2), it is easy to show that this conser-
vation law entails the following identity:

∂µ〈Ω|T{jµ(x)Ψα(y)Ψ†β(z)}|Ω〉

=− δ3(x− y)〈Ω|T{Ψα(x)Ψ†β(z)}|Ω〉

+δ3(x− z)〈Ω|T{Ψα(y)Ψ†β(x)}|Ω〉. (A5)

Here Ω stands for the (many-body) ground state for a sin-
gle disorder configuration, and “T” stands for the time-
ordering operator.

To proceed we introduce the following representation,
which is similar to the interaction representation but with
the absence of the particle interaction. This allows us to
bring the standard diagrammatic technique developed in
the interaction representation for treating particle inter-
actions to the present context to treat disorder potentials.
Specifically, upon switching to the new presentation, a
Heisenberg operator F (t) is transformed to F̃ (t):

F̃ (t) = S(t)F (t)S−1(t), S(t) := Te−i
∫ t
−∞ H̃′(t′)dt′ ,

(A6)

where

H̃ ′(t) =

∫
d2xV (x)Ψ̃†α(x)Ψ̃α(x). (A7)

Similar to the interacting case [19], the ground state Ω
can be expressed in terms of the ground state in the ab-
sence of the disorder potential, which is denoted as 0, via
S(t). As a result, for a generic product of Heisenberg
operators, denoted as O, we have:

〈Ω|T{O}|Ω〉 =
〈0|T{ÕS(∞)}|0〉
〈0|S(∞)|0〉

. (A8)

Applying this formula to Eq. (A5) and dropping out the
common denominator 〈0|S(∞)|0〉, we obtain:

∂µ〈0|T{j̃µ(x)Ψ̃α(y)Ψ̃†β(z)S(∞)}|0〉

=− δ3(x− y)〈0|T{Ψ̃α(x)Ψ̃†β(z)S(∞)}|0〉

+δ3(x− z)〈0|T{Ψ̃α(y)Ψ̃†β(x)S(∞)}|0〉. (A9)

Let us substitute Eq. (A7) into Eq. (A9). Upon expand-
ing the expression in V (x), Feynman diagrams result. It
should be emphasized that these diagrams have nothing
to do with the disorder average and thereby have noth-
ing to do with the Feynman diagrams resulting from the
disorder average. Then, each term in Eq. (A9) can be
organized as the product of the sum of all connected di-
agrams and a common factor arising from subdiagrams,
which does not involve the external lines and are discon-
nected from the part that is connected and includes the
external lines. This common factor can be found to be
〈0|S(∞)|0〉 by standard methods [18, 19]. So Eq. (A9)
is reduced to:

∂µ〈0|T{j̃µ(x)Ψ̃α(y)Ψ̃†β(z)S(∞)}|0〉c
=− δ3(x− y)〈0|T{Ψ̃α(x)Ψ̃†β(z)S(∞)}|0〉c
+δ3(x− z)〈0|T{Ψ̃α(y)Ψ̃†β(x)S(∞)}|0〉c, (A10)

where the subscript “c” stands for that the diagrams
are connected. The time-ordered Green’s function in the
ground state Ω is defined as:

Gαβ(x, y) = −i〈Ω|T{Ψ̃α(x)Ψ̃†β(y)}|Ω〉, (A11)

which is found to be

Gαβ(x, y) = i〈0|T{Ψ̃α(x)Ψ̃†β(y)S(∞)}|0〉c. (A12)

Taking this into account we can rewrite Eq. (A10) as

− i∂µ〈0|T{j̃µ(x)Ψ̃α(y)Ψ̃†β(z)S(∞)}|0〉c
=− δ3(x− y)Gαβ(x, z) + δ3(x− z)Gαβ(y, x). (A13)

Note that this result is for a single disorder configuration.
Now we wish to perform the disorder average of Eq.

(A13). We first note that any V in a Feynman diagram
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defined above has to be uniquely paired with another V
according to the rule: 〈V (x)V (x′)〉 = U0δ(x−x′), so that
the diagram can survive under the averaging. This effec-
tively introduces the “statistical interaction” in term of
Ref. [13] to each diagram and is represented by a dashed
line (see Fig. 2 in the main text), which is often called the
disorder scattering or impurity line in condensed matter
physics. Upon this averaging the translational invariance
is restored. So the average of the free Green’s function,

〈Gαβ(x, y)〉, depends only on the difference of two space-
time coordinates x − y, which is denoted as Gαβ(x − y).
Therefore, upon the averaging a new kind of Feynman
diagrams result, which are composed of Gαβ and the sta-
tistical interaction or the disorder scattering line. In the
remainder of this appendix we consider this kind of Feyn-
man diagrams.

For 〈0|T{j̃µ(x)Ψ̃α(y)Ψ̃†β(z)S(∞)}|0〉c its disorder av-
erage takes the following form:

〈〈0|T{j̃µ(x)Ψ̃α(y)Ψ̃†β(z)S(∞)}|0〉c〉 =

∫∫
d3y′d3z′Gαα′(y − y′)(Γµ)α′β′(y

′|x|z′)Gβ′β(z′ − z), (A14)

where (Γµ)αβ(y|x|z) is the irreducible vertex function composed of irreducible diagrams. Here by “irreducible” it
means that one cannot cut a free Green’s function line to divide a diagram into two disconnected parts. We take the
derivative with respect to x for both sides of Eq. (A14). With the help of the identity Eq. (A5), we find that

i∂µ

∫∫
d3y′d3z′Gαα′(y − y′)(Γµ)α′β′(y

′|x|z′)Gβ′β(z′ − z) = δ3(x− y)Gαβ(x− z)− δ3(x− z)Gαβ(y − x), (A15)

which gives the Ward-Takahashi identity:

i∂µ(Γµ)α′β′(y
′|x|z′) = G−1α′β′(y

′ − x)δ3(x− z′)− δ3(y′ − x)G−1α′β′(x− z
′). (A16)

We show below that this identity results in a Vollhardt-Wölfle type Ward identity.
Note that the irreducible vertex function satisfies the following integral equation:

(Γµ)αβ(y|x|z)− (Γµ0 )αβ(y|x|z)

=−
∫∫∫∫

d3y1d
3z1d

3y2d
3z2Gα2α1(y2 − y1)(Γµ)α1β1(y1|x|z1)Gβ1β2(z1 − z2)Uβ2β,αα2(y2, z2; y, z) , (A17)

where U is the Bethe-Salpeter kernel, and Γµ0 is the bare vertex function, which is the one corresponding to the
case where the statistical interaction is absent. Taking the derivative with respect to x for both sides and using the
following fact: ∫

d3y
(
(G−10 )(x− y)− Σ(x− y)

)
αβ
Gβγ(y − z) = δ3(x− z)δαγ , (A18)

we obtain:

Σαβ(y − x)δ3(x− z)− δ3(y − x)Σαβ(x− z)

=

∫∫
d3y2d

3z2
(
δ3(y2 − x)Gα2β2

(x− z2)− Gα2β2
(y2 − x)δ3(x− z2)

)
Uβ2β,αα2

(y2, z2; y, z). (A19)

Then we pass to the Fourier representation. The Fourier transformations of Green’s function and the self-energy are

G(x− y) =

∫
d3k

(2π)3
eik

µ(x−y)µGk0(k), Σ(x− y) =

∫
d3k

(2π)3
eik

µ(x−y)µΣk0(k), (A20)

respectively, where the spin indices have been omitted to make the formulae compact. To pass to the Fourier repre-
sentation of the Bethe-Salpeter kernel U , it is important to note that the disorder potential has no time dependence
and the translational invariance is restored, as a result of which U has to satisfy:

U(x′, y′;x, y) ≡ U(x′ − x, y′ − y,x′ − y′), (A21)

where we have omitted the spin indices since they are irrelevant for this constraint. Due to this constraint the Fourier
transformation of U takes the following form:

U(x,′ y′;x, y) =

∫∫∫
d3k1
(2π)3

d3k2
(2π)3

d2k

(2π)2
e−i(k1+k)µx′µ+ik

µ
1 xµei(k2+k)µy′µ−ik

µ
2 yµU(k1 + k, k2 + k; k1, k2), (A22)
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where we have used the shorthand notation: k1,2 + k ≡ (k01,2,k1,2 + k). With the insertion of Eqs. (A20) and (A22),
the left-hand side of Eq. (A19) is transformed to:∫∫

d3k1
(2π)3

d3k2
(2π)3

eik
µ
1 (y−x)µeik

µ
2 (x−z)µ

(
Σk01 (k1)− Σk02 (k2)

)
αβ

(A23)

and the right-hand side to:∫∫∫
d3k1
(2π)3

d3k2
(2π)3

d2k

(2π)2
eik

µ
1 (y−x)µeik

µ
2 (x−z)µ

(
Gk02 (k2 + k)− Gk01 (k1 + k)

)
α2β2

Uβ2β,αα2
(k1 + k, k2 + k; k1, k2). (A24)

Thus Eq. (A19) is transformed to:(
Σk01 (k1)− Σk02 (k2)

)
αβ

=

∫
d2k

(2π)2

(
Gk01 (k1 + k)− Gk02 (k2 + k)

)
α2β2

Uβ2β,αα2
(k1 + k, k2 + k; k1, k2). (A25)

This may be considered as the most general Ward identity of Vollhardt-Wölfle type in disordered spin systems.
Let us consider a special case of Eq. (A25), where k01 (k02) is above (below) the Fermi energy. For the former (latter)

we have G = GR (G = GA) [18]. Substituting it into Eq. (A25), we obtain:(
ΣRk01

(k1)− ΣAk02
(k2)

)
αβ

=

∫
d2k′

(2π)2

(
GRk01 (k1 + k′)− GAk02 (k2 + k′)

)
α2β2

Uβ2β,αα2
(k1 + k′, k2 + k′; k1, k2). (A26)

Denote k01,2 = ε± = ε±ω2 , k1,2 = k± = k ± q
2 and p = k + k′, and the ensuing U as follows:

Uβ2β,αα2
(ε+,p+, ε−,p−; ε+,k+, ε−,k−) ≡ Upk

β2β,αα2
(q, ω), (A27)

where we have omitted the parameter ε to make the expression compact. Then Eq. (A26) gives the Vollhardt-Wölfle
type Ward identity, namely, Eq. (S9) or Eq. (7) in the main text. When all spin indices are suppressed the Ward
identity derived by Vollhardt and Wölfle [11] is recovered.

APPENDIX B. PROOF OF EQ. (S72)

In this appendix we prove Eq. (S72). To start we note that φpp
′

αβ,β′α′(q, ω) can be diagrammatically represented by
Fig. S4. By using Eq. (S14) we have:

(−2πi)φ0 =
(∑

p

Rp +
∑
p,p′

Zpp′ +
∑
p,p′

RpΓpp′

0 Rp′ +
∑

p,p′,k1

RpΓpk1

0 Zk1p
′
+
∑

p,p′,k1

Zpk1Γk1p
′

0 Rp′

+
∑

p,p′,k1,k2

RpΓpk1

0 Zk1k2Γk2p
′

0 Rp′
)
αβ,βα

. (B1)

Since Γpp′

0 has no p,p′ dependence, Eq. (B1) can be simplified to:

(−2πi)φ0 =
(
R̃+ Z̃ + R̃Γ0R̃+ R̃Γ0Z̃ + Z̃Γ0R̃+ R̃Γ0Z̃Γ0R̃

)
αβ,βα

. (B2)

where

R̃ =
∑
p

Rp, Z̃ =
∑
p,p′

Zpp′ . (B3)

Multiplying both sides of Eq. (B2) by U0 and using the first line of the following identity:

(Γ0)αβ,β′α′ =U0δαβδβ′α′ + U0

(
R̃Γ0

)
αβ,β′α′

=U0δαβδβ′α′ + U0

(
Γ0R̃

)
αβ,β′α′

, (B4)
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Fig. S4. Diagrammatical representation of φpp′

αβ,β′α′(q, ω).

we obtain:

(−2πi)U0φ0 =
(
U0R̃+ U0Z̃ + U0R̃Γ0R̃+ U0R̃Γ0Z̃ + U0Z̃Γ0R̃+ (Γ0 − U0)Z̃Γ0R̃

)
αβ,βα

=
(
U0R̃+ U0Z̃ + U0R̃Γ0R̃+ U0R̃Γ0Z̃ + Γ0Z̃Γ0R̃

)
αβ,βα

. (B5)

Multiplying both sides of Eq. (B5) by U0 and using Eq. (B4), we obtain:

(−2πi)U2
0φ0 =

(
U2
0 R̃+ U2

0 Z̃ + U2
0 R̃Γ0R̃+ U0(Γ0 − U0)Z̃ + Γ0Z̃(Γ0 − U0)

)
αβ,βα

=
(
U2
0 R̃+ U2

0 R̃Γ0R̃+ Γ0Z̃Γ0

)
αβ,βα

. (B6)

Applying the first line of Eq. (B4) to the second term of Eq. (B6), we obtain:

(−2πi)U2
0φ0 =

(
U0Γ0R̃+ Γ0Z̃Γ0

)
αβ,βα

. (B7)

Applying the second line of Eq. (B4) to the first term of Eq. (B7) we further obtain:

(−2πi)U2
0φ0 =

(
Γ0 − U0 + Γ0Z̃Γ0

)
αβ,βα

, (B8)

which is Eq. (S72).
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