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Abstract
We study the transport behavior of anti-dot graphene both theoretically and experimentally, where
the term ‘anti-dot’ denotes the graphene layer to be nanostructured with a periodic array of holes.
It has been shown that the electronic band structure of the anti-dot graphene can be described by a
4 by 4 effective Hamiltonian (Pan J et al 2017 Phys. Rev. X. 7 031043) with a gap around the Dirac
point, attendant with a 0 to π variation of the Berry phase as a function of energy, measured from
the band edge. Based on the diagrammatic method analysis and experiments, we identify an
energy-dependent metal-to-insulator transition (MIT) in this two-dimensional (2D) system at a
critical Fermi energy εc, characterized by the divergence of the localization length in the Anderson
localization phase to a de-localized metallic phase with diffusive transport. By measuring the
conductance of square samples with varying dimension and at different Fermi energies,
experiments were carried out to verify the theory predictions. While both theory and experiment
indicate the existence of a 2D MIT with similar localization length divergence exponent, the values
of the critical energy εc and that of the localization length do not show quantitative agreement.
Given the robust agreement in the appearance of a 2D MIT, we attribute the lack of quantitative
agreement to the shortcomings in the theoretical model. The difficulties in addressing such
shortcomings are discussed.

1. Introduction

In the traditional scaling theory [1–3] of Anderson localization (AL) [4, 5], wave-functions in 2D systems
are localized even with arbitrarily weak disorders. This indicates that no metallic state can survive in a large
enough 2D systems because there are always disorders in realistic materials. In contrast, for 3D systems only
if the strength of disorder is strong enough so that the conductance of the system is lower than a critical
value, denoted the mobility edge, would the electronic wave-functions be localized. The physical picture of
AL is the coherent backscattering mechanism [3, 6–9], in which any multiply-scattered pathway and its
time-reversed counterpart can interfere constructively, leading to enhanced backscattering. In 2D, this
mechanism gives rise to a cumulative downward renormalization of the diffusion coefficient to zero, even
with arbitrarily weak disorders, thereby leading to AL.

Recently, new 2D material systems, e.g. graphene-based materials [10–12] and symmetry-protected
surface states of topological materials [13–22], structure symmetry is shown to introduce an additional
geometric phase factor, denoted the Berry phase, that suppresses the back-scatterings and results in the
anti-localization effect [23–38]. Transport in such 2D system can be super-diffusive [31, 39–42], indicating
the existence of the 2D metallic phase.
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Anti-dot graphene is a single graphene layer nanostructured with a periodic array of holes; this leads to
the opening of a gap around the Dirac point [43–45], and the introduction of a variable Berry phase,
changing from 0 close to the band edge, to π far away [43]. As a result, one can expect the traditional
coherent backscattering behavior to be dominant close to the band edge, and anti-localization behavior
would dominate at energies far away. Hence such a Berry phase variation can potentially induce a MIT. In
fact, localization to anti-localization transition in topological materials has been addressed previously
[18, 21, 22], but they were focused on the behavior of magneto-resistance, rather than on the large-scale
transport properties. Furthermore, the Hamiltonian of anti-dot graphene is different from that of
topological insulators. To our knowledge, large-scale transport properties associated with the Berry phase
variation in anti-dot graphene systems have not yet been studied.

In this work, we investigate the problem of two dimensional (2D) metal–insulator transition in anti-dot
graphene both theoretically and experimentally. The manuscript is organized as follows. In section 2 we
present the results of a diagrammatical theory to analyze the multiple scatterings in anti-dot graphene; we
describe the main results in the main text—the 2D localization to anti-localization transition at a critical
Fermi energy εc above the band edge. The supporting theoretical derivations are described in the
supplemental materials. In section 3 we describe the experiment that led to the observation of the diverging
behavior of the localization length at a critical Fermi energy level εc, and diffusive transport behavior above
εc. In section 4 we compare the theoretical prediction and the experimental results. While the MIT is
observed both theoretically and experimentally, the value of the εc and the localization length are not in
quantitative agreement; the latter is attributed to a crucial shortcoming of the theoretical model. We
recapitulate our results in section 5.

2. Theoretical analysis of large-scale transport of anti-dot graphene

Consider an anti-dot graphene decorated by a disordered scalar potential. A scanning electron microscopy
(SEM) image of the anti-dot graphene sample is shown in figure 1(a). A schematic illustration of the holes
array on graphene is shown in figure 1(b). The periodic hole structure introduces a new Bravais lattice into
the graphene layer, leading to the opening of a gap at the Dirac point. An effective anti-dot graphene
Hamiltonian is [43]:

H0 =

⎛
⎜⎜⎝

0 υp e−iθ m 0
υp eiθ 0 0 m

m 0 0 −υp e−iθ

0 m −υp eiθ 0

⎞
⎟⎟⎠, (1)

with quasiparticles being described by the four-component Bloch functions: ψ =
[
φK+A φK+B φK−B φK−A

]T.
Here we denote the two ‘valleys’ by K+/K−, and the two inequivalent carbon ‘sub-lattices’ by A/B,
illustrated in figure 1(c). Electronic momentum p = k − K+(K−) is measured from the Dirac points,
θ = tan−1

(
py/px

)
denotes the angle of the propagation, and υ denotes the group velocity of electrons in

antidot graphene. Here m is the mass term, arising from the scatterings by the periodic hole array, that leads
to a gap of 2m around the Dirac point. In this work we employ the system of atomic units by setting the
Plank constant and the electronic charge to be unity, i.e. � = e = 1. H0 gives rise to a massive energy
spectrum ε = ±

√
υ2p2 + m2, in contrast to ε = ±υF p for pristine graphene, where υF denotes the

Fermi velocity.
In the conduction band, the Berry phase around the Dirac point, given by ϕ =

i
∮
C

d−→p
〈
ψ
(−→p )∣∣∇−→

p

∣∣ψ(−→p )〉
= ε−m

ε
π, is energy-dependent and varies from 0 at the band edge (ε = m) to

∼π at high energies ε � m. Such a variation is illustrated in figure 1(d). This implies the potential existence
of a localized phase around the band edge and an anti-localized phase at high energy. As a consequence, this
fact strongly indicates that at some critical energy εc the transport characteristic can undergo a phase
transition between these two phases.

In order to study the large-scale electronic transport in anti-dot graphene, we derived a density response
theory to describe the transport in anti-dot graphene. Here we present the main results. Detailed
derivations are summarized in the supplemental materials [46] for interested readers. We identified a
metal–insulator transition with εc being the solution of the transcendental equation of ε:
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Figure 1. (a) A SEM image of an anti-dot graphene sample. The anti-dot array is a hole array nanostructured on a monolayer
graphene sample, with a periodicity ∼150 nm and a pore diameter ∼100 nm. (b) An illustrative plot for the holes on the
graphene. Red circle delineates the boundary of a hole. Electrons are scattered from the boundary, thereby inducing a new
periodicity in the system. (c) Lattice structure of a graphene monolayer. Carbon atoms are arranged in a hexagonal lattice, and
white/black atoms represent the A/B sub-lattices, respectively. (d) The anti-dot boundary scatters electrons and induces a gap
around the CNP. The scale to the right indicates the variation of the Berry phase in unit of π.

ΓA ln

(
1 +

1

Γ

)
= −1, with

Γ =
2ε2m2

(
ε2 − m2

)
(ε6 + 3ε4m2 + 11ε2m4 + m6)

, A =

(
ε6 − 7ε4m2 − 21ε2m4 − 5m6

)
2πτεm2(ε2 − m2)2 . (2)

Here τ = τ0

1+(m/ε)2 , and τ 0 is the elastic scattering time of the disorder potential. When the Fermi energy is

below εc the system is localized; metallic, diffusive transport behavior is found above εc. The correction to
the diffusion coefficient, δD, is a function of both energy and system size scale L, given by the relation:

δD

D0
= ΓA ln

(
Γ +

(
1
l

)2
υ2τ 2

Γ +
(

1
L

)2
υ2τ 2

)
. (3)

Here D0 = υ2τ and l is the mean free path. There is a second critical energy εc2 > εc that distinguishes the
weak-localization region and the anti-localization region, by setting the right-hand side of equation (3) to
zero. If the Fermi energy is in the insulating region m < ε < εc, the diffusion coefficient D decreases to zero
as system size scale L increases to infinity. In the weak-localization region εc < ε < εc2, the diffusion
coefficient D decreases and reaches at some non-zero plateau value that is smaller than D0 as L increases to
infinity. In the anti-localization region εc2 < ε, D increases with increasing L and reaches a saturation value
that is larger than D0. This behavior is shown in figure 2.

3



New J. Phys. 24 (2022) 113027 T Zhang et al

Figure 2. The renormalized diffusion coefficient plotted as function of the system size L/l, where l is the mean free path. Below
the critical energy εc the diffusion coefficient can be renormalized to zero, indicating localization. Between εc and εc2, the
coherent backscattering can downward modify the diffusion coefficient (note the slightly downward trend of the red curve at
small system size), but approaches to a plateau value smaller than D0. Above εc2, the renormalized diffusion coefficient increases
to a saturation value that is larger than D0. These behaviors indicate a localization to anti-localization transition.
In this case εc ∼ 20 meV and εc2 ∼ 30 meV.

Compared to the pristine graphene [33], there are two important differences—(1) the appearance of the
localization/weak-localization phase, and (2) the saturation of the diffusion constant D as L increases to
infinity.

From the theory, we can also obtain the localization length ξ in the localized region, defined as the
length scale at which the diffusion coefficient decreases to zero:

ξ = υτ

(
(Γ + 1) exp

(
1

ΓA

)
− Γ

)− 1
2

. (4)

ξ diverges as the energy approaches the critical energy εc from below. The critical exponent characterizing
the divergence of the localization length, ξ ∼ |ε− εc|η, is η ∼ −0.5.

3. Experimental study of large-scale transport of anti-dot graphene

To verify the existence of the suggested localization to de-localization transition, we carried out transport
measurements on the anti-dot graphene samples. We employed e-beam lithography and oxygen plasma
etching to pattern the anti-dot structures on monolayer graphene, with a period ∼150 nm and anti-dot
diameter ∼100 nm (see figure 1). Multiple contacts were defined in a second e-beam lithography step, and
then 10 nm Ti and 80 nm Au were deposited by e-beam evaporation. A uniform background gate was
employed to modulate the Fermi energy in the system. An illustrated picture of the system is shown in
figure 1. The localization length ξ was extracted at 2 K by following the same method as introduced by
reference [47], i.e. by varying the size of the square samples.

We have fabricated the anti-dot graphene sample in the Hall bar geometry with varying spacing between
the electrodes in the longitudinal direction. The sample lengths vary from 2.5 to 11.5 μm, as presented in
the SEM picture in figure 3(a). The gate voltage dependence of conductivity is plotted in figure 3(b). At
each fixed gate voltage, we measured the conductance g as a function of sample size scale L, and the
localization length was extracted using the expression:

g(L) ∼ e−L/ξ, (5)

to fit the conductance data. The energy shift was obtained based on the massive energy dispersion

ε =
√

(�kFv)2 + m2, where � is the reduced Planck constant, kF =
√
πn/2 is the Fermi wavevector,

n = 7.57 × 1010 × VG /cm2·V is the carrier density that can be extracted from the geometric capacitance of
the global back gate, and m is the mass term that we discussed before.
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Figure 3. (a) SEM image of the measured device. (b) V G dependence of the conductivity corresponding to L = 2.5 μm sample
length. The shaded regime corresponds to the energy scale discussed in the main text. (c) Conductivity measured as a function of
sample length L at varying energy shift. It is clear that if ε− εCNP < 33 meV the system is localized, and at ε− εCNP = 43 meV
the system is diffusive. There is a localization-to-diffusive transition that occurs between these two doping levels.

It can be seen from figure 3(c) that a localization to de-localization transition occurs when the energy
shifts away from the charge neutrality point (CNP). At around the CNP, the conductance follows the scaling
theory (equation (5)), indicating the system lies in the localization regime. As the energy shifts away from
the CNP, the system was observed to shift abruptly to the diffusive regime—that is, the square conductance
becomes a constant when ε − εCNP > 43 meV.

4. Comparison between theory and experiment

We now show the comparison between theory and experiment. The theory prediction of the localization
length vs energy shifting—ξ ∼ |ε− εc|−0.5 in the localization regime, with εc ∼ 20 meV and then diverges
to infinity in the de-localization regime—is plotted in figure 4(a). The experimentally measured localization
length ξ versus energy shifting is shown in figure 4(b). As the energy shifts away from the CNP, the
localization length is observed to grow dramatically and finally diverges at a certain critical energy εc, which
is exactly the same behavior predicted by the theory as shown in figure 4(a). Based on the theoretical
prediction, i.e. ξ ∼ |ε− εc|η , we perform a fitting to the experimental data to determine the critical energy
εc and the divergence power exponent η, respectively. The fitting result is plotted in figure 4(b) by the red
line, which yields εc ∼ 33.5 meV and η ∼ −0.44. The divergence power exponent η ∼ −0.44 matches
reasonably well with the theoretically predicted divergence exponent of −0.5. Therefore, the theoretical
analysis is in qualitative accords with the experimental results. Both theoretically and experimentally, the
prediction of a 2D localization to de-localization transition is verified. As described in the last section, the
localization to de-localization transition arises from the negative to the positive transition of the
conductance correction. Physically, this sign change is the result of the Berry phase variation, representing
the constructive to destructive interference in the back-scattering. Hence the localization to de-localization
transition originates from the variable Berry phase as a function of the Fermi energy. However, from the
experimental data we cannot deduce the value of εc2 .

5



New J. Phys. 24 (2022) 113027 T Zhang et al

Figure 4. (a) The theoretical data of the localization length ξ versus Fermi energy. The mean free path is ∼30 nm and
m ∼ 10 meV which is extracted from the experimental data. (b) The experimental result of the localization length ξ versus Fermi
energy. The red line is a fit to the experimental data which gives a critical energy εc = 33.5 meV and η = −0.44. Both the
experimental data and the theoretical result indicate that the localization length ξ diverge at some critical energy εc, which
verifies the localization–delocalization transition. The mismatch between the experimental data and the theoretical result can be
attributed to three points, the states inside the gap that are not considered in the model, the one-loop calculation method, and
the puddles in realistic anti-dot graphene systems, as discussed in the main text.

Quantitatively, we can estimate the critical energy with the corresponding data of the experimental case.
According to the tight-binding model of anti-dot graphene [43], the mass term m is ∼10 meV in our
experiments. Substituting this value into the theory, the estimated localization length as a function of Fermi
energy is shown in figure 4(b). In the plot, we have assumed that the mean free path l = υτ = 30 nm to
match the experimental observation. The obtained critical energy is ∼20 meV, about ∼10 meV higher than
the band edge. As a comparison, in the experiments, we observed the critical energy is ∼35 meV. Hence the
theoretical result is somewhat smaller than the experimental observations. However, the estimated
localization length from our theoretical model is much smaller than what is observed in the experiments.
This discrepancy can be attributed to three possible reasons, discussed below.

The low-energy effective Hamiltonian equation (1) is extracted from the tight-binding calculation [43]
and is valid only in the conduction/valence band. Around the CNP there are extra complexities that are not
taken into account. According to the recent work [48], there can be localized states with a constant DOS in
the anti-dot gap. These effects are taken into account with the tight-binding calculation but cannot be

6
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included in the effective Hamiltonian, equation (1). As a result, around the CNP, the correlation effect
introduces a much smaller ‘hard gap’ in the DOS of localized states and suppresses the inelastic scattering
processes. The phase coherence between the states around CNP can be preserved up to an extremely long
length/time scale. The tight-binding model also predicts these states around CNP show power-law decay
behavior away from the hole-edge. Therefore, AL may have emerged from such states. If so, then the AL
behavior observed in the experiment may be partially attributed to these states that are inside the anti-dot
structural gap, which is not taken into account in the present theoretical model. This can be the main
source of the theory-experiment disagreement.

There are some other potential sources for the theory-experiment disagreement. The anti-dot graphene
sample is placed on silicon dioxide substrates, which is well known to induce electron–hole puddles [11].
Consequently, local potential fluctuations can be relatively long-range, which may affect the localization
region in the energy spectrum, as well as the localization length. Also, the theoretical analysis is
perturbative. It only takes into account the ‘one-loop’ [39, 42] diagrams. The perturbative treatment is
accurate only if δD

D0
� 1 is satisfied. However, in the localization region, the correction to conductance is

comparable or even larger than D0. As a result, we do not expect that our one-loop perturbative calculation
can describe the whole problem very accurately.

The difficulty in including the gap states in the theoretical model lies in the lack of an accurate boundary
condition, besides the normal current =0 at the hole edge, so that the continuum model can reproduce the
tight-binding results, in particular the gap states. This difficulty is currently being addressed.

The results found in this research can actually be of practical use. This is because if there is a localized
(insulator) and delocalized (metal) transition at a critical doping level, which means one can manipulate the
conductance at the mesoscopic level by just varying the gating voltage. Since the electrical signals can be
extremely fast, hence locally, the control on the conductance can open and shut current flows, to simulate
input signals.

5. Conclusion

To conclude, we validate both theoretically and experimentally the existence of a 2D
localization–delocalization transition in anti-dot graphene systems. The coherent backscattering process
gives rise to a varying Berry phase, leading to a negative conductance correction close to the band edge, and
a positive correction at a higher doping level. The localization length diverges at a critical Fermi energy,
which is verified both theoretically and experimentally with a similar divergence exponent. However, the
predicted localization length is order of magnitude smaller than that observed experimentally. We discuss
the potential sources of quantitative theory/experiment disagreement that can remedy the situation if
corrected.
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[8] Vollhardt D and Wölfle P 1980 Phys. Rev. Lett. 45 842
[9] Yoshioka D, Ono Y and Fukuyama H 1980 J. Phys. Soc. Japan 50 3419

[10] Abergel D S L, Apalkov V, Berashevich J, Ziegler K and Chakraborty T 2010 Adv. Phys. 59 261
[11] Castro Neto A H, Guinea F, Peres N M R, Novoselov K S and Geim A K 2009 Rev. Mod. Phys. 81 109
[12] Peres N M R 2010 Rev. Mod. Phys. 82 2673
[13] Takane Y 2014 J. Phys. Soc. Japan 83 103706
[14] Takane Y 2016 J. Phys. Soc. Japan 85 094715
[15] Wu B L, Song J T, Zhou J J and Jiang H 2016 Chin. Phys. B 25 117311
[16] Chou Y Z and Foster M S 2014 Phys. Rev. B 89 165136
[17] Mong R S K, Bardarson J H and Moore J E 2012 Phys. Rev. Lett. 108 076804
[18] Lu H Z and Shen S Q 2016 Chin. Phys. B 25 117202
[19] Adroguer P, Carpentier D, Cayssol J and Orignac E 2012 New J. Phys. 14 103027
[20] Liu W Z, Hankiewicz E M and Culcer D 2017 Materials 10 807
[21] Lu H Z and Shen S Q 2014 arXiv:1409.1299
[22] Lu H Z, Shi J R and Shen S Q 2011 Phys. Rev. Lett. 107 076801
[23] Berry M V 1984 Proc. R. Soc. A 392 45
[24] Hikami S, Larkin A I and Nagaoka Y 1980 Prog. Theor. Phys. 63 707
[25] Asada Y, Slevin K and Ohtsuki T 2004 Phys. Rev. B 70 035115
[26] Markos P and Schweitzer L 2006 J. Phys. A: Math. Gen. 39 3221
[27] Ando T, Nakanishi T and Saito R 1998 J. Phys. Soc. Japan 67 2857
[28] Suzuura H and Ando T 2002 Phys. Rev. Lett. 89 266603
[29] Wu X S, Li X B, Song Z M, Berger C and de Heer W A 2007 Phys. Rev. Lett. 98 136801
[30] Tikhonenko F V, Kozikov A A, Savchenko A K and Gorbachev R V 2009 Phys. Rev. Lett. 103 226801
[31] Nomura K, Koshino M and Ryu S 2007 Phys. Rev. Lett. 99 146806
[32] Ando T and Nakanishi T 1998 J. Phys. Soc. Japan 67 1704
[33] McCann E, Kechedzhi K, Fal’ko V I, Suzuura H, Ando T and Altshuler B L 2006 Phys. Rev. Lett. 97 146805
[34] McCann E and Falko V I 2005 Phys. Rev. B 71 085415
[35] Hwang E H and Das Sarma S 2008 Phys. Rev. B 77 195412
[36] Hwang E H and Das Sarma S 2007 Phys. Rev. B 75 205418
[37] Adam S, Hwang E H, Galitski V M and Das Sarma S 2007 Proc. Natl Acad. Sci. USA 104 18392
[38] Ando T 2006 J. Phys. Soc. Japan 75 074716
[39] Zhang T, Tian C S and Sheng P 2021 Phys. Rev. B 104 075427
[40] Bardarson J H, Tworzydło J, Brouwer P W and Beenakker C W J 2007 Phys. Rev. Lett. 99 106801
[41] Tkachov G 2016 Topological Insulators—The Physics of Spin Helicity in Quantum Transport (Singapore: Pan Stanford Publishing)
[42] Tian C S 2012 Phys. Rev. B 86 121304
[43] Pan J, Zhang T, Zhang H J, Zhang B, Dong Z and Sheng P 2017 Phys. Rev. X 7 031043
[44] Pedersen T G, Flindt C, Pedersen J, Mortensen N A, Jauho A P and Pedersen K 2008 Phys. Rev. Lett. 100 136804
[45] Fürst J A, Pedersen J G, Flindt C, Mortensen N A, Brandbyge M, Pedersen T G and Jauho A P 2009 New J. Phys. 11 095020
[46] Zhang Ting, Haijing Zhang, Jie Pan and Ping Sheng supplemental material.
[47] Zhang H, Lu M J, Shi W, Wang Z, Zhang T, Sun M Y, Zheng Y, Chen Q H, Wang N, Lin J J and Ping Sheng 2013 Large scale

mesoscopic transport in nanostructured graphene Phys. Rev. Lett. 110 066805
[48] Pan J, Yeh S S, Zhang H J, Rees D G, Zhang T, Zhang B, Lin J J and Sheng P 2021 Phys. Rev. B 103 235114

8

https://doi.org/10.1103/physrevlett.56.1471
https://doi.org/10.1103/physrevlett.56.1471
https://doi.org/10.1103/physrevb.22.4666
https://doi.org/10.1103/physrevb.22.4666
https://doi.org/10.1103/physrevlett.45.842
https://doi.org/10.1103/physrevlett.45.842
https://doi.org/10.1143/JPSJ.50.3419
https://doi.org/10.1143/JPSJ.50.3419
https://doi.org/10.1080/00018732.2010.487978
https://doi.org/10.1080/00018732.2010.487978
https://doi.org/10.1103/revmodphys.81.109
https://doi.org/10.1103/revmodphys.81.109
https://doi.org/10.1103/revmodphys.82.2673
https://doi.org/10.1103/revmodphys.82.2673
https://doi.org/10.7566/jpsj.83.103706
https://doi.org/10.7566/jpsj.83.103706
https://doi.org/10.7566/jpsj.85.094715
https://doi.org/10.7566/jpsj.85.094715
https://doi.org/10.1088/1674-1056/25/11/117311
https://doi.org/10.1088/1674-1056/25/11/117311
https://doi.org/10.1103/physrevb.89.165136
https://doi.org/10.1103/physrevb.89.165136
https://doi.org/10.1103/physrevlett.108.076804
https://doi.org/10.1103/physrevlett.108.076804
https://doi.org/10.1088/1674-1056/25/11/117202
https://doi.org/10.1088/1674-1056/25/11/117202
https://doi.org/10.1088/1367-2630/14/10/103027
https://doi.org/10.1088/1367-2630/14/10/103027
https://doi.org/10.3390/ma10070807
https://doi.org/10.3390/ma10070807
https://arxiv.org/abs/1409.1299
https://doi.org/10.1103/physrevlett.107.076801
https://doi.org/10.1103/physrevlett.107.076801
https://doi.org/10.1098/rspa.1984.0023
https://doi.org/10.1098/rspa.1984.0023
https://doi.org/10.1143/ptp.63.707
https://doi.org/10.1143/ptp.63.707
https://doi.org/10.1103/physrevb.70.035115
https://doi.org/10.1103/physrevb.70.035115
https://doi.org/10.1088/0305-4470/39/13/003
https://doi.org/10.1088/0305-4470/39/13/003
https://doi.org/10.1143/jpsj.67.2857
https://doi.org/10.1143/jpsj.67.2857
https://doi.org/10.1103/physrevlett.89.266603
https://doi.org/10.1103/physrevlett.89.266603
https://doi.org/10.1103/physrevlett.98.136801
https://doi.org/10.1103/physrevlett.98.136801
https://doi.org/10.1103/physrevlett.103.226801
https://doi.org/10.1103/physrevlett.103.226801
https://doi.org/10.1103/physrevlett.99.146806
https://doi.org/10.1103/physrevlett.99.146806
https://doi.org/10.1143/jpsj.67.1704
https://doi.org/10.1143/jpsj.67.1704
https://doi.org/10.1103/physrevlett.97.146805
https://doi.org/10.1103/physrevlett.97.146805
https://doi.org/10.1103/physrevb.71.085415
https://doi.org/10.1103/physrevb.71.085415
https://doi.org/10.1103/physrevb.77.195412
https://doi.org/10.1103/physrevb.77.195412
https://doi.org/10.1103/physrevb.75.205418
https://doi.org/10.1103/physrevb.75.205418
https://doi.org/10.1073/pnas.0704772104
https://doi.org/10.1073/pnas.0704772104
https://doi.org/10.1143/jpsj.75.074716
https://doi.org/10.1143/jpsj.75.074716
https://doi.org/10.1103/physrevb.104.075427
https://doi.org/10.1103/physrevb.104.075427
https://doi.org/10.1103/physrevlett.99.106801
https://doi.org/10.1103/physrevlett.99.106801
https://doi.org/10.1103/physrevb.86.121304
https://doi.org/10.1103/physrevb.86.121304
https://doi.org/10.1103/physrevx.7.031043
https://doi.org/10.1103/physrevx.7.031043
https://doi.org/10.1103/physrevlett.100.136804
https://doi.org/10.1103/physrevlett.100.136804
https://doi.org/10.1088/1367-2630/11/9/095020
https://doi.org/10.1088/1367-2630/11/9/095020
https://doi.org/10.1103/physrevlett.110.066805
https://doi.org/10.1103/physrevlett.110.066805
https://doi.org/10.1103/physrevb.103.235114
https://doi.org/10.1103/physrevb.103.235114

	Theoretical and experimental investigation of the metal–insulator transition in disordered anti-dot graphene
	1.  Introduction
	2.  Theoretical analysis of large-scale transport of anti-dot graphene
	3.  Experimental study of large-scale transport of anti-dot graphene
	4.  Comparison between theory and experiment
	5.  Conclusion
	Acknowledgments
	Data availability statement
	ORCID iDs
	References


