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Abstract For incompressible channel flow, there is a critical state, characterized by a critical Reynolds
number Rec and a critical wavevector mc along the channel direction, beyond which the channel flow
becomes unstable in the linear regime. In this work, we investigate the channel flow beyond the critical state
and find the existence of a new fluctuating, quasi-stationary flow that comprises the laminar Poiseuille flow
superposed with a counter-flow component, accompanied by vortices and anti-vortices. The net flow rate is
reduced by ∼ 15% from the linear, laminar regime. Our study is facilitated by the analytical solution of the
linearized, incompressible, three-dimensional (3D) Navier–Stokes (NS) equation in the channel geometry,
with the Navier boundary condition, alternatively denoted as the hydrodynamic modes (HMs). By using the
HMs as the complete mathematical basis for expanding the velocity in the NS equation, the Rec is evaluated
to 5-digit accuracy when compared to the well-known Orszag result, without invoking the standard Orr-
Sommerfeld equation. Beyond Rec, the analytical solution is indispensable in offering physical insight to
those features of the counter-flow component that differs from any of the pressure-driven channel flows. In
particular, the counter flow is found to comprise multiple HMs, some with opposite flow direction, that
can lead to a net boundary reaction force along the counter-flow direction. The latter is analyzed to be
necessary for satisfying Newton’s law. Experimental verification of the predictions is discussed.

1 Introduction

As a pillar of classical physics, the Navier–Stokes
equation governs a broad range of fluid dynamic
behaviors [1–13]. For incompressible fluid, the non-
dimensionalized NS equation has the following simple
form:

∂v

∂t
+ (v · ∇)v = −∇p +

1
Re

∇2v (1.1a)

∇ · v = 0 (1.1b)

where v denotes velocity, p the pressure, and Re is the
Reynolds number [2]. In Eq. (1.1a), (v ·∇)v is the non-
linear term that gives rise to much of the complexity
and richness of the fluid dynamic behavior.
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Consider the incompressible channel flow between
two parallel solid boundaries separated by a distance
2H along the z direction, driven by a constant pres-
sure gradient along the flow direction. We divide the
velocity v into two components: v = uP + u, where
uP is the Poiseuille flow velocity under an externally
applied pressure, and u being the perturbation compo-
nent, both with the Navier slip boundary condition at
the fluid–solid interfaces. If we express length in units
of H , mass density in units of the fluid mass density ρ,
time in units of H /U0, where U0 denotes the maximum
velocity of the Poiseuille flow [2, 3] at the symmetry
plane z = 0 under the nonslip boundary condition, then
Re = ρHU0/η, where η denotes the shear viscosity. The
Navier boundary condition [2, 4, 14–16] has the form:

Velocity components at z = ±1

=
{

vx,y = [−sgn(z)]ls
∂vx,y

∂z
vz = 0

(1.2)

where ls is the slip length. The laminar Poiseuille profile
is given by

uP
x (z) =

(
1 − z2 + 2ls

)
, uP

y,z = 0 (1.3a)
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The associated flow rate QP per unit area in the yz
plane and the associated pressure gradient are given by

QP = 4
(

1
3

+ ls

)
,

∂P0

∂x
= − 2

Re
,

∂P0

∂y
=

∂P0

∂z
= 0

(1.3b)

where P0 denotes the applied pressure that gives rise
to the Poiseuille flow. Equations (1.3a,b) represent the
Darcy’s law [5–7] in the simplest channel geometry.
It expresses a steady channel flow resulting from the
externally applied pressure drop, force-balanced by the
dissipative viscous force inherent in the flow profile.
It is noted that (uP · ∇)uP = 0, hence theoretically
the Poiseuille flow can persist to any Reynolds num-
ber. However, this cannot be the case because it has
been shown that the laminar flow becomes unstable and
can blow up with an infinitesimal perturbation, such as
those caused by thermal fluctuations, beyond a criti-
cal Reynolds number Rec [1, 2, 8–10]. Since physically
the channel flow is constrained by a finite energy input,
hence what happens beyond Rec is an intriguing ques-
tion that is the focus of this study.

By formulating the linearized NS equation into an
eigenvalue problem as shown below, we have obtained
the analytical solution of the complete set of eigenfunc-
tions for the 3D channel flow with the Navier bound-
ary condition. By expanding u in terms of the HMs
[17–20], with uP being the zeroth-order term (input)
in the expansion, the time-dependent expansion coef-
ficients become the variables to be solved. That is,
Eq. (1.1a), with the constraint of Eq. (1.1b), is reduced
to an infinitely coupled autonomous system of ODEs
for the expansion coefficients, in which time t is the
only independent variable, with Re and ls being the
two input parameters.

The use of analytical HMs as the basis function has
the advantage of satisfying both the Navier bound-
ary condition and the incompressibility condition, in
contrast to the traditional basis functions such as the
Fourier basis or the finite-element basis. Hence, from
the numerical point of view a small number of HMs
can already attain high accuracy in the evaluation of
the critical Reynolds number, without invoking the Orr-
Sommerfeld (OR) equation [4, 8]. This point is shown
below.

In the system of coupled ODEs, the nonlinear
term,(u · ∇)u, takes the form of a third-rank tensor
that couples pairs of the expansion coefficients to effect
the time variation on the third. Without the nonlinear
term, the right-hand side of the equation represents a
matrix acting on the coefficient vector. By solving for
the eigenvalues of the matrix for a finite set of HMs,
we found the critical Rec, accompanied by a critical
wavevector mc, as the lowest Re value at which the
real part of one of the eigenvalues first changes sign,
signaling the onset of instability. Our Rec is accurate
to five significant digits when compared with the stan-
dard result of Orszag (1971) [8] for the nonslip bound-
ary condition, without invoking the OR equation. The

effect of a finite slip length on Rec was also obtained
and shown to agree with the prior results [21] on its
variation with increasing ls.

Since each HM represents an independent degree of
freedom, in a thermal bath each can be excited with
kBT/2 of energy, where kB denotes Boltzmann’s con-
stant and T is temperature [22–24]. We examined the
Poiseuille flow attendant with the excitation of the
HMs by time-evolving the coupled autonomous set of
ODEs. It was found that below Rec the excited HMs
decay rapidly [2, 8, 10], and the Poiseuille flow is sta-
ble. However, above Rec the picture changes dramat-
ically. Under the problem setup where we vary Re by
changing η while simultaneously keeping U0 constant
(by stipulating the applied pressure gradient to vary as
1/Re), it is found that as we numerically time-evolve
the autonomous ODE set, the net flow rate initially
decreases but eventually settles at a fluctuating equi-
librium state that is statistically stationary.

In what follows, we first present the analytical solu-
tion of the HMs for the 3D channel flow, in conjunction
with a discussion on their properties. This is followed
by the evaluation of the critical state and its parameter
values, as well as the effect of a finite slip length. By
expanding the perturbation velocity field u in terms of
the HMs, we reduce linearized NS equation to a system
of autonomous ODEs for the expansion coefficients in
which t is the only independent variable. Results of the
numerical time evolution are presented, with the ini-
tial states statistically sampled from a Gaussian distri-
bution for simulating thermal excitations. A new fluc-
tuating equilibrium state is revealed that exhibits a
reduced net flow rate. In particular, interesting features
of the flow profiles in the equilibrium state are presented
through the lens of force balance. We give a brief dis-
cussion on the potential experimental verification of the
predictions at the end of the manuscript and conclude
with a brief recapitulation. Details on the derivation of
the analytical solution are given in the Supplementary
Materials (SM), so as not to detract from the main line
of exposition.

2 Formulation of the eigenvalue problem
and its analytical solution

The HMs are the eigenfunctions of the linearized ver-
sion of the incompressible NS equation [17, 18] with the
Navier boundary condition at the solid/liquid interface.
They are given by [2, 17, 18, 25]:

−λu =;−∇p +
1

Re
∇2u; ∇ · u = 0 (2.1a)

un|z=±1 = 0,

(
ls

∂uτ

∂z
± uτ

)
z=±1

= 0 (2.1b)

where un is the component of the velocity field nor-
mal to the boundary, and uτ is its tangential compo-
nent. In Eq. (2.1a), we have used the condition that the
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time variation of u is given by e−λt, i.e., the eigenvalue
denotes the exponential decay rate of the eigenfunction.
The HMs are transient in nature; they cannot be sus-
tained without the input of external energy. Without
the loss of generality, periodic boundary condition is
imposed on u and p in the xy plane. Depending on the
spatial dependence of the eigenfunctions, we classify the
HMs into three disjoint groups: 1D HMs, 2D HMs and
3D HMs. In each group, according to their spatial sym-
metry property of the velocity components ux, uy with
respect to the z = 0 plane, they are further classified
into the symmetric HMs group and the antisymmetric
HMs group. Among these, the 2D and 1D HMs can be
further grouped into two different branches, for flow in
either the xz plane (denoted the x branch) or the yz
plane (denoted the y branch). The 1D and 2D HMs
have already been introduced in previous publications
[17, 18]. Below we focus on the 3D HMs. We emphasize
that compared to the NS equation constrained in the
2D spatial domain where vortex stretching is absent and
only diffusive exchange of angular momentum exists, in
3D the vortex stretching plays an important role [26,
27]. Hence, the 3D HMs are crucial for evaluating all
possible manifestations of the velocity and vortices pat-
terns.

For the 3D HMs, u is periodic along both the
x, y directions, characterized by wavevectors m and k,
respectively. Here m �= 0, k �= 0 are real, continuous
variables, implying infinite periodicity in the absence
of a length scale defined either by the computational
domain, or by a naturally-occurring length scale. In
anticipation of later developments, we note that the
emergence of a critical Reynolds number is accompa-
nied by the appearance of a length scale in the xy plane,
which can be used as the inverse unit for the discretiza-
tion of m,k in the numerical calculations beyond the
critical state.

The general expressions of eigenfunctions u can be
formulated as:

ux = ũx(z)[A1 sin(mx) sin(ky) + A2 sin(mx) cos(ky)
+ A3 cos(mx) sin(ky) + A4 cos(mx) cos(ky)]

uy = ũy(z)[B1 sin(mx) sin(ky) + B2 sin(mx) cos(ky)
+B3 cos(mx) sin(ky) + B4 cos(mx) cos(ky)]

uz = ũz(z)[C1 sin(mx) sin(ky) + C2 sin(mx) cos(ky)
+C3 cos(mx) sin(ky) + C4 cos(mx) cos(ky)]

(2.2a)

They are to be considered in conjunction with the
incompressiblity constraints

A1mũx(z) − B4kũy(z) + C3
dũz(z)

dz
= 0

A2mũx(z) + B3kũy(z) + C4
dũz(z)

dz
= 0

− A3mũx(z) − B2kũy(z) + C1
dũz(z)

dz
= 0

− A4mũx(z) + B1kũy(z) + C2
dũz(z)

dz
= 0

(2.2b)

as well as the Navier slip boundary conditions. In com-
ponent form, the boundary conditions for ũ are

ũz(±1) = 0.

ls
∂ũx(z)

∂z

∣
∣
∣
∣
z=1

+ ũx(1) = 0, ls
∂ũx(z)

∂z

∣
∣
∣
∣
z=−1

− ũx(−1) = 0

ls
∂ũy(z)

∂z

∣
∣
∣
∣
z=1

+ ũy(1) = 0, ls
∂ũy(z)

∂z

∣
∣
∣
∣
z=−1

− ũy(−1) = 0

(2.2c)

The A1,2,3,4, B1,2,3,4 , C1,2,3,4 are constants for delin-
eating the periodic solution patterns in the xy plane.
The derivation of the 3D HMs is given in SM Part I [28].
Below we present the 3D HMs by dividing them into
two separate symmetry categories. As already noted,
the symmetry of the solution denotes the parity of
ux, uy with respect to the z = 0 plane. However, uz

must have the opposite parity to that of ux, uy as dic-
tated by the incompressibility condition. This can be
easily seen by expanding the z dependence of ∂ux

∂x ,
∂uy

∂y

and ∂uz

∂z around z = 0 and matching orders in Δz. Only
if uzhas the opposite parity to that ofux, uy, can there
be matching orders for the possibility of satisfying the
incompressibility condition.

The antisymmetric HMs are as follows:

ux =

[

sin(μz) − lsμ cos(μ) + sin(μ)

lsν cosh(ν) + sinh(ν)
sinh(νz)

]

· [A1 sin(mx) sin(ky) + A2 sin(mx) cos(ky)

+A3 cos(mx) sin(ky) + A4 cos(mx) cos(ky)]

uy =
k

m

[

sin(μz) − lsμ cos(μ) + sin(μ)

lsν cosh(ν) + sinh(ν)
sinh(νz)

]

· [−A4 sin(mx) sin(ky) + A3 sin(mx) cos(ky)

+A2 cos(mx) sin(ky) − A1 cos(mx) cos(ky)]

uz =
ν

m

lsμ cos(μ) + sin(μ)

lsν cosh(ν) + sinh(ν)

[
cosh(ν)

cos(μ)
cos(μz) − cosh(νz)

]

· [A3 sin(mx) sin(ky) + A4 sin(mx) cos(ky)

−A1 cos(mx) sin(ky) − A2 cos(mx) cos(ky)] (2.3a)

As HMs must display the translational symmetry
in the xy plane, A1, A2, A3, A4 are the constants for
expressing the four independent degrees of freedom for
adjusting solution’s phase in the lateral plane.

For the A1 branch,

p =
λ

m

lsμ cos(μ) + sin(μ)
lsν cosh(ν) + sinh(ν)

sinh(νz) cos(mx) sin(ky)

(2.3b)

Here m, k, μ are the wavevectors characterizing the
eigenfunctions along the x, y, z axis, respectively. For
each given pair of wavevector (m, k), we can obtain a
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countably infinite number of {μn, n ∈ N+} from the
following corresponding dispersion relation:

ν[lsν + tanh(ν)] + μ[lsμ + tan(μ)] = 0,

ν =
√

m2 + k2, μ =
√

λRe − m2 − k2. (2.3c)

The symmetric HMs can be expressed similarly as

ux =

[

cos(μz) +
lsμ sin(μ) − cos(μ)

lsν sinh(ν) + cosh(ν)
cosh(νz)

]

· [A1 sin(mx) sin(ky) + A2 sin(mx) cos(ky)

+A3 cos(mx) sin(ky) + A4 cos(mx) cos(ky)]

uy =
k

m

[

cos(μz) +
lsμ sin(μ) − cos(μ)

lsν sinh(ν) + cosh(ν)
cosh(νz)

]

· [−A4 sin(mx) sin(ky) + A3 sin(mx) cos(ky)

+A2 cos(mx) sin(ky) − A1 cos(mx) cos(ky)]

uz =
ν

m

lsμ sin(μ) − cos(μ)

lsν sinh(ν) + cosh(ν)

[

− sinh(ν)

sin(μ)
sin(μz) + sinh(νz)

]

· [A3 sin(mx) sin(ky) + A4 sin(mx) cos(ky)

−A1 cos(mx) sin(ky) − A2 cos(mx) cos(ky)] (2.4a)

For the A1 branch,

p = − λ

m

lsμ sin(μ) − cos(μ)
lsν sinh(ν) + cosh(ν)

cosh(νz) cos(mx) sin(ky)

(2.4b)

The corresponding dispersion relation is given by

ν

[
lsν +

1
tanh(ν)

]
+ μ

[
lsμ − 1

tan(μ)

]
= 0,

ν =
√

m2 + k2 , μ =
√

λRe − m2 − k2. (2.4c)

In Eqs. (2.3) and Eq. (2.4), ν represents the wavevec-
tor in the xy plane, whereas μ is the wavevector along
the z direction, which is also the eigenvector of the
HMs, to be solved from the dispersion relation. It is
to be noted that the eigenvalue λ, i.e., the decay time
of the HM, is always bundled together with Re. There-
fore, the change in the value of Re can be completely
compensated by the decay time of the HMs, without
affecting the spatial configurations of the HMs.

The complete HM expression has the form
u(r, 0)e−λt, where λ is a real positive number ensured
by the self-adjoint property of the NS equation [29, 30].
Eigenfunction’s time variation is important because the
force balance of HMs is between the viscous force and
the inertial acceleration, as well as the pressure field
associated with each HM’s velocity pattern. In contrast,
for the Poiseuille flow the force balance is between the
viscous force and the externally applied pressure gra-
dient. All the 3D HMs satisfy both the incompressibil-
ity condition and the boundary conditions, as well as
the linearized NS equation. These are explicitly verified
in SM Part I [28]. As the basis set for expanding the
channel flow velocity, the HMs are consistent with the

channel geometry and boundary condition, in contrast
to the Fourier basis [31]. The latter is more suitable for
the infinite system with no boundaries.

For completeness, below we also write down the 1D
and 2D HMs. For details, see SM Part I, II [28]. The
solution method for μ is detailed in SM Part III [28].

The 1D antisymmetric HMs have the form:

ux(r) = sin(μz), uy(r) = uz(r) = 0 or
uy(r) = sin(μz), ux(r) = uz(r) = 0
Dispersion relation: lsμ + tan(μ) = 0,

p = constant , λRe = μ2

(2.5a)

The 1D symmetric HMs have the form:

ux(r) = cos(μz), uy(r) = uz(r) = 0 or
uy(r) = cos(μz), ux(r) = uz(r) = 0
Dispersion relation: cot(μ) − lsμ = 0 ,

p = constant , λRe = μ2

(2.5b)

The 2D antisymmetric HMs have the form:

ux =
[
sin(μz) − lsμ cos(μ) + sin(μ)

lsm cosh(m) + sinh(m)
sinh(mz)

]

·[A1 sin(mx) + A2 cos(mx)]

uz =
lsμ cos(μ) + sin(μ)

lsm cosh(m) + sinh(m)

·
[
cosh(m)
cos(μ)

cos(μz) − cosh(mz)
]

·[A2 sin(mx) − A1 cos(mx)]

p = − λ

m

lsμ sin(μ) − cos(μ)
lsm sinh(m) + cosh(m)

sinh(mz)

·[A2 sin(mx) − A1 cos(mx)]

λRels + m tanh(m) + μ tan(μ) = 0, m2 + μ2 = λRe

or

uy =

[

sin(μz) − lsμ cos(μ) + sin(μ)

lsk cosh(k) + sinh(k)
sinh(kz)

]

·[A1 sin(ky) + A2 cos(ky)]

uz =
lsμ cos(μ) + sin(μ)

lsk cosh(k) + sinh(k)

[
cosh(k)

cos(μ)
cos(μz) − cosh(kz)

]

·[A2 sin(ky) − A1 cos(ky)]

p = −λ

k

lsμ sin(μ) − cos(μ)

lsk sinh(k) + cosh(k)
sinh(kz)

·[A2 sin(ky) − A1 cos(ky)]

λRels + k tanh(k) + μ tan(μ) = 0, k2 + μ2 = λRe

(2.6a)

The 2D symmetric HMs have the form
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Fig. 1 Illustration of
a antisymmetric 3D HM,
b symmetric 3D HM,
c antisymmetric 2D HM,
d symmetric 2D HM,
e antisymmetric 1D HM,
and f symmetric 1D HM.
The relevant eigenvalue and
eigenvector values are below
each figure

ux =

[

cos(μz) +
lsμ sin(μ) − cos(μ)

lsm sinh(m) + cosh(m)
cosh(mz)

]

· [A1 sin(mx) + A2 cos(mx)]

uz =
lsμ sin(μ) − cos(μ)

lsm sinh(m) + cosh(m)

·
[

− sinh(m)

sin(μ)
sin(μz) + sinh(mz)

]

· [A2 sin(mx) − A1 cos(mx)]

p = − λ

m

lsμ sin(μ) − cos(μ)

lsm sinh(m) + cosh(m)
cosh(mz)

· [A1 cos(mx) − A2 sin(mx)]

λRels + m coth(m) − μ cot(μ) = 0, m2 + μ2 = λRe

uy =

[

cos(μz) +
lsμ sin(μ) − cos(μ)

lsk sinh(k) + cosh(k)
cosh(kz)

]

·[A1 sin(ky) + A2 cos(ky)]

uz =
lsμ sin(μ) − cos(μ)

lsk sinh(k) + cosh(k)

[

− sinh(k)

sin(μ)
sin(μz) + sinh(kz)

]

·[A2 sin(ky) − A1 cos(ky)]

p = −λ

k

lsμ sin(μ) − cos(μ)

lsk sinh(k) + cosh(k)
cosh(kz)

·[A1 cos(ky) − A2 sin(ky)]

λRels + k coth(k) − μ cot(μ) = 0, k2 + μ2 = λRe

(2.6b)

In Fig. 1, we graphically illustrate the 3D, 2D, and
1D HMs with Re = 104. Among all the 1D, 2D and
3D HMs, the 1D symmetric HMs are special because
they display center of mass motion, which is crucial for
giving rise to the change in the net channel flow rate
beyond the critical state (Rec, mc). In contrast to the
isotropic infinite systems in which the center of mass
motion cannot be allowed due to the absence of exter-
nal force, there can be two external forces in the channel
flow: the frictional reaction force from the boundaries,
and the force from the externally applied pressure gra-
dient. According to Newton’s law, the external forces
can alter the center of mass momentum in the chan-
nel flow. Beyond the critical state, nonlinear couplings
between the HMs with zero net momentum, and the 1D
symmetric modes with net flow, are shown to generate
boundary reaction force in a direction opposite to the
pressure force, leading to a decrease in the net flow. An
account of the energy conservation and force balance
under this scenario is given in the last section.

The HMs completely separate the NS equations
into the spatial and temporal components. They
can describe all possible fluid particles’ motions in
the spatial domain [17, 18, 24] from the contin-
uum perspective. Each HM satisfies both the lin-
earized NS equation and the incompressibility condi-
tion, and the relevant pressure field is coupled to the
velocity field through the pressure Laplace (Poisson)
equation [32], with the boundary condition given by[
∂p
/

∂z = (1/Re)∂2uz

/
∂z2
]
z=±1

.
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It is shown below that the pressure gradient term
can be eliminated when the NS equation is reduced to
a coupled set of time-varying autonomous ODEs, by
expanding the velocity in terms of the HMs. Hence, the
pressure gradient term is not involved either in time-
evolving the autonomous ODEs (SM Part IV [28]), or
in analyzing the critical state (Rec, mc).

In order to simplify the classification scheme, below
we introduce a unified expression for the HMs that
includes all the cases stated above.

ux = (m + δd,0)

·

⎧⎪⎪⎨
⎪⎪⎩

δs,0

[
(δκ,0δd,0 + δd,1) sin(μz) − δd,1

lsμ cos(μ) + sin(μ)
lsν cosh(ν) + sinh(ν)

sinh(νz)
]

+δs,1

[
(δκ,0δd,0 + δd,1) cos(μz) + δd,1

lsμ sin(μ) − cos(μ)
lsν sinh(ν) + cosh(ν)

cosh(νz)
]
⎫⎪⎪⎬
⎪⎪⎭

·[δd,1(δox,0 sin(mx) + δox,1 cos(mx))
(
δoy,0 sin(ky) + δoy,1 cos(ky)

)
+ δd,0

]

uy = (k + δd,0)

⎧⎪⎪⎨
⎪⎪⎩

δs,0

[
(δκ,1δd,0 + δd,1) sin(μz) − δd,1

lsμ cos(μ) + sin(μ)
lsν cosh(ν) + sinh(ν)

sinh(νz)
]

+δs,1

[
(δκ,1δd,0 + δd,1) cos(μz) + δd,1

lsμ sin(μ) − cos(μ)
lsν sinh(ν) + cosh(ν)

cosh(νz)
]
⎫⎪⎪⎬
⎪⎪⎭

·[δd,1(δox,1 sin(mx) − δox,0 cos(mx))
(−δoy,1 sin(ky) + δoy,0 cos(ky)

)
+ δd,0

]

uz = ν

⎧⎪⎪⎨
⎪⎪⎩

δs,0
lsμ cos(μ) + sin(μ)

lsν cosh(ν) + sinh(ν)

[
cosh(γ)
cos(μ)

cos(μz) − cosh(νz)
]

+δs,1
lsμ sin(μ) − cos(μ)

lsν sinh(ν) + cosh(ν)

[
− sinh(ν)

sin(μ)
sin(μz) + sinh(νz)

]
⎫⎪⎪⎬
⎪⎪⎭

·δd,1(δox,1 sin(mx) − δox,0 cos(mx))
(
δoy,0 sin(ky) + δoy,1 cos(ky)

)

(2.7)

Here δ is the Kronecker delta function and
s, κ, d, ox, oy are the five hyper-indices used to denote
different branches of the HMs. Values of s, κ, d, ox, oy ∈
{0 or 1}. Here s = 0 denotes the antisymmetric HMs
and s = 1 denotes the symmetric HMs; κ = 0 denotes
the x branch and κ = 1 denotes the y branch; d = 0
denotes the 1D HMs and d = 1 denotes the 2D or 3D
HMs depending on the values of (m, k) tuple;ox = 0
denotes the sin(mx) phase term of ux and ox = 1
denoting the cos(mx) phase term of ux; and oy = 0
denotes the sin(ky) phase term of uy, and oy = 1
denotes the cos(ky) phase term of uy.

As shown in Fig. 1, except for the 1D symmetric
HMs, the remaining HMs have zero net momentum
and zero net angular momentum within each periodic
domain, mostly comprising clockwise and counterclock-
wise pairs of vortices. When used in calculations, every
HM, denoted below as uα, is normalized so that its
norm is 1. Normalization is over the volume specified
by
(
x = ± 1

2

√
A, y = ± 1

2

√
A, z = ±1

)
, where A denotes

the area in the xy plane covered by the volume integra-
tion.

3 Velocity expansion and the reduction
of the Navier–Stokes equation
to an autonomous system of ODEs

For the channel flow, we choose the unperturbed steady
state, i.e., the Poiseuille flow uP (r), as the zeroth-order
ground state. The full nonlinear perturbed NS equation
takes the form

∂u

∂t
= −(uP (r) · ∇)u − (u · ∇)uP (r)

− ∇p +
1

Re
∇2u − (u · ∇)u (3.1)

where the total velocity field is reminded to be
v(r, t) = u (r, t) + uP (r). By expanding u(r, t) in
Eq. (3.1) with the HMs of Eq. (2.7), we reduce Eq. (3.1)
to a system of coupled autonomous equations for the
vector of expansion coefficients c(t) in which t is the
only independent variable. Here we have

u(r, t) =
∞∑

α=1

cα(t)uα(r), cα(t) ∈ R, uα(r) ∈ R3

∂cγ(t)
∂t

= −
∞∑

α=1

〈
uγ(r),

(
uP (r) · ∇)uα(r)

〉
cα(t)

−
∞∑

α=1

〈
uγ(r), (uα(r) · ∇)uP (r)

〉
cα(t)

− 〈uγ(r),∇p〉 +
1

Re

∞∑
α=1

〈
uγ(r),∇2uα(r)

〉
cα(t)

−
∞∑

α=1

∞∑
β=1

〈uγ(r), (uα(r) · ∇)uβ(r)〉cα(t)cβ(t)

(3.2)
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Here {uα(r)} denotes the set of complete, normalized
HMs with subscript α as the labeling index,〈 〉denotes
inner product, and all the spatially-dependent variables
are converted into analytical scalar expressions through
inner product projections. Equation (3.2) is a first-order
system of coupled ODEs. They can be written in the
matrix form as

∂c(t)
∂t

= L · c(t) − ←→N [c(t)] (3.3a)

Here L represents the coefficients matrix of the linear
terms and

←→N represents the third-order tensor term.
By utilizing the incompressibility property and period-
icity of the HMs in the xy plane, the pressure gradient
term can be eliminated in Eq. (3.2). For details, see SM
Part IV [28]. The NS equation is thereby transformed
formally into a system of coupled ODEs:

∂cγ

∂t
=

∞∑
α=1

Lγαcα −
∞∑

α=1

∞∑
β=1

←→N αβγcαcβ

Lγα = −〈uγ(r),
(
uP (r) · ∇)uα(r)

〉
−〈uγ(r), (uα(r) · ∇)uP (r)

〉
+

1
Re
〈
uγ(r),∇2uα(r)

〉
←→N αβγ = 〈uγ(r), (uα(r) · ∇)uβ(r)〉

(3.3b)

The two operators L,
←→N are only functions of Re and

slip length ls. It should be noted that the Poiseuille flow
enters only in the matrix elements of the linear term,
L, and is absent in

←→N . Theoretically, we should be able
to obtain all the channel fluid dynamics information by
time-evolving the above set of coupled ODEs. Here we
choose the explicit Runge–Kutta scheme of fourth-order
accuracy [33, 34] to numerically compute the time evo-
lution trajectories of Eq. (3.3b). Details of the numeri-
cal scheme are presented in SM Part V [28]. By choosing
an appropriate time step Δt, the numerical errors can
be controlled.

For the linear operator L, the pressure correspond-
ing to each uα can be recovered by solving a pressure-
Poisson equation

∇2pα = −∇ · [(uP (r) · ∇)uα + (uα · ∇)uP (r)
]

= 4z
∂(uα)x

∂x
(3.3c)

with the boundary condition

∂pα

∂z

∣∣∣∣
z=±1

=
1

Re
∂2uα,z

∂z2

∣∣∣∣
z=±1

(3.3d)

In anticipation of later developments, we note that
the exponential decay of each HM as a function of
time is implicitly incorporated in Eq. (3.3b) through
the matrix/tensor elements that contain the (viscous
dissipation of its) spatial velocity pattern of the HMs.

The sustained presence of the HMs in the flow pattern,
as will be shown to be the case beyond the critical state,
can only arise when there is sustaining work done by
the externally supplied pressure. A detailed considera-
tion of the energy conservation law is given below.

4 Evaluation of the critical state
parameters

The stability of the Poiseuille flow under the nonslip
boundary condition is characterized by the existence
of a critical value Rec [8–10], so that when Re < Rec

the Poiseuille flow is stable under small perturbations;
while the perturbed velocity field can increase expo-
nentially for Re > Rec, accompanied by the emergence
of a critical wavevector. By considering infinitesimal
perturbed velocity field u(r, t) in the linear regime,
Eq. (3.3b) may be expressed as

∂cγ

∂t
=

∞∑
α=1

Lγαcα (4.1)

Equation (4.1) represents a linear system whose
dynamic stability is determined by the maximum real
part of the linear operator spectrum. The critical (Rec,
mc) corresponds to the value of (Re, m) when one of
L′s eigenvalues’ real part first crosses 0. The perturba-
tions decay exponentially below the critical state and
increase exponentially otherwise. In the search for the
critical state parameter values, we have fixed k = 0,
since from the literature [35] it is already known that
the most unstable mode can be found in the 2D case
with k = 0. This point is further elaborated below.
We have numerically calculated the linear operator’s
spectrum from its matrix formulation Lαγ as given in
Eq. (3.3b). Here we note that the Lαγ matrix has a
block-diagonal structure, in which each 2N ×2N block
corresponds to a unique value of m (k = 0), with N
being the number of μ’s used in the search. By fixing
the number of μ’s at 400, with Δm = 0.0001 as the step
size in the m scan, we focused on the subspace spanned
by the finite number of HMs:

∂cγ

∂t
≈

800∑
α=1

Lγαcα (4.2)

Bisection method was employed to locate the precise
value of Rec. By denoting the maximum real part of the
eigenvalues of Lγα as Real(σ) and the imaginary part
as Imag(σ), we scanned the (Re, m) values to deter-
mine the first sign change of Real(σ), and denote the
corresponding (Rec, mc) as the critical state. We com-
pare our result with that of Orszag [8]—Rec = 5772.22,
mc = 1.02056. Our formalism yields Rec = 5772.2 and
mc = 1.0203. Excellent agreement is seen. It should be
noted that Imag (σc) = 0.269 also agrees well with the
Orszag’s result and represents an oscillation frequency
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Fig. 2 Plot of Rec as a function of the eigen-wavevectors
mc, k. The conventional definition of Rec = 5772.2 is noted
to be the minimum point of the discretized curve (i.e., the
least stable mode), labeled by a red dot. Here k is an input
parameter

of the critical state. A video illustration of this oscillat-
ing critical state is shown in SM Part IV [28].

For the two-dimensional channel flow, Orr-
Sommerfeld stability equation [8, 10, 35] utilizes
the nonslip boundary conditions to fix the normal
derivative ∂uz/∂n=0. In this way, the perturbed NS
equation can be compressed into a 1D, 4th order ODE.
The aim is to locate the value of Re when Real(σ) = 0.
Furthermore, if the eigen wavevector k �= 0, then
under the nonslip boundary condition the Squire
transformation [35] shows that any 3D channel flow’s
perturbation is equivalent to a specific 2D channel
flow perturbation. Hence, the task of obtaining the 3D
channel flow’s critical state is transformed into solving
for the (Rec,mc) of its corresponding 2D flow. By
specifying a given input k �= 0, the critical mc as well
as its corresponding Rec can be uniquely determined
through the Squire transformation. In Fig. 2, we plot
the Rec as a function of mc, k. The conventional defi-
nition of Rec corresponds to the minimum value of the
curve at k = 0, mc = 1.02, which is the most unstable
point and labeled as a red dot in Fig. 2. As anticipated
previously, mc=1.02 defines a natural (inverse) length
scale, which will be used in our discretization of the
wavevectors in the xy plane for numerical evaluation
of the channel flow beyond the critical state.

The Orr-Sommerfeld stability equation generally
does not apply to the case when ls �= 0, but our for-
malism can easily deal with the more generalized case.
No extra modifications are needed. In Fig. 3, the evalu-
ated (Rec,mc) are plotted as a function of slip length ls
ranging from 0 to 14 ×10−4. We see that there exists a
minimum ls = 0.0006 at which the flow has the smallest
Rec. It describes an interesting behavior: Increase in the
slip length will first lead the system to be less stable,
and only after the minimal point is passed will the sys-
tem become more stable with increasing slip. However,
this behavior is conditioned on allowing the Poiseuille
flow rate to increase with ls as given by Eq. (1.3b). If
we switch to the condition of constant flow rate inde-
pendent of ls, then the variation of Rec with a finite

slip length would revert to a monotonic behavior, in
agreement with that shown in [21].

An aspect not previously observed is the actual con-
figuration and dynamics of the critical state. Since in
our case the critical state configuration is a by-product
of the critical eigenvalue of the linear operator L, its
configuration can be easily constructed from the set
{uα}c. It turns out that while Real(σc) = 0, its imag-
inary part, Imag (σc) = 0.269 (for the nonslip case),
represents an oscillation frequency for the critical state.
In SM Part IV [28], we give a video illustration of the
oscillating critical state that comprises a vortex and
anti-vortex pair that oscillates at a time periodicity of
2π/Imag(σc) = 23.3. Obviously, this oscillation behav-
ior arises from the participation of the Poiseuille flow
as the energy source, whose velocity profile has explic-
itly participated in the matrix elements of the linear
operator L as shown in Eq. (3.3b).

5 Channel flow beyond the critical state

5.1 Initial state sampling

Thermal fluctuations constitute an inherent part of
the physical system at equilibrium. They are mani-
fest as a source of noise arising from the thermal bath.
Without thermal excitations, the Poiseuille flow can be
absolutely stable to any Reynolds number. In previous
works [17, 18], it was shown that in terms of the com-
plete set of HMs, the fluctuation–dissipation theorem
[23, 24, 36, 37] may be expressed in a simple expres-
sion involving the average of the inverse of the HMs’
eigenvalues. By considering the fluid molecular motions
as superpositions of the HMs, the thermal fluctuations
in fluid can be represented from the continuum per-
spective as canonical ensembles of the projection coeffi-
cients c(t) with initial Gaussian distributions following
the Heisenberg picture of phase space averages. More-
over, since each HM represents one degree of freedom
[17, 18, 24], from the equipartition theorem each HM
should have the same thermal energy [24]. Hence, the
initial probability density function of the projection
coefficients c(t) should obey the Gaussian distribution

f(c) =
1

εN

√
(2π)N

e− 1
2ε2

cT ·c , c ∈ RN (5.1)

where ε2 may be regarded as the thermal energy, and N
denotes the total number of HM’s involved. Given the
initial state with coefficients distributed in accordance
to f(c), the ensemble-averaged perturbed net flow Q̃(t)
can be computed as

Q̃(t) =
∫

cT
1D(c0, t) · q1Df(c0)dc0,

q1D − 1D symmetric HMs flow rate (5.2)
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Fig. 3 A plot of the critical wavevector mc(black) and the critical Reynolds number Rec(blue), both as a function of the
slip length ls. Here the Poiseuille flow rate is allowed to vary with the slip length as stipulated by Eq. (1.3b)

where q1D is the vector of 1D symmetric HMs’ flow
rates.

To simulate the averaged flow rate under thermal
excitations, we first prepare a set of independent and
normally distributed random variables c : {c1, . . . , cN}
with variance ε2. Assuming that a total of K tra-
jectories are used to calculate the ensemble average,
we repeat the above process K times to obtain a set
of random variable vector sets C0 = {c1, c2, . . . , cK}.
Then by performing the time evolution stipulated by
Eq. (3.3) with each element in C0 set to be the
initial state, we obtain K independent trajectories
{c1(t), c2(t), . . . , cK(t)}. The ensemble-averaged flow
rate at any time t may be evaluated as

Q̃(t) ≈ 1
K

K∑
γ=1

cT
γ,1D(t) · q1D (5.3)

In our numerical time evolution of Eq. (3.3b), we used
K = 10 evolution trajectories, where the initial state of
each trajectory comprises the 2D antisymmetric modes
along the x and y branches with discretized values of
m and k in multiples of mc × 2i, where i = 0,1, 2, 3,
4, 5. Multiples of 2 were chosen because they repre-
sent the maximum couplings mediated by the tensorial
term [38]. The amplitudes of the modes were generated
by the Gaussian random process described above, with
ε2 = 0.04. Only 2D antisymmetric modes were chosen
as the initial states since the symmetric modes have not
been found to be unstable, a fact that has not yet been
rigorously proved. In our numerical evaluations, Re was
fixed at 104, and the computational discretization in the
x , y directions was set at Δm = mc, so that the length
L and width W of our computational domain in the xy
plane are fixed at L = W = ± π

Δm = ± π
mc

.
It should be noted that even though the initial states

were all 2D antisymmetric modes, as time evolved, the
3D modes appeared. Hence, the 3D HMs are absolutely
needed in the numerical experiment. In the time evo-
lution as stipulated by (3.3), a total of 6596 HMs were
involved.

Poiseuille flow below the critical state is always sta-
ble with all excited HMs decaying exponentially as a
function of t. Hence, the ensemble-averaged perturbed
net flow Q̃(t) rapidly decays to 0 below the critical
state. Above the critical point, the situation changes
due to the amplification effect of the linear operator

L. However, the amplification effect cannot be sus-
tained since the total kinetic energy is continuously
being dissipated, while the other perturbation compo-
nents are also excited through the nonlinear coupling
term (u · ∇)u. In this manner, the exponential increase
is suppressed.

What happens when an extremely long time t passes?
From the following simple argument, we can see that
the perturbed flow cannot be zero. Suppose at a time
t all the perturbation components tend to 0 above
the critical state, then the linear analysis tells us that
the thermal excitations will again make those HMs
with positive real part of the eigenvalues exponentially
increase in magnitude, and the whole process can start
over again. It follows that the final equilibrium state
should have a nonzero ensemble-averaged perturbed net
flow, accompanied by fluctuations.

5.2 Reduced net flow rate

Physically, this outcome originates from the excitation
of the 1D symmetric modes mediated by the tensorial
term, leading to counter flow in a direction opposite to
the Poiseuille flow. This is indeed the result as shown
in Fig. 4. The Reynolds number is the same for both
the slip and nonslip case.

We have adopted the fourth-order explicit
Runge–Kutta numerical scheme to evaluate the
time evolution of Eq. (3.3). Details of the numerical
scheme can be found in SM Part V [28]. In Fig. 4,
we plot the time evolution of the flow rate variation
as evaluated by Eqs. (3.3) and (5.3), at Re = 104.
The curves were generated by ensemble-averaging
ten independent initial states, run in parallel on 4
Amazon servers for about 3 months. The net flow rate
shows the deviation from QP . We should be reminded
that even though the Reynolds number used in the
evaluation of Eq. (3.3) is above the critical value, the
Poiseuille flow rate, in the absence of perturbed modes,
should remain the same. This is because even though
the pressure varies inversely as 1/Re, the decrease in
viscosity exactly compensates the lowered pressure
to maintain the same Poiseuille flow rate. Hence, the
deviation as shown in Fig. 4 can only be ascribed
to the appearance of the perturbed HMs, especially
the 1D symmetric modes. The net flow rate is seen
to decrease until it reaches a plateau that is ∼ 15%
lower than the Poiseuille flow rate, independent of the
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Fig. 4 A plot of the normalized net flow rate, in unit of QP ,
as a function of time t. The time evolution is evaluated from
Eq. (3.3) and Eq. (5.3), with the Reynolds number set at
Re = 104 for both the slip and nonslip case. The ensemble-
averaged net flow rate, with ten independently generated

initial states, is seen to decrease as a function of time from
the initial Poiseuille flow rate. The yellow curve, indicative
of the case for the finite slip length, is seen to approach the
equilibrium flow rate slower than that of the nonslip case

slip length (zero or finite). However, not seen from
Fig. 4 is the presence of the many HMs with vortices
and anti-vortices that accompany this state. There are
perceptible fluctuations around the plateau.

An interesting observation is that in accordance with
Newton’s law, the reduced net flow would require the
boundary reaction force to be along the direction of
the counter flow, i.e., against the Poiseuille flow. That
would be opposite to what one would usually expect.
This puzzle is resolved in the context of the counter
flow profiles and force balance, presented below.

5.3 Energy conservation law

With the solution of the velocity expansion coefficient
set {cγ}, we can also verify, at every time instant,
the energy conservation for each independent trajec-
tory as a validation of our numerical implementation.
The energy conservation law states that

dEkinetic(t)
dt

= Wp(t) − Wd(t) (5.4a)

where Wp(t) is the rate of energy input exerted by the
external pressure, Wd(t) is the rate of viscous dissipa-
tion, and the left-hand side of Eq. (5.4a) is the rate of
change of the kinetic energy. In SM Part VI [28], we give
the derivation of the expressions for Ekinetic(t),Wp(t)
and Wd(t) in terms of the HMs and the velocity expan-
sion coefficients. This form of the energy conservation
law can be expressed as

dEkinetic

dt
=

1
2

d

dt

N∑
α=1

w2
α(t) =

2
Re

× 4LW

×

⎛
⎜⎝ ∑

α∈
{

1D symmetric
HMs index

}
wα(t)

1∫
−1

(uα)x(r)dz

⎞
⎟⎠

−
N∑

α=1

w2
α(t)λα (5.4b)

Fig. 5 The ensemble-averaged kinetic energy as evaluated
from the energy conservation relation Eq. (5.4), plotted as
a function of time t. Here the kinetic energy is numerically
time-integrated from Eq. (5.4). The blue line indicates the
left-hand side of Eq. (5.4), and the red dashed line indicates
the right-hand side. The nonslip boundary condition was
used in this case. The same quantity for a single trajectory
is plotted in the inset. It is seen that the energy conservation
law is very well obeyed in the time evolution, and the kinetic
energy decreases as a function of time, until it reaches a
plateau. The vertical arrow indicates the time, t = 7000, at
which the flow profile is plotted in Fig. 6

where wα(t) denotes the projection coefficients of the
total velocity field v, including the Poiseuille flow veloc-
ity. The latter is expanded in terms of the 1D symmetric
HMs. Here N = 6596 denotes the total number of HMs
involved. Derivation of Eq. (5.4b) is given in SM Part
VI [28]. The energy conservation law tells us that the
change in the total kinetic energy, ΔEkinetic(t), must be
equal to the net work. In Fig. 5, we plot the ensemble-
averaged, time-integrated kinetic energy as a function
of t, while the inset shows the same for one selected evo-
lution trajectory. We see excellent consistency between
the two curves as evaluated from two sides of Eq. (5.4b),
indicating energy conservation to be well obeyed by our
numerical scheme for every evolution trajectory.

It is clear from Fig. 5 that the general trend in the
kinetic energy evolution is along a decreasing path.
This trend is due to the fact that most of pertur-
bation modes’ energy becomes concentrated in the
1D symmetric modes as t increases, with the rest of
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Fig. 6 a Flow profile at two time instances, where vx

denotes the total velocity. At t = 0, the profile is parabolic,
corresponding to the Poiseuille flow. At t = 7000, the
net flow rate is decreased, even though the profile is still
very similar. b The counter-flow profile vc

x at three time
instances, obtained by subtracting off the Poiseuille profile
from the total flow profile. The inset shows an enlarged view
of the velocity profile in the vicinity of the solid boundary.
The counter flow profile can be expressed as a superposition
of the 1D symmetric modes, not all flowing along the same
direction. It is noted that the boundary reaction force is in
the negative x direction at t = 7000 (blue curve). At other
two time instances, t = 7560 (red) and t = 7345 (black), the
boundary reaction force is either along the positive x direc-
tion or nearly zero, respectively. The fluctuating boundary
profile as a function of time has a direct bearing on the time-
averaged frictional reaction force from the solid boundary
arising from vc

x. The blue curve is representative of almost
all the counter flow profiles prior to t = 7000

the HMs having at least an order of magnitude less
energy. Since the effect of the 1D symmetric modes
is to decrease the net flow, hence the kinetic energy
of the whole system decreases. While the other zero-
momentum modes (mostly in the form of coupled vor-
tices and anti-vortices) have small amplitudes, they
provide the energetic link between the 1D symmetric
modes and the Poiseuille flow. Otherwise the 1D sym-
metric modes would decay and disappear.

5.4 Net flow profile and the counter flow

Beyond the critical Reynolds number, the net flow com-
prises both the Poiseuille flow and the 1D symmetric
modes. In Fig. 6a, we plot the total velocity profile,
vx, at t = 0 and t = 7000 for a comparison. Here
we consider only the nonslip boundary condition; the
same holds true for what follows. The time instance
t = 7000 falls in what we denote as the “equilibrium
state” time period. It is seen that the two velocity pro-
files are largely similar. However, the presence of the
1D symmetric modes can be made apparent by sub-
tracting off the t = 0 Poiseuille profile from the net
flow profile. The result, denoted as the counter flow
vC

x , is plotted in Fig. 6b at three time instances. The
vC

x is composed of different 1D symmetric modes, not
all of them flowing along the same direction, e.g., at
t = 7000, vC

x = −0.158cos(1.571z) + 0.01cos(4.712z) +
0.0075cos(7.854z)−0.0074cos(10.996z)+. . . . Hence, one
can see that in the vicinity of the solid boundary, there
can be opposite slopes of

[
∂vC

x

∂z

]
z=±1

that reflect the

different directions of the boundary reaction force at
difference time instances. In particular, the blue curve
at t = 7000 is seen to have a boundary reaction force
along the same direction as the counter flow . That is
in contrast to the Poiseuille flow, where the boundary
reaction force is always opposite to the flow direction.
For almost all vC

x ( t) prior to reaching the equilibrium
state, the flow profile in the vicinity of the boundary is
similar to the blue curve in Fig. 6b. It explains how the
initial counter flow can provide the necessary boundary
reaction force for decreasing the net flow , in accordance
with Newton’s law . Below we examine in more detail the
question of force balance and the necessary condition
for a statistical equilibrium (or stationary) state.

5.5 Force accounting

The NS equation expresses Newton’s law in the form
∂v/∂t + (v · ∇)v = ∇ · ←→τ , where ←→τ denotes fluid’s
stress tensor. In view of the findings above, an interest-
ing question arises: Is it possible to have a statistical
stationary (or equilibrium) state at Re > Rec? A sta-
tionary state would imply the vanishing of the inertial
force on the left-hand side of the NS equation. At t =
0, the Poiseuille flow is obviously stationary, but in the
presence of counter flow at t = 7000, the vanishing of
the inertial force seems very unlikely, even if it is on the
statistical basis of taking the time-averaged flow profile.
We show below that a detailed force accounting yields
a somewhat surprising answer.

The natural starting point is to volume-integrate
both sides of the NS equation, and convert the right-
hand side of the NS equation to a surface integral over
the boundaries of the computational domain so that
the integrated equation expresses the equality of the
total inertial acceleration to the total external forces
exerted on the system. The latter comprises the force
from the externally applied pressure gradient, plus the
frictional reaction force from the solid/liquid interfaces.
Since the applied pressure gradient is always given by
−2/Re, hence we denote 4 LW × 2 × 2

Re = F 0 as the
unit of force (along the x direction) in this accounting
exercise, i.e., total force from applied pressure gradient
= 1. By denoting the counter flow velocity profile as
vc

x, it is clear that the frictional boundary reaction force
ΔF boundary

x arising from vc
x must be equal to the inertial

force ΔF inertial
x , since pressure force is completely com-

pensated by the boundary reaction force from uP
x , and

the total boundary reaction force is the linear addition
of that from vc

x and uP
x . In Fig. 7a, we plot the iner-

tial force ΔF inertial
x as a function of time (blue dots),

together with the boundary reaction force ΔF boundary
x

caused by vC
x (red line). Complete agreement is seen,

since the two represent the two sides of the same equa-
tion.

The fluctuating nature of the curve in Fig. 7a raises
an obvious question: What if one takes a time average
over this (near-equilibrium) time period? The result is
shown as the flat dashed line in Fig. 7a, which is slightly
negative but very close to zero, i.e., the time-averaged
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Fig. 7 a A plot of the normalized inertial force and the
boundary reaction force as a function of time. The time
period is chosen to be in the near-equilibrium state, i.e.,
after t = 7000. The blue dots denote the inertial force, and
the red curve denotes the boundary reaction force. Complete
agreement is seen, since the two represent the two sides of
the same equation. The black dashed line represents the

time average of the boundary reaction force. It is very close
to zero. b The vC

x profile time-averaged over the same time
period as shown in (a). The inset shows an enlarge picture
of the profile in the vicinity of the boundary. It is seen that
[

∂vC
x

∂z

]

z=±1
≈ 0, indicating a near-zero boundary reaction

force in the time-averaged sense

boundary reaction force caused by the counter flow is
nearly zero. In Fig. 7b, we plot a time-averaged pro-
file of vC

x over the same period. It is seen that at the
upper and lower boundaries,

[
∂vC

x

∂z

]
z=±1

≈ 0, indicating

a close-to-zero frictional reaction force from the bound-
ary! This is a somewhat surprising result from our lim-
ited data, but consistent with the finding of a statistical
equilibrium state that requires the absence of inertial
force in the time-averaged sense. This scenario is con-
ceivable because vC

x comprises different 1D symmetric
modes with both +and−flow directions, thereby mak-
ing it possible to have no net boundary reaction force
via cancelations. This point has already been foreshad-
owed in Fig. 6b, which shows that there can be oppo-
site slopes of

[
∂vC

x

∂z

]
z=±1

at different time instances in

the vicinity of the boundary, including one that shows[
∂vC

x

∂z

]
z=±1

∼= 0 at t = 7345.

In summary, our analysis yields a physical picture
of the equilibrium state beyond Rec with the follow-
ing characteristics: (1) fluctuations; (2) co-existence
between Poiseuille flow, 1D symmetric modes, and the
vortices, with the transient nature of the latter under-
ling the fluctuations; and (3) reduced flow rate from the
Poiseuille flow.

5.6 Experimental possibilities

Our numerical experiment was limited by the available
computational resources. Hence, it is not possible to
test whether the final result would be altered by con-
sidering a very large set of initial states, or by con-
sidering many more coupling possibilities via the ten-
sorial term. However, experimental verification of the
predictions should be possible. Viscosity can be varied
by mixing glycerol and water in varying proportions

[39], for example. Two experiments can be carried out
by using the same channel but with different applied
pressure across the sample, with compensating viscos-
ity values so as to maintain the same U0 associated with
the Poiseuille profile. The value of Re can thus be var-
ied, with one experiment below the critical state and
another one above it. In this manner, the flow rate of
the two experiments can be measured and compared. In
another experiment, perhaps more difficult, is to visual-
ize the 2D critical oscillating state, if even in a transient
condition.

6 Conclusions

In summary, the significance of our work can be stated
as follows. (a) We have obtained, for the first time,
the altered behavior of channel flow and Darcy’s law
beyond the critical Reynolds number. In particular, we
find that there exists a stationary state beyond the crit-
ical Reynolds number, with a ∼15% reduced flow rate.
(b) We have obtained the analytical expressions of the
3D hydrodynamic eigenmodes for the channel flow, with
either slip or nonslip boundary condition.

By using the analytical HMs, we reduced the full NS
equation to a set of coupled autonomous ODEs with
t being the only variable. The critical Reynolds num-
ber and the critical wavevector were obtained to five
and four significant figures, respectively, together with
an explicit configuration of the oscillating critical state.
By considering only a limited number of tensorial cou-
plings, and with a small set of initial perturbed HMs, we
reveal that beyond the critical state, the net flow rate
decreases due to the nonlinear coupling between the 1D
symmetric HMs and other HMs with zero momentum.
There is a plateau regime for the net flow rate, reduced
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by ∼15% from that in the linear regime, almost inde-
pendent of the slip length. The 1D symmetric modes
are shown to co-exist with the Poiseuille flow and the
vortices. However, it remains an open question as to
the ultimate net flow rate in the limit of t → ∞, or
Re → ∞, or both. The resolution of this question may
require mathematical analysis of the problem, which is
beyond the scope of this work. On the practical side,
since the Darcy’s law is one of the most important pil-
lars in the engineering modeling of fluid flow in porous
media, the knowledge about its altered behavior beyond
the critical Reynolds number can be of value in design-
ing more accurate modeling schemes.
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1. J. Jiménez, Transition to turbulence in two-dimensional
Poiseuille flow. J. Fluid Mech. 218, 265–297 (1990)

2. L.D. Landau, E.M. Lifshitz, Fluid Mechanics, 2nd edn.
(Pergamon Press, Oxford, 1987)

3. S.P. Sutera, R. Skalak, The history of Poiseuille’s law.
Annu. Rev. Fluid Mech. 25, 1–19 (1993)

4. G.K. Batchelor, An Introduction to Fluid Dynam-
ics (Cambridge University Press, Cambridge, 1967),
pp.211–215

5. H. Darcy, Les fontaines publiques de la ville de Dijon
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